1 |
A study on a calculus for the Tk,x,y,z-operatorKhan, Mumtaz Ahmad, Rouhi, Bijan 25 September 2017 (has links)
The present paper deals with the calculus of Tk,x,y,z - operator. The operator is a three variable analogue of the operator given earlier by W. A. Al-Salam [1] and H. B. Mittal [10]. The operator is useful for finding operational representations and generating functions of polynomials of three variables and will be dealt in a separate communication.
|
2 |
Analysis of the Three-dimensional Superradiance Problem and Some GeneralizationsSen Gupta, Indranil 2010 August 1900 (has links)
We study the integral equation related to the three and higher dimensional
superradiance problem. Collective radiation phenomena has attracted the attention
of many physicists and chemists since the pioneering work of R. H. Dicke in 1954.
We first consider the three-dimensional superradiance problem and find a differential
operator that commutes with the integral operator related to the problem. We
find all the eigenfunctions of the differential operator and obtain a complete set of
eigensolutions for the three-dimensional superradiance problem. Generalization of
the three-dimensional superradiance integral equation is provided. A commuting differential
operator is found for this generalized problem. For the three dimensional
superradiance problem, an alternative set of complete eigenfunctions is also provided.
The kernel for the superradiance problem when restricted to one-dimension is the
same as appeared in the works of Slepian, Landau and Pollak. The uniqueness of the
differential operator commuting with that kernel is indicated. Finally, a concentration
problem for the signals which are bandlimited in disjoint frequency-intervals is
considered. The problem is to determine which bandlimited signals lose the smallest
fraction of their energy when restricted in a given time interval. A numerical
algorithm for solution and convergence theorems are given. Orthogonality properties
of analytically extended eigenfunctions over L2(−∞,∞) are also proved. Numerical
computations are carried out in support of the theory.
|
3 |
An Introduction To Hellmann-feynman TheoryWallace, David 01 January 2005 (has links)
The Hellmann-Feynman theorem is presented together with certain allied theorems. The origin of the Hellmann-Feynman theorem in quantum physical chemistry is described. The theorem is stated with proof and with discussion of applicability and reliability. Some adaptations of the theorem to the study of the variation of zeros of special functions and orthogonal polynomials are surveyed. Possible extensions are discussed.
|
4 |
Simetrias de Lie e modelagem estocástica da regulação da expressão gênica / Lie symmetries and stochastic modeling of gene expression regulationRamos, Alexandre Ferreira 16 September 2008 (has links)
Nesta tese, mostramos que o modelo estocástico binário para expressão gênica, por um gene auto-regulado, possui solução completa. A solução dependente do tempo é escrita via expansão em termos das funções de Heun confluentes. Apresentamos um exemplo de dinâmica estocástica desse gene. Para tal, desenvolvemos uma relação de recorrência entre derivadas arbitrárias das funções de Heun confluentes. Mostramos também que o regime estacionário deste modelo possui simetria de Lie SO(2, 1) tipo Lorentz. Esta simetria é análoga à simetria do momento angular, porém com um sinal errado. O invariante desta álgebra define a meia-vida relativa do regime dinâmico do gene. O equivalente do momento angular azimutal é uma medida indireta do nível de atividade do gene. Os operadores levantamento e abaixamento conectam diferentes processos estocásticos de expressão proteínica. As flutuações destes processos estocásticos são classificadas em termos das relações entre os etiquetadores de um elemento da representação da álgebra. No arcabouço da teoria dos grupos, o modelo estocástico para um gene externamente regulado aparece como um caso particular do modelo para um gene auto-regulado. Mostramos, por fim, uma comparação entre estas duas estratégias de regulação. Demonstramos que um gene auto-regulado pode expressar proteínas em regimes sub Poisson, Poisson ou super Poisson. Por seu turno, o gene externamente regulado somente expressa proteínas em regimes Poisson ou super Poisson. Portanto, num processo estocástico, a auto-regulação mostra-se como uma forma de controle mais precisa. Também mostramos que a dinâmica de genes auto-regulados possui meia-vida mais curta que a de genes externamente regulados. Ou seja, a auto-regulação permite respostas mais rápidas à perturbações externas. / In this thesis we show that the stochastic binary model to protein synthesis by na auto-regulated gene is completely solvable. The time-dependent solution is written in terms of the confluent Heun functions. We present an example of probability dynamics to this gene. To get that, we developed a recurrence relation between arbitrary derivatives of the confluent Heun functions. We also show the existence of a Lorentz-like Lie symmetry SO(2, 1). This is an analogous to the angular momentum symmetry but presenting one wrong sign in its preserved form. This invariant defines the relative half-life of the dynamical regime of the gene. The equivalent of the azimuth angular momentum measures indirectly the activity level of the gene. The ladder operators connect distinct stochastic processes of protein synthesis. The fluctuations of these processes are classified in terms of the relation between labeling numbers of a representation of the algebra. In the group theory formalism, the stochastic model to an externally regulated gene is a particular case of the model to an auto-regulated gene. We compare these two gene regulation strategies, and show that the auto-regulated gene can synthesize proteins into the super Poisson, Poisson, and sub Poisson fluctuating regimes. The externally regulated gene only presents the super Poisson and Poisson regimes. Therefore, the auto-regulation is responsible for a more precise control of gene expression. We also show that the dynamics of the auto-regulated genes has a shorter half-life. Thus, the auto-regulation permits faster responses of the system to external perturbation.
|
5 |
Progenitors Involving Simple GroupsAndujo, Nicholas R 01 February 1986 (has links)
I will be going over writing representations of both permutation and monomial progenitors, which include 2^{*4} : D_4, 2^(*7) :L_2 (7) as permutation progenitors, and monomial progenitors 7^(*2) :_m S_3 \times 2, 11^{*2} :_m (5:2)^{*}5, 11^{*3} :_m (25:3), 11^{*4} :_m (4 : 5)^{*}5. Also, the images of these different progenitors at both lower and higher fields and orders. \\ We will also do the double coset enumeration of S5 over D6, S6 over 5 : 4, A_5 x A_5 over (5:2)^{*}5, and go on to also do the double coset enumeration over maximal subgroups for larger constructions. We will also do the construction of sporadic group M22 over maximal subgroup A7, and also J1 with the monomial representation 7^(*2) :_m S_3 \times 2 over maximal subgroup PSL(2,11). We will also look at different extension problems of composition factors of different groups, and determine the isomorphism types of each extension.
|
6 |
Quantum many-body systems exactly solved by special functionsHallnäs, Martin January 2007 (has links)
This thesis concerns two types of quantum many-body systems in one dimension exactly solved by special functions: firstly, systems with interactions localised at points and solved by the (coordinate) Bethe ansatz; secondly, systems of Calogero-Sutherland type, as well as certain recently introduced deformations thereof, with eigenfunctions given by natural many-variable generalisations of classical (orthogonal) polynomials. The thesis is divided into two parts. The first provides background and a few complementary results, while the second presents the main results of this thesis in five appended scientific papers. In the first paper we consider two complementary quantum many-body systems with local interactions related to the root systems CN, one with delta-interactions, and the other with certain momentum dependent interactions commonly known as delta-prime interactions. We prove, by construction, that the former is exactly solvable by the Bethe ansatz in the general case of distinguishable particles, and that the latter is similarly solvable only in the case of bosons or fermions. We also establish a simple strong/weak coupling duality between the two models and elaborate on their physical interpretations. In the second paper we consider a well-known four-parameter family of local interactions in one dimension. In particular, we determine all such interactions leading to a quantum many-body system of distinguishable particles exactly solvable by the Bethe ansatz. We find that there are two families of such systems: the first is described by a one-parameter deformation of the delta-interaction model, while the second features a particular one-parameter combination of the delta and the delta-prime interactions. In papers 3-5 we construct and study particular series representations for the eigenfunctions of a family of Calogero-Sutherland models naturally associated with the classical (orthogonal) polynomials. In our construction, the eigenfunctions are given by linear combinations of certain symmetric polynomials generalising the so-called Schur polynomials, with explicit and rather simple coefficients. In paper 5 we also generalise certain of these results to the so-called deformed Calogero-Sutherland operators. / QC 20100712
|
7 |
On The Wkb Asymptotic Solutionsof Differential Equations Of The Hypergeometric TypeAksoy, Betul 01 December 2004 (has links) (PDF)
WKB procedure is used in the study of asymptotic solutions of differential equations of the hypergeometric type. Hence asymptotic forms of classical orthogonal polynomials associated with the names Jacobi, Laguerre and Hermite have been derived. In particular, the asymptotic expansion of the Jacobi polynomials $P^{(alpha, beta)}_n(x)$ as $n$ tends to infinity is emphasized.
|
8 |
Simetrias de Lie e modelagem estocástica da regulação da expressão gênica / Lie symmetries and stochastic modeling of gene expression regulationAlexandre Ferreira Ramos 16 September 2008 (has links)
Nesta tese, mostramos que o modelo estocástico binário para expressão gênica, por um gene auto-regulado, possui solução completa. A solução dependente do tempo é escrita via expansão em termos das funções de Heun confluentes. Apresentamos um exemplo de dinâmica estocástica desse gene. Para tal, desenvolvemos uma relação de recorrência entre derivadas arbitrárias das funções de Heun confluentes. Mostramos também que o regime estacionário deste modelo possui simetria de Lie SO(2, 1) tipo Lorentz. Esta simetria é análoga à simetria do momento angular, porém com um sinal errado. O invariante desta álgebra define a meia-vida relativa do regime dinâmico do gene. O equivalente do momento angular azimutal é uma medida indireta do nível de atividade do gene. Os operadores levantamento e abaixamento conectam diferentes processos estocásticos de expressão proteínica. As flutuações destes processos estocásticos são classificadas em termos das relações entre os etiquetadores de um elemento da representação da álgebra. No arcabouço da teoria dos grupos, o modelo estocástico para um gene externamente regulado aparece como um caso particular do modelo para um gene auto-regulado. Mostramos, por fim, uma comparação entre estas duas estratégias de regulação. Demonstramos que um gene auto-regulado pode expressar proteínas em regimes sub Poisson, Poisson ou super Poisson. Por seu turno, o gene externamente regulado somente expressa proteínas em regimes Poisson ou super Poisson. Portanto, num processo estocástico, a auto-regulação mostra-se como uma forma de controle mais precisa. Também mostramos que a dinâmica de genes auto-regulados possui meia-vida mais curta que a de genes externamente regulados. Ou seja, a auto-regulação permite respostas mais rápidas à perturbações externas. / In this thesis we show that the stochastic binary model to protein synthesis by na auto-regulated gene is completely solvable. The time-dependent solution is written in terms of the confluent Heun functions. We present an example of probability dynamics to this gene. To get that, we developed a recurrence relation between arbitrary derivatives of the confluent Heun functions. We also show the existence of a Lorentz-like Lie symmetry SO(2, 1). This is an analogous to the angular momentum symmetry but presenting one wrong sign in its preserved form. This invariant defines the relative half-life of the dynamical regime of the gene. The equivalent of the azimuth angular momentum measures indirectly the activity level of the gene. The ladder operators connect distinct stochastic processes of protein synthesis. The fluctuations of these processes are classified in terms of the relation between labeling numbers of a representation of the algebra. In the group theory formalism, the stochastic model to an externally regulated gene is a particular case of the model to an auto-regulated gene. We compare these two gene regulation strategies, and show that the auto-regulated gene can synthesize proteins into the super Poisson, Poisson, and sub Poisson fluctuating regimes. The externally regulated gene only presents the super Poisson and Poisson regimes. Therefore, the auto-regulation is responsible for a more precise control of gene expression. We also show that the dynamics of the auto-regulated genes has a shorter half-life. Thus, the auto-regulation permits faster responses of the system to external perturbation.
|
9 |
Propriedades de positividade e estabilidade de ondas viajantes periodicas / Positivity properties and stability of periodic travelling wave solutionsNatali, Fabio Matheus Amorin 14 February 2007 (has links)
Orientador: Jaime Angulo Pava / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T09:23:36Z (GMT). No. of bitstreams: 1
Natali_FabioMatheusAmorin_D.pdf: 1495954 bytes, checksum: 470d5cbae62b9e11fa888d6ab8e61976 (MD5)
Previous issue date: 2007 / Resumo: Nesta tese estabelecemos condições suficientes para obter a estabilidade de soluções ondas Viajantes periódicas para equações de tipo KdV-type + ut +upux -- (Mu)x = 0, p ? N, com M sendo um operador pseudo-diferencial geral, porem com características especiais. Nossa abordagem é a de usar a teoria dos operadores totalmente positivos, o Teorema do Somatório de Poisson e a teoria das funções Elípticas de Jacobi. Em particular nós obtemos a estabilidade de uma família de soluções ondas viajantes periódicas para a equação de Benjamin-Ono e a equação KdV crítica. Nossas técnicas fornecem uma nova maneira para obter a existência e a estabilidade das ondas cnoidal e dnoidal associadas as equações de Korteweg-de Vries e modificada Korteweg-de Vries respectivamente. A teoria propõe o estudo de soluções ondas viajantes periódicas para outras equações diferencias parciais por exemplo, os resultados de estabilidade e instabilidade de soluções do tipo standing waves periódicas para a equação não linear de Schrödinger crítica / Abstract: In this thesis we establish su?cient conditions to obtain the stability of periodic travelling waves solutions for equations of KdV-type ut + upux -- (Mu)x = 0, p N, with M being a general pseudo-differential operator, but this operator has special characteristics. Our approach use the theory of totally positive operators, the Poisson summation theorem and the theory of Jacobi elliptic functions. In particular we obtain the stability of a family of periodic travelling waves solutions for the Benjamin-Ono equation and critical Korteweg-de Vries equation. Our techniques give a new way to obtain the existence and stability of cnoidal and dnoidal waves solutions associated to the Korteweg-de Vries and modified Korteweg-de Vries equations respectively. The theory has prospects for the study of periodic travelling waves solutions of other partial diferential equations, for instance, the results of stability and instability of periodic standing wave solutions for the critical Schrödinger equation / Doutorado / Doutor em Matemática
|
10 |
Corda vibrante e telegrafo : estudo analitico de problemas modelados por equações diferenciais / Vibrating string and telegraphe : an analytical study of problems by differential equationsCoelho, João Bosco 26 June 2008 (has links)
Orientador: Edmundo Capelas de Oliveira / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T05:13:17Z (GMT). No. of bitstreams: 1
Coelho_JoaoBosco_M.pdf: 1003588 bytes, checksum: c8b5b0bbc0f7fe49adbeacc39f398bcf (MD5)
Previous issue date: 2008 / Resumo: Efetua-se um estudo sistemático das equações diferenciais parciais, lineares, de segunda ordem e do tipo hiperbólico, isto é, aquelas equações que estão associadas com o problema envolvendo a propagação de ondas. Como uma aplicação, discute-se o problema de ondas de corrente e ondas de tensão, através da chamada equação do telégrafo, também conhecida como equação dos telegrafistas. Casos particulares são discutidos tanto do ponto de vista matemático quanto do ponto de vista físico. Apresenta-se o método de Riemann como ferramenta para discutir a solução geral / Abstract: We perform a systematic way to study the linear, second order partial differential equation of the hyperbolic type, that is, those equations which are associated with the problem involving wave propagation. As an application, we discuss the problem associated with the current waves and tension waves by means of the so-called telegraph equation, also known as telephone equation. Particular cases are discussed in both sense, Mathematic and Physical point of view. We also present the Riemann¿s method as a powerful tool to discuss the general solution / Mestrado / Mestre em Matemática
|
Page generated in 0.0799 seconds