• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ecological Consequences of Landscape Fragmentation on the Lizard Community in the Mescalero-Monahans Shinnery Sands

Leavitt, Daniel 1979- 14 March 2013 (has links)
Landscape fragmentation poses a major threat to biodiversity world-wide. The goal of my dissertation research was to determine the effects of landscape fragmentation on a lizard community in the Mescalero-Monahans shinnery sands, New Mexico and the extent to which conservation efforts might protect biodiversity in this ecosystem. My research relied heavily on data collected from a large-scale spatially-replicated comparative study. The purpose of this study was to evaluate the impacts of landscape fragmentation as a result of oil and gas development on the dunes sagebrush lizard (Sceloporus arenicolus). Results from analysis of lizard community structure indicate that fragmented sites are less diverse than non-fragmented sites. In particular, two species are found in lower density and occupancy in the fragmented locations (Holbrookia maculata and Sceloporus arenicolus). Analysis of landscape configuration at the scale of a trapping grid indicated that sand dune blowout shape and size differed between fragmented and non-fragmented locations. Differences in landscape pattern were associated with reduced lizard diversity. Because of this association between lower diversity and altered landscape pattern, extensive alterations to landscape pattern may cause disassembly at the ecosystem level. The maintenance of existing landscape pattern may be important to the maintenance of diversity in this ecosystem. Evaluations of habitat use patterns of the lizards in this community demonstrate that a few species have narrow preferences for certain habitats. In particular, H. maculata, Phrynosoma cornutum, and S. arenicolus all demonstrated narrow habitat use patterns. Effect size of fragmentation for each species indicated that the same three species showed a large effect when comparing their average abundances between fragmented and non-fragmented locations. Thus species that are most likely to benefit or be harmed by landscape fragmentation are those with the most specific habitat requirements. Umbrella species represent one of many approaches to conservation using surrogate species. I used data on ants, beetles, small mammals, lizards, and endemic species to test the use of the dunes sagebrush lizard (Sceloporus arenicolus) as an umbrella for endemism and biodiversity of the Mescalero-Monahans shinnery sands ecosystem. I applied a comparative approach at three spatial scales to examine how conservation practices at different scales may affect biodiversity and endemism in this ecosystem. At the largest scale, the frequency of occurrence for endemic species increased though no other patterns emerged because S. arenicolus was present at all sites and there were no relationships between relative abundances of S. arenicolus and the other taxonomic groups. At the smallest scale, both beetle species richness, diversity, and endemic species richness were higher in the presence of S. arenicolus. To protect biodiversity in this ecosystem, conservation efforts should focus on protection at the scale of the species distribution rather than on the small-scale placement of individual well pads.
2

Evaluating the Effects of Cheatgrass on Western Burrowing Owls

Draughon, Kaylee R. 21 June 2024 (has links) (PDF)
There has been a global decline of specialist species observed in recent decades due to the impacts of climate change, invasive species, and habitat loss. Habitat loss and degradation may lead to a mismatch between habitat attractiveness and actual quality, otherwise known as an ecological trap. Ecological traps occur when an organism is constrained by its evolutionary past to select for cues that no longer accurately predict habitat quality. Specialist species are more susceptible to ecological traps due to greater reliance on and fidelity to historic sites and resources. The burrowing owl (Athene cunicularia), a specialist bird species adapted to open ecosystems, has declined throughout its extent. Anthropogenic activity has drastically and rapidly altered burrowing owl native habitat, exposing their habitat to disturbances such as cheatgrass (Bromus tectorum) invasion. The presence of cheatgrass is known to impact the biota of a region and understanding those impacts is becoming increasingly important. The purpose of this study was to quantify the impact of cheatgrass on burrowing owl populations. By assessing how cheatgrass influences the resource selection, nesting success, and food habits of burrowing owls, we provided information that can be utilized to make more informed decisions on how to conserve burrowing owls and their critical nesting habitat. In addition, this information can provide insight into the risk of ecological traps occurring to all specialist species experiencing degradation of their native habitat.
3

Small remnant habitats : Important structures in fragmented landscapes

Lindgren, Jessica January 2017 (has links)
The world-wide intensification of agriculture has led to a decline in species richness due to land use change, isolation, and fragmentation of natural and semi-natural habitats in agricultural and forestry landscapes. As a consequence, there is a current landscape management focus on the importance of green infrastructure to mitigate biodiversity decline and preserve ecosystem functions e.g. pollination services and pest control. Even though intensification in agriculture has been ongoing for several hundreds of years, remnant habitats from earlier management practices may still be remaining with a surprisingly high plant richness. Preserving these habitats could help conserving plant species richness in agricultural landscapes, as well as other organisms that are dependent on plants for food and shelter. In this thesis I focus on two small remnant habitats; midfield islets and borders between managed forest and crop field in southeastern Sweden. In the past, both habitats were included in the grazing system and therefore often still have remnant population of grassland specialist species left today. I have used these two remnant habitats as model habitats to investigate the effect of landscape factors and local factors on species richness of plants, flower morphologies and plants with fleshy fruits. Additively, I analysed the effect of surrounding landscape and local openness on the functions; pollination success, biological pest control of aphids and seed predation on midfield islets. One of my studies showed that spatial distribution and size of the habitat affected plant species richness. Larger habitat size and higher connectivity between habitats increased species richness of plants in the habitats. Openness of the habitats was shown to be an important factor to increase species richness and richness of flower morphologies, both on midfield islets and in forest borders. Even though midfield islets had the highest species and morphology richness, both habitat types are needed for habitat complementary as forest borders have more plants with fleshy fruits and a higher richness of plant species that flowers in spring/early summer. It was also shown that a more complex forest border, not just with gaps in the canopy, but also with high variation in tree stem sizes increases plant species richness in the field layer. The conclusion is that by managing small remnant habitats to remain or become more semi-open and complex in their structure, would increase species richness of plants, grassland specialist species, and flower morphologies. It would also increase some ecosystem functions as seed predation and biologic pest control of aphids are more effective close to trees. If both midfield islets and forest borders would be managed to be semi-open, the area and connectivity of semi-open habitat would increase in the agricultural landscape, which may also improve pollination success as the connectivity between populations has a possibility to increase. Grassland specialist species are clearly abundant in the small remnant habitats. As the decline of semi-natural grasslands is causing a decline in grassland specialists’ species, not only plants, I recommend that small remnant habitats are included in conservation and management plans and strategies to improve habitat availability and connectivity for grassland species in agricultural landscapes. / <p>Research funder Ekoklim. Project:4339602.</p><p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>

Page generated in 0.0909 seconds