11 |
Développement d'un spectromètre laser OF-CEAS pour les mesures des isotopes de la vapeur d'eau aux concentrations de l'eau basses / Development of a water vapor isotope ratio infrared spectrometer and application to measure atmospheric water in AntarcticaLandsberg, Janek 12 December 2014 (has links)
Ces dernières années, la mesure des isotopologues de l'eau est devenue de plus en plus importante pour les sciences de l'atmosphère. A cause de l'influence des conditions climatiques sur les rapports isotopiques, la composition isotopique de l'eau conservée dans la glace en Antarctique et en Arctique peut être utilisée comme un paléothermomètre permettant de comprendre les changements passés du climat. La mesure des variations de la composition isotopique de la vapeur d'eau dans l'atmosphère peut servir à étudier le cycle hydrologique global de la terre et à raffiner les modèles de circulation atmosphérique.Alors que la méthode conventionnelle pour la mesure des isotopes de l'eau, la Spectrométrie de Masse des Rapports Isotopiques (IRMS), n'est pas adaptée aux mesures en continu et in-situ des isotopes de vapeur d'eau, le développement récent des spectromètres laser offre une méthode simple et robuste pour effectuer des recherches sur le terrain avec une bonne résolution temporelle. Pourtant, jusqu'à présent la plupart des instruments optiques exigent des niveaux d'humidité relativement élevés avec des concentrations d'eau supérieures à 1000 ppmv, ce qui exclut les mesures dans quelques unes des régions les plus intéressantes pour l'investigation des variations isotopiques dans l'eau, telles que les couches élevées de l'atmosphère ou les régions centrales de l'Antarctique.Ce travail introduit un nouveau spectromètre laser infrarouge qui est basé sur la technique d'OFCEAS et qui a été conçu spécialement pour la mesure des quatre isotopologues H2_16O, H2_18O, H2_17O et HDO dans un environnement sec avec des concentrations d'eau de quelques centaines à seulement quelques dizaines de ppmv. L'instrument qui a été développé dans le cadre de cette thèse montre une stabilité de mesure supérieure comparée aux instruments OFCEAS précédents, avec des temps d'intégration optimaux pouvant aller jusqu'à plusieurs heures et une longueur de trajet optique effective de plus de 30 km.La performance globale de l'instrument est analysée et le problème de la dépendance des mesures isotopiques vis-à-vis de la concentration d'eau avec laquelle l'expérience est effectuée est investigué en détail. La présence d'un motif fixe spectral est identifiée comme la source principale de bruit et analysée en détail.En outre, un nouveau système de calibration pour des mesures d'isotopes de vapeur d'eau est présenté. Ce système a été développé dans le cadre de cette thèse afin de disposer d'un moyen fiable et stable pour la calibration des mesures des variations isotopiques de la vapeur d'eau. Le système de calibration est basé sur l'injection continue d'eau dans une chambre d'évaporation avec deux pousse-seringue au nanolitre. Il est capable de générer une vapeur d'eau standard entre 5 et 15000 ppmv. Une simulation modélisée de l'injection d'eau, qui est en bon accord avec les expériences, est présentée.Ensuite une première utilisation du spectromètre OFCEAS dans la station de recherche norvégienne (Troll) en Antarctique est exposée en détail. Les données enregistrées pendant une période de trois semaines de Février à Mars 2011 sont présentées et discutées, en particulier relativement aux problèmes de calibration rencontrés avec un système de calibration rudimentaire construit sur place. Pendant cette période le spectromètre a mesuré en continu les isotopologues de vapeur d'eau dans l'atmosphère sur le site de la station.Pour conclure, nous allons présenter le projet Isocloud, un projet international avec pour but d'étudier des effets de (super)saturation en utilisant la chambre à nuages AIDA du KIT en Allemagne. Notre spectromètre et le système de calibration faisaient partie de ce projet. Les données expérimentales de quatre campagnes de mesure sont présentées et des résultats préliminaires sont discutés. Nous concluons avec la discussion d'un protocole de mesure optimal et donnons des perspectives pour le futur. / In recent years, the measurement of water isotopologues has become increasingly important for atmospheric research. Due to the influence of climatic conditions on the isotope ratios, the isotopic composition of water stored in the ice in Antarctica and the Arctic can be used as paleothermometers to reconstruct past climate changes. The measurement of changes of the isotopic composition of water vapor in the atmosphere can be used to study the global hydrolocal cycle and to refine atmospheric circulation models.Whereas the conventional method for water isotope measurements, Isotope Ratio Mass Spectrometry (IRMS), is not adapted for in-situ continuous measurements of water vapor isotopes, the recent development of laser spectrometers offers a comparably easy and robust method to conduct in-the-field research with good time resolution. However, until now, most optical instruments require relative high humidity levels with water concentrations of at least several 1000 ppmv, which excludes measurements in some of the most interesting regions for water isotope research, such as the upper atmosphere and the central regions of Antarctica.In this work, we present a novel infrared laser spectrometer based on the technique OFCEAS, specifically designed to measure the four isotopologues H2_16O, H2_18O, H2_17O and HDO under very dry conditions, at water concentrations of some hundred to only tens of ppmv. The instrument developed during this thesis shows much higher measurement stability over time compared to previous OFCEAS instruments with optimum integration times of up to several hours and a very long effective path length of more than 30 km. At water concentrations around 80 ppmv, a precision of 0.8‰, 0.1‰ and 0.2‰ for d2H, d18O and d17O respectively could be achieved with an integration time of 30 to 60 min and at the optimum water concentration of ~650 ppmv, of 0.28‰, 0.02‰ and 0.07‰ respectively.An investigation of the overall performance of the instrument is presented and we specifically discuss the problem of a dependence of the isotope measurements on the water concentration at which a measurement is carried out. As main source of the concentration dependence, pattern noise is identified and a detailed analysis of the noise sources is given.Furthermore, a new calibration system for water vapor isotope measurements, the Syringe Nanoliter Injection Calibration System (SNICS), is introduced, which was developed in the framework of this thesis to offer a more reliable and stable means for the calibration of water vapor isotope measurements. This calibration system is based on the continuous injection of water into an evaporation chamber with two nanoliter syringe pumps and is able to generate standard water vapor in a range of 5 to 15 000 ppmv. A model simulation of the water injection is presented and shows a good agreement with experimental results.Subsequently, a first employment of the OFCEAS spectrometer at the Norwegian research station of Troll in Antarctica is discussed. Data from a three-week period from February and March 2011, during which the spectrometer continuously measured water vapor isotopologues in the atmosphere at the research station, is shown and problems and possibilities are discussed.Finally, the Isocloud project, an international project to study (super)saturation effects at the AIDA cloud chamber of the Karlsruhe Institute Technology in Germany, is introduced, in which we participated with both the spectrometer and the calibration instrument. Experimental data of the four measurement campaigns is presented, preliminary results are discussed. We conclude with a discussion of the optimum measurement protocol and give an outlook for the future.
|
12 |
Analyse de la production de Upsilon dans les collisions pp à 7 TeV avec le spectromètre à muons de l'expérience ALICE / Analysis of Upsilon production in pp collisions at 7 TeV with the ALICE Muon SpectrometerAhn, Sang Un 05 December 2011 (has links)
Résumé indisponible / Résumé indisponible
|
13 |
Source NAPIS et Spectromètre PSI-TOF dans le projet ANDROMEDE / NAPIS source and PSI-TOF spectrometer in the ANDROMEDE ProjectVerzeroli, Elodie 21 September 2017 (has links)
Le projet ANDROMEDE a pour but de créer un nouvel instrument d’imagerie ionique sub-micrométrique et d’analyse par spectrométrie de masse, en utilisant l’impact d’ions sur des nano-objets présents à la surface des échantillons solides et plus particulièrement sur les échantillons biologiques. L’étude de ces échantillons avec l’objectif d’analyse in vitro et in vivo nécessite une préparation complexe et requiert une expérimentation à la pression atmosphérique. Cet instrument unique ouvre une nouvelle voie dans l’analyse de surfaces, complémentaire aux méthodes utilisées de nos jours.Au sein du projet ANDROMEDE, deux éléments ont été développés dans le cadre de notre étude. La source NAPIS qui délivre les nanoparticules permettant d’augmenter le rendement d’éjection des ions secondaires, et le spectromètre de masse PSI-TOF pour l’analyse chimique des éléments émis depuis la surface de l’échantillon.Le faisceau primaire de nanoparticules de la source NAPIS est accéléré dans un accélérateur de type Pelletron 4MeV et amené sur une cible. La source de nanoparticules NAPIS a été développée et validée indépendamment au sein de la société ORSAY PHYSICS, avant son couplage sur l’accélérateur.Une nouvelle optique d’extraction appelée ExOTOF ainsi que le spectromètre de masse à extraction orthogonale PSI-TOF ont été développés pour permettre l’analyse des ions secondaires et augmenter la résolution en masse du système. Ces ensembles ont été spécialement dessinés pour ce projet. Ils permettront une extraction et une analyse efficace des ions secondaires émis depuis la surface de l’échantillon en utilisant des faisceaux continus et auront leur application pour les analyses à la pression atmosphérique. L’ensemble a été validé et les premiers tests de sortie du faisceau primaire ont été réalisés avec succès. / The goal of the ANDROMEDE project is to create a new instrument for sub-micrometric ion imaging and analysis by mass spectrometry, using ion impacts on nano-objects present in the solid sample surface and more particularly on biological samples. In-vitro and in-vivo analysis of these types of samples require mostly complex preparation and even atmospheric pressure experimentation. This unique instrument opens a new path for surface analysis characterization, which is complementary to the standard methods and technics used today.In the ANDROMEDE project, two elements have been developed in our study. The NAPIS source which delivers the nanoparticles allowing the increase of the secondary ion yield and the PSI-TOF mass spectrometer for the chemical analysis of the elements emitted from the sample surface.The NAPIS source delivers a primary beam of accelerated nanoparticles in a Pelletron 4MeV accelerator which is driven to a target. The NAPIS nanoparticles source has been developed and validated independently in the ORSAY PHYSICS Company firstly before its coupling on the accelerator. The new extraction optics called ExOTOF as well as the PSI-TOF orthogonal extraction mass spectrometer have been developed for the reliable secondary ions study and the increase of the mass resolution.These instruments have been specially designed for this project. This development will allow an efficient extraction and analysis of the secondary ions emitted from the sample surface using continuous primary beams and will have applications for atmospheric pressure studies. The assembly has been completely validated and the first tests of the output beam have been successfully carried out.
|
14 |
Mise en œuvre et exploitation d'un spectromètre imageur pour l'étude sismique et la dynamique atmosphérique des planètes géantes / Development and tests of an imaging interferometer for seismology of the giant planetsGonçalves, Didier 28 March 2018 (has links)
Connaitre précisément la structure interne des corps célestes est indispensable pour, à la fois, comprendre la physique qui régit leur existence et le processus qui leur a donné naissance. La sismologie, d’abord appliquée à la Terre puis au soleil, s’est révélée être un outil très efficace pour sonder leurs intérieurs. Dans les années 70 (Vorontsov et al 1976), des premiers travaux théoriques ont étudié la possibilité d’une sismologie des planètes géantes gazeuses. Les premières tentatives de mesures d’oscillations ont eu lieu à la fin des années 80. La détection des modes d’oscillations de Jupiter s’est avérée une entreprise très délicate en raison de sa rotation rapide. Pour augmenter les chances de détection, un instrument spécifique a été construit au début des années 2000 à l’OCA. Cet instrument, appelé SYMPA, est un spectromètre imageur de type Mach-Zehnder capable de produire une carte de vitesse radiale de Jupiter. Une détection de modes d’oscillations sur Jupiter par cet instrument a été publiée par Gaulme et al en 2011. Une version améliorée de l’instrument (appelé DSI) a été proposée pour la mission spatiale JUICE à destination de Jupiter, et un nouveau prototype a été construit dans ce but. Par la suite, le projet s’est réorienté vers un programme d’observation depuis le sol sous la forme d’un réseau de trois télescopes répartis en longitude (USA, France, Japon) et financé par l’ANR à partir de 2015 (ANR JOVIAL). L’intérêt de la mise en réseau est d’assurer la continuité des données (météo mise à part). L’instrument étant capable de produire des cartes de vitesse radiales, le projet permet également l’étude de la dynamique atmosphérique des planètes géantes. Ce travail de thèse s’inscrit dans le contexte de préparation de JOVIAL, avec pour objectif de caractériser l’instrument en laboratoire et d’identifier les problèmes liés aux conditions réelles d’observation. Les mesures en laboratoires ont montré des performances conformes aux attentes, avec un bruit de mesure propre à l’instrument inférieur au bruit de photon attendu sur Jupiter. Les premières mesures sur le ciel avec un télescope ont mis en évidence une sensibilité de l’instrument au degré de polarisation de la lumière ainsi qu’une dérive de la vitesse mesurée liée aux instabilités de position de la pupille pendant les observations. Le design de l’instrument et de son interface avec le télescope a été revu pour résoudre ces problèmes. Plusieurs campagnes d’observations de Jupiter ont été réalisées, permettant de mettre sur pied une chaine complète de traitement des données, dont la validité a été vérifiée par des simulations réalistes. Les observations de Jupiter ont donné des résultats scientifiques particulièrement intéressants. L’analyse des données de deux campagnes de 2015 et 2016 a fourni des séquences temporelles de cartes de vitesses radiales de Jupiter. Une première étude a consisté à chercher dans ces cartes la signature des vents zonaux et de les comparer aux mesures réalisées par suivi des nuages sur des images résolues (cloud-tracking). Une telle mesure n’avait jamais été faite par effet Doppler. Le résultat, bien qu’affecté par des biais de mesures identifiés, montre des profils de vents stables d’une année sur l’autre et en cohérence avec les valeurs issues du cloud-tracking, sauf au niveau de la partie nord de la bande équatoriale de Jupiter. La mesure Doppler suggère en effet une vitesse de vent bien inférieure à la vitesse apparente dans cette zone, ce qui a potentiellement des implications sur les modèles de dynamique atmosphérique. Ces résultats sont très importants pour mieux comprendre les mesures de la sonde Juno, actuellement en orbite autour de Jupiter. L’analyse fréquentielle des données temporelles a été abordée en fin de thèse. Les analyses préliminaires ne semblent pas pour l’instant reproduire la détection de SYMPA. Une analyse plus poussée est nécessaire avant de conclure à une absence du signal. / To know precisely the internal structure of the celestial bodies is essential to both to understand the physics which governs their existence, and the process which gave them birth. First applied to the Earth and then to the sun, seismology has proven to be a very effective tool to sound their interiors. It has become natural and legitimate to question the possibility of seismology of gaseous giant planets. The first theoretical work was carried out in the 1970s (Vorontsov et al. 1976), and the first attempts to measure oscillations at the end of the 1980s. The detection of Jupiter's oscillating modes turned out to be very difficult (reduced flux, small apparent diameter, fast rotation ...). To increase the chances of detection, a specific instrument was built in the early 2000s at the OCA. This instrument, called SYMPA, is a Mach-Zehnder-type imaging spectrometer enable to produce radial velocity maps of Jupiter. A first detection of acoustic modes on Jupiter with this instrument was published by Gaulme et al in 2011. An improved version of the instrument (called DSI), based on the same principle, was built in the wake, with the primary objective of boarding a spacecraft to Jupiter. The project was finally reoriented towards an observation program from the ground in the form of a network of three telescopes equidistant in longitude (USA, France, Japan) and supported by the ANR fund starting in 2015 (ANR JOVIAL). The interest of the network is to ensure the continuity of data (weather apart). The instrument being able to produce radial velocity maps, the project also aims to study the atmospheric dynamics of giant planets. This thesis work is part of a preparation for JOVIAL, with the aim of characterizing the instrument and identifying the problems related to real observations conditions. Laboratory measurements showed expected performances with an instrumental noise level (related to thermal fluctuations) lower than expected photon noise on Jupiter. The first measurements on the sky with a telescope showed a sensitivity of the instrument to the degree of polarization of the light as well as drifts of the velocity measurements due the motions of the pupil position. Some adjustments of the design of the instrument and its interface with the telescope were necessary to solve these issues. Several Jupiter observation campaigns were carried out during the thesis, allowing the development of full data processing software. The complete procedure was tested against simulated data and validated. Two observations runs in 2015 and 2016 were analyzed to produce time sequences of radial velocity maps of Jupiter, providing very interesting scientific results. First, the maps were analyzed to look for the signature of the zonal winds and to compare them with the measurements made by cloud-tracking. Such measurements by Doppler effect were never made before. The result, albeit affected by measurement biases, showed stable year-to-year wind patterns and coherent results with cloud-tracking measurements, except at the northern part of the Jovian’s equatorial band. The Doppler measurement indeed suggests a wind speed well below the apparent speed in this area, which potentially has implications for the theory of atmospheric dynamics and will be helpful to interpret the Juno (a spacecraft presently orbiting Jupiter) measurements. Frequency analysis of temporal data was undertaken at the end of the thesis. The preliminary results do not seem for the moment to reproduce the SYMPA detection. Further analysis is necessary before concluding if the signal is absent or attenuated.
|
15 |
Spectroscopie FTIR à haute résolution de SO2F2 / High Resolution FTIR Spectroscopy of SO2F2Hmida, Fadoua 08 December 2017 (has links)
Les travaux présentés dans ce manuscrit sont consacrés à l’étude de la spectroscopie FTIR à très haute résolution de la molécule de fluorure de sulfuryle SO2F2 qui est apparu récemment comme un polluant atmosphérique important. Une très bonne modélisation de son spectre d’absorption est donc essentielle pour les mesures de concentration atmosphérique.Ce manuscrit comporte cinq parties. La première partie de ce travail de thèse concerne les propriétés de la molécule du fluorure de sulfuryle. La deuxième partie décrit le modèle théorique (formalisme tensoriel, Hamiltonien et moment dipolaire effectifs) que nous avons utilisé pour effectuer les analyses. La troisième partie expose les conditions expérimentales des différents spectres que nous avons enregistré à la ligne AILES du synchrotron SOLEIL à Saint-Aubin (Paris). La quatrième partie décrit le logiciel C2vTDS et enfin dans la cinquième partie, nous présentons les résultats des différentes analyses.Cette thèse a été effectuée au sein du Groupe de Spectrométrie Moléculaire et Atmosphérique (GSMA) de l’Université de Reims Champagne-Ardenne et au Laboratoire Dynamique Moléculaire et Matériaux Photoniques (LDMMP) à l’Ecole Nationale Supérieure d’Ingénieurs de l’Université de Tunis. / The work presented in this manuscript is devoted to the study of very high resolution FTIR spectroscopy of the molecule of sulfuryl fluoride, SO2F2, which recently appeared as an important atmospheric pollutant. However, a very good modeling of its absorption spectrum is essential for atmospheric concentration measurements.This manuscript has five parts. The first part deals with the properties of the molecule of sulfuryl fluoride. The second part describes the theoretical model (tensor formalism and effective Hamiltonian and dipole moment) that we used to perform the analyzes. The third part presents the experimental conditions of the different spectra that we recorded at the AILES line of the SOLEIL synchrotron at Saint-Aubin (Paris). The fourth part describes the software C2vTDS and finally in the fifth part we present the results of the different analyzes.This thesis was performed in the Molecular and Atmospheric Spectrometry Group (GSMA) of the University of Reims Champagne-Ardenne and the Laboratory of Molecular Dynamics and Photonic Materials (LDMMP - ENSIT) of the University of Tunis.
|
16 |
High Resolution Infrared Spectroscopy : Setting up an experiment to investigate small clusters/ Spectroscopie Infrarouge à Haute Résolution: Mise au point d'un dispositif expérimental pour l'étude des petits agrégatsDidriche, Keevin 06 November 2008 (has links)
The role of clusters in planetary atmospheres and the interstellar medium is potentially important. Investigating such a role requires basic experimental information, however lacking. The goal of this thesis was to develop an efficient experimental set-up to produce clusters in the laboratory in concentrations large enough to allow their high resolution spectra to be recorded, thus providing the necessary data allowing the physico-chemical properties of the clusters to be studied.
The study of this subject however suffers from the lack of basic experimental data. The goal is therefore to produce clusters in the laboratory in concentration large enough to record their high resolution spectrum. This is the initial aim of the present thesis.
During this work, we have built and extensively tested a new experimental set-up called FANTASIO (``Fourier trANsform, Tunable diode and quadrupole mAss spectrometers interfaced to a Supersonic expansIOn'). With the help of this new device, various experiments on jet-cooled species have been performed.
The cartography of the supersonic expansion was established, using the mass spectrometer as a moving pressure probe. This enabled us to characterize the geometrical properties of the supersonic jet produced by circular and slit nozzles and to determine the position of the virtual nozzle. The effect of the axisymmetric expansion geometry on the R(0) lineshape in the nu_3 band of N_2O, recorded by FTIR, was also investigated.
The rotational temperature of the jet-cooled molecules was determined to be a few K by measuring the intensity of lines in spectra recorded by FTIR spectroscopy.
Vibrational energy transfer occuring in the expansion between N_2O molecules and different collision partners was investigated on the nu_2+nu_3-nu_2 band of N_2O, again using FTIR spectroscopy. The trend of these transfers was found to be related to the energy difference between the v_2=1 level of N_2O and the closest vibrational state in the collision partner, with the largest population.
The sensitivity of the set-up was enhanced by a factor of 5 by increasing the absorption path length, using a multipass system. A procedure to remove the residual gas contribution from the IR spectra was developped, based on the mass spectrometer. Thanks to this sensitivity increase, broadband absorption features of clusters were observed for a C_2H_2-Ar mixture in circular and slit expansions.
The optical sensitivity of FANTASIO was again increased by the implementation of the CW-CRDS system. The enhancement over FTIR was calculated to be over a factor 750. Thanks to this drastic improvement, spectral signatures of various clusters were recorded, such as C_2H_2-Ar, C_2H_2 multimers, C_2H_2-N_2O and C_2H_2-CO_2, at high resolution.
The role of clustering in generating unusual line shapes of acetylene in an axisymmetric expansion was investigated. We demonstrated that C_2H_2 aggregates produced in the expansion are responsible for central dips observed in the monomer absorption. These acetylene clusters thus appear to be formed in the centre of the expansion, while, unexpectedly, acetylene-Ar complexes are formed at the edge of the conical expansion.
Various research prospects were explored during this thesis thanks to the FANTASIO device, opening new research directions. FANTASIO is today operational and defines a useful tool to achieve the study of small clusters by infrared spectroscopy./
Le rôle des agrégats dans les atmosphères planétaires et dans le milieu interstellaire est potentiellement important. Cependant, les études sur ce sujet souffrent du manque de données expérimentales. Le but de cette thèse était de développer un dispositif expérimental efficace pour produire au laboratoire des agrégats en quantité suffisante pour permettre l'enregistrement de leur spectre infrarouge à haute résolution et donc l'étude de leurs propriétés physico-chimiques.
Durant ce travail, nous avons construit et testé un nouveau dispositif expérimental appelé FANTASIO, basé sur un jet supersonique couplé à un spectromètre de masse, un spectromètre à transformée de Fourier et un système CRDS. Grâce à cet appareillage, différentes expériences sur des molécules à basse température ont été menées.
L'expansion supersonique a été cartographiée en utilisant le spectromètre de masse comme une sonde de pression mobile. Cette cartographie nous a permis d'établir les propriétés géométriques des jets supersoniques produits par les orifices circulaire et de type fente, et de déterminer la position de l'orifice virtuel. L'effet de la géométrie de l'expansion sphérique sur le profil de la raie R(0) de la bande nu_3 de N_2O, enregistré par FTIR, a aussi été étudié.
Une température rotationnelle de quelques K a été déterminée pour les molécules refroidies en jet supersonique par mesure de la distribution d'intensité de raies dans les spectres enregistrés par FTIR.
Le transfert d'énergie vibrationnelle entre des molécules de N_2O et différents partenaires collisionnels a été étudié en analysant l'intensité de la bande nu_2+nu_3-nu_2 de N_2O, enregistré également par spectroscopie FTIR. Il a été trouvé que la tendance de ces transferts est liée à la différence d'énergie entre le niveau v_2=1 de N_2O et l'état vibrationnel le plus proche et le plus peuplé du partenaire collisionnel.
La sensibilité du dispositif a été augmentée d'un facteur 5 dû à l'allongement du chemin d'absorption, grâce à l'utilisation d'un système multipassage. Une procédure basée sur l'utilisation du spectromètre de masse et visant à enlever la contribution du gaz chaud résiduel dans les spectres infrarouges a été mise au point. Grâce à cette augmentation de sensibilité, des structures d'absorption non résolues d'agrégats ont été observées dans des expansions en trou et en fente d'un mélange de C_2H_2-Ar.
La sensibilité optique de FANTASIO a encore été augmentée par l'ajout au dispositif d'un système CW-CRDS. L'amélioration par rapport au spectromètre à transformée de Fourier a été calculée comme étant supérieure à un facteur 750. Grâce à cette importante amélioration, les signatures spectrales de divers agrégats, tels que C_2H_2-Ar, des multimères de C_2H_2, C_2H_2-N_2O et C_2H_2-CO_2, ont été enregistrées à haute résolution.
Le rôle de l'agrégation dans la génération de profils de raie inhabituels dans une expansion en trou de l'acétylène a été étudié. Nous avons démontré que les agrégats de C_2H_2 produits dans le jet supersonique sont responsables des creux observés dans le profil d'absorption du monomère. Ces agrégats apparaissent donc comme étant formés au centre de l'expansion, tandis que, de manière inattendue, les agrégats de C_2H_2-Ar sont formés aux bords de l'expansion conique.
Plusieurs idées de recherche ont été explorées durant cette thèse grâce au dispositif FANTASIO, ouvrant de nouvelles directions de recherche. FANTASIO est aujourd'hui opérationnel et se présente comme un outil utile dans l'étude des petits agrégats par spectroscopie infrarouge.
|
17 |
Aperçu sur l'étude du Plasma de Quarks et de Gluons à l'aide du spectromètre dimuons d'ALICEEspagnon, Bruno 29 October 2007 (has links) (PDF)
L'expérience ALICE est l'une des quatre grandes expériences du LHC (Large Hadron Collider). Elle est dédiée à l'étude d'un nouvel état de la matière : le Plasma de Quarks et de Gluons dans lequel les quarks et les gluons ne sont plus confinés au sein des hadrons. Dans ce document sont décrits les enjeux physiques qui ont motivé la réalisation du spectromètre dimuons d'ALICE. Ensuite est abordée la R&D sur le spectromètre dimuons. Les différents absorbeurs sont présentés ainsi que les tests qui ont permis leur dimensionnement. Le trigger dimuons, composé de RPC fonctionnant en mode streamer, est ensuite décrit. Les différents tests sur faisceau et en cosmique qui ont été menés sur les RPC sont présentés. Enfin, le système de trajectographie est décrit en détail et plus particulièrement toute son électronique ainsi que la première station. Les contraintes apportées par la physique sur les performances attendues de l'ensemble de ces systèmes sont clairement définies.
|
18 |
Qualification expérimentale de la μTPC LNE-IRSN-MIMAC comme instrument de référence pour les mesures en énergie et en fluence de champs neutronique entre 27keV et 6,5 MeV / Experimental qualification of the µTPC LNE-IRSN-MIMAC as the reference instrument for energy and fluence measurements of neutron fields between 27 keV and 6,5 MeVTampon, Benjamin 17 December 2018 (has links)
En France, les références associées à la fluence neutronique et aux grandeurs dosimétriques dérivées sont détenues par le Laboratoire de Métrologie, de micro-irradiation et de Dosimétrie des Neutrons (LMDN) de l’IRSN. Afin d’améliorer la définition des références en énergie et en fluence des champs neutroniques monoénergétiques de l’installation AMANDE,le LMDN s’est engagé dans le projet de développement d’un détecteur gazeux μTPC (microTime Projection Chamber) appelé LNE-IRSN-MIMAC en collaboration avec le LPSC.Dans une précédente thèse, la mesure de champs neutroniques entre 27 keV et 565 keV a été réalisée. L’objectif de ce travail de thèse est d’étendre la gamme de mesure au-delà de 1 MeV.Le choix du gaz, le développement d’une méthode d’analyse indépendante de l’utilisateur et la caractérisation du détecteur ont ainsi permis de valider la capacité du détecteur LNE-IRSN-MIMAC à réaliser des mesures dans des champs neutroniques monoénergétiques entre 250 keV et 6,5 MeV avec une précision de 3% en énergie et de 2,5% en fluence. / In France, the references associated to the neutron fluence and the deriva-ted dosimetric quantities are under the responsability of the micro-irradiation and neutronmetrology and dosimetry laboratory (LMDN)of IRSN. In order to improve the definition ofreferences in fluence and energy of the monoenergetic neutron fields, produced at AMANDEfacility, a micro-TPC gaseous detector, called LNE-IRSN-MIMAC, is developping in collabo-ration with LPSC.In a previous work, the detector was qualified for neutron fields in the energy rangebetween 27 keV and 565 keV. The objective of the present work is to extend the range of theμTPC above 1 MeV. The choice of the gas, the development of an analysis method and thedetector characterization allowed to validate the detector capacity to perform measurements inmonoenergetic neutron fields ranging from 250 keV up to 6,5 MeV with a relative uncertaintyof 3% and 2,5% respectively in energy and fluence.
|
19 |
Recherche de résonances de haute masse dans le canal dimuon à l'aide du spectromètre à muons de l'expérience ATLAS au CERNHelsens, Clément 11 June 2009 (has links) (PDF)
Le LHC est un collisionneur de protons d'une énergie de 14 TeV dans le centre de masse situé au CERN. Les premières collisions sont attendues à l'automne 2009. L'expérience ATLAS est l'une des deux expériences généralistes installées auprès du LHC. L'énergie disponible et la haute luminosité du LHC permettront à ATLAS de rechercher le boson de Higgs ainsi que les nouvelles particules prédites par les modèles de physique au-delà du modèle standard. Les muons occupent une place importante pour les mesures du modèle standard ainsi que pour la recherche de nouvelle physique. Cette thèse étudie la recherche directe de Z' se désintégrant en une paire de muons. Un petit nombre d'événements suffit pour découvrir un Z' ce qui est envisageable dès les premières collectes de données. On y étudiera notamment les effets de l'alignement du spectromètre à muons sur des traces de haut pT et sur le potentiel de découverte de Z' de l'expérience ATLAS. Cette analyse s'inscrivant dans le cadre du démarrage du LHC, l'alignement du spectromètre à muons n'aura pas atteint les performances nominales. Des muons de hauts pT ont été utilisés pour estimer l'impact d'un alignement dégradé sur la reconstruction de traces. Les comparaisons ont été faites en terme d'efficacité de reconstruction, de résolution en impulsion et en masse invariante, d'identification de la charge et de sensibilité à la découverte ou à l'exclusion. Pour les premières données du LHC une analyse avec le spectromètre seul est nécessaire. Enfin, une étude complète pour déterminer la géométrie initiale du spectromètre à muons en utilisant des traces sans champ magnétique toroïdal a été menée.
|
20 |
Microréacteur pour la catalyse hétérogène<br />Applications : Stockage d'hydrogène dans les hydrocarbures Filtre pour capteur gazRoumanie, Marilyne 21 October 2005 (has links) (PDF)
Ce mémoire présente la conception et l'utilisation d'un réacteur microstructuré en silicium pour la catalyse hétérogène et en particulier pour la réaction de déshydrogénation du méthylcyclohexane. Cette réaction permet d'une part de restituer de l'hydrogène stocké et d'autre part de réaliser des développements technologiques importants car elle est endothermique et difficile à mettre en œuvre. Ainsi un nouveau microréacteur obtenu par DRIE a été conçu et scellé avec un capot en pyrex. Il intègre des résistances chauffantes déposées par sérigraphie et une connectique métallique « haute température ». Il comprend soit un catalyseur issu de la microtechnologie, film de platine déposé par pulvérisation cathodique soit un catalyseur plus classique, platine supporté sur alumine. Pour ce dernier catalyseur, le microréacteur préalablement préoxydé est prétraité par plasma oxygène ou par voie liquide afin que le dépôt adhère aux parois. L'enduction peut être réalisée en microréacteur ouvert par trempage dans la suspension d'alumine ou en microréacteur fermé sous vide, ou par circulation de liquide. A la suite de tests catalytiques effectués en macroréacteurs, le catalyseur Pt/Al2O3 a été choisi pour être inséré dans le microréacteur. Les tests catalytiques réalisés avec un microréacteur couplé à un spectromètre de masse ont permis de montrer la présence d'hydrogène. En parallèle, le microréacteur a été utilisé en tant que filtre pour améliorer la sélectivité des capteurs de gaz.
|
Page generated in 0.0408 seconds