61 |
Principles for Diverting and Merging Viscous Flows : Evaluation and Visualisation / Principer för Delning och Sammnföring av Viskösa Flöden : Utvärdering och VisualiseringStrese, Åke January 2017 (has links)
In the chemistry branch of science is often a chromatograph usedto separate and purify substances in a solution. In achromatograph, different detectors are used to analyse the samplesconstituents. Some detectors destroy the sample during analysis.Because it is undesirable to destroy the entire flow of sample, asmall mass is transferred to a second flow by a flow splitter. Inthis report, four principles to divert a small mass from one flowto another are developed and evaluated. The basic principles todivert the flows is tested and principal mock-ups are designed andmanufactured. A brief survey of the market is conducted and aproblem related to flow spitting is investigated. The problem isthe influence on yield through a chromatograph due to flowretaining. Designing and testing of different retaining systems isalso included in this report. All four initial principles proved to be plausible splittingtechniques. However, only two principles appeared to be feasiblefor direct implementation in devices comparable withchromatographs. One of the less feasible principle is covered byseveral patents. The other is difficult to manufacture in order tomeet the strict requirements associated with e.g. chromatographs.The testing of different retaining systems showed that smallertube inner diameter and how the tube is winded can reduce theretaining system influence on the yield significantly. The splitting techniques in this report are all feasible splittingtechniques, and the report can be used as a solid foundation fordevelopment future laboratory instruments. / Inom kemin förekommer ofta kromatografer för att rena och separera kemiska substanser iett prov. De separerade substanserna kan detekteras och analyseras av olika detektorer, därvissa detektorer förstör provet i analysprocessen. Då det oftast är önskvärt att bevara såmycket som möjligt av ett prov, för vidare studier, avleds därför en liten mängd av deseparerade substanserna till detektorn då en förstörande detektor används. I denna studieutvecklades och undersöktes fyra principer för att avleda mycket små volymer från ett flödetill ett annat. Flödesdelning och sammanförning med de grundläggande flödesdelningsprincipernatestades, principiella modeller konstruerades och tillverkades. Enmarknadsundersökning samt en undersökning av ett flödesdelningsassocierat probleminkluderas också i rapporten. Problemet består i minskning av utbyte på grund avbandbreddning i flödesfördröjningssystem. Bandbreddning studerades således i olika formerav flödesfördröjningssystem. Alla fyra principer visade sig vara möjliga flödesdelningstekniker varav två av sådan karaktäratt de skulle kunna realiseras i ett instrument såsom en kromatograf. Av de två andra omfattasden ena av flertalet patent och den andra skulle vara tillverkningstekniks svår att förverkligamed vedertagna tillverkningstekniker. Tester på olika typer avflödesfördröjningssystemutformningar visade att slangdimension och hur slangen är lindadhar stor inverkan på bandbreddning. Det återstår en hel del konceptuell utveckling då principerna bara behandlats pågrundläggande nivå. Genom de principiella modellerna ges en bild av hur principerna skullekunna förverkligas, men vidare ställningstaganden måste tas till bland annat materialval samtmonitorering och anpassning av flöden. Rapporten ger en god grund för framtidaproduktutveckling.
|
62 |
A Numerical Study of the Gas-Particle Flow in Pipework and Flow Splitting Devices of Coal-Fired Power PlantSchneider, Helfried, Frank, Thomas, Pachler, Klaus, Bernert, Klaus 17 April 2002 (has links) (PDF)
In power plants using large utility coal-fired boilers for generation of electricity the coal is pulverised in coal mills and then it has to be pneumatically transported and distributed to a larger number of burners (e.g. 30-40) circumferentially arranged in several rows around the burning chamber of the boiler. Besides the large pipework flow splitting devices are necessary for distribution of an equal amount of pulverised fuel (PF) to each of the burners. So called trifurcators (without inner fittings or guiding vanes) and ''riffle'' type bifurcators are commonly used to split the gas-coal particle flow into two or three pipes/channels with an equal amount of PF mass flow rate in each outflow cross section of the flow splitting device. These PF flow splitting devices are subject of a number of problems. First of all an uneven distribution of PF over the burners of a large utility boiler leads to operational and maintenance problems, increased level of unburned carbon and higher rates of NOX emissions. Maldistribution of fuel between burners caused by non uniform concentration of the PF (particle roping) in pipe and channel bends prior to flow splitting devices leads to uncontrolled differences in the fuel to air ratio between burners. This results in localised regions in the furnace which are fuel rich, where insufficient air causes incomplete combustion of the fuel. Other regions in the furnace become fuel lean, forming high local concentrations of NOX due to the high local concentrations of O2. Otherwise PF maldistribution can impact on power plant maintenance in terms of uneven wear on PF pipework, flow splitters as well as the effects on boiler panels (PF deposition, corrosion, slagging).
In order to address these problems in establishing uniform PF distribution over the outlet cross sections of flow splitting devices in the pipework of coal-fired power plants the present paper deals with numerical prediction and analysis of the complex gas and coal particle (PF) flow through trifurcators and ''riffle'' type bifurcators. The numerical investigation is based on a 3-dimensional Eulerian- Lagrangian approach (MISTRAL/PartFlow-3D) developed by Frank et al. The numerical method is capable to predict isothermal, incompressible, steady gas- particle flows in 3-dimensional, geometrically complex flow geometries using boundary fitted, block-structured, numerical grids. Due to the very high numerical effort of the investigated gas-particle flows the numerical approach has been developed with special emphasis on efficient parallel computing on clusters of workstations or other high performance computing architectures. Besides the aerodynamically interaction between the carrier fluid phase and the PF particles the gas-particle flow is mainly influenced by particle-wall interactions with the outer wall boundaries and the inner fittings and guiding vanes of the investigated flow splitting devices. In order to allow accurate quantitative prediction of the motion of the disperse phase the numerical model requires detailed information about the particle-wall collision process. In commonly used physical models of the particle-wall interaction this is the knowledge or experimental prediction of the restitution coefficients (dynamic friction coefficient, coefficient of restitution) for the used combination of particle and wall material, e.g. PF particles on steel.
In the present investigation these parameters of the particle-wall interaction model have been obtained from special experiments in two test facilities. Basic experiments to clarify the details of the particle-wall interaction process were made in a test facility with a spherical disk accelerator. This test facility furthermore provides the opportunity to investigate the bouncing process under normal pressure as well as under vacuum conditions, thus excluding aerodynamically influences on the motion of small particles in the near vicinity of solid wall surfaces (especially under small angles of attack). In this experiments spherical glass beads were used as particle material. In a second test facility we have investigated the real impact of non-spherical pulverised fuel particles on a steel/ceramic target. In this experiments PF particles were accelerated by an injector using inert gas like e.g. CO2 or N2 as the carrier phase in order to avoid dust explosion hazards. The obtained data for the particle-wall collision models were compared to those obtained for glass spheres, where bouncing models are proofed to be valid. Furthermore the second test facility was used to obtain particle erosion rates for PF particles on steel targets as a function of impact angles and velocities.
The results of experimental investigations has been incorporated into the numerical model. Hereafter the numerical approach MISTRAL/PartFlow-3D has been applied to the PF flow through a ''riffle'' type bifurcator. Using ICEM/CFD-Hexa as grid generator a numerical mesh with approximately 4 million grid cells has been designed for approximation of the complex geometry of the flow splitting device with all its interior fittings and guiding vanes. Based on a predicted gas flow field a large number of PF particles are tracked throughout the flow geometry of the flow-splitter. Besides mean quantities of the particle flow field like e.g. local particle concentrations, mean particle velocities, distribution of mean particle diameter, etc. it is now possible to obtain information about particle erosion on riffle plates and guiding vanes of the flow splitting device. Furthermore the influence of different roping patterns in front of the flow splitter on the uniformness of PF mass flow rate splitting after the bifurcator has been investigated numerically.
Results show the efficient operation of the investigated bifurcator in absence of particle roping, this means under conditions of an uniform PF particle concentration distribution in the inflow cross section of the bifurcator. If particle roping occurs and particle concentration differs over the pipe cross section in front of the bifurcator the equal PF particle mass flow rate splitting can be strongly deteriorated in dependence on the location and intensity of the particle rope or particle concentration irregularities. The presented results show the importance of further development of efficient rope splitting devices for applications in coal-fired power plants. Numerical analysis can be used as an efficient tool for their investigation and further optimisation under various operating and flow conditions.
|
63 |
Reflexão de Andreev cruzada via dubleto de Autler-Townes em uma junção ponto quântico - supercondutor / Crossed Andreev reflection via Autler-Townes doublet in a quantum dot - superconductor junctionAssunção, Maryzaura de Oliveira 07 July 2017 (has links)
FAPEMIG - Fundação de Amparo a Pesquisa do Estado de Minas Gerais / O conhecimento teórico e experimental acumulado nas últimas décadas sobre pontos quânticos
semicondutores (PQs) impulsiona o surgimento de um grande número de propostas atuais de
utilizá-los em sistemas híbridos. A habilidade de controlar suas propriedades optoeletrônicas,
bem como o domínio de sofisticadas técnicas de fabricação, tornaram-os candidatos ideais para
formar junções com supercondutores (SCs), cujas características individuais são também notáveis. Essas junções podem ser simples, com um único PQ acoplado a um SC, ou múltiplas: a
conexão de dois terminais SCs através de um PQ (junção tipo Josephson) e a junção de dois
PQs através de um SC. Esta última forma um separador de pares de Cooper, dispositivo sugerido como fonte de partículas emaranhadas, que depende fundamentalmente da ocorrência de
reflexão de Andreev cruzada (CAR) nas interfaces da junção. Junções de PQs com SCs e com
supercondutores topológicos também tem sido propostas em sistemas de dois níveis formando
qubits para a computação quântica trivial e topológica. Embora o estudo das junções PQ-SC
esteja em evidência atualmente, a revisão da literatura mostra que a análise do regime transiente
foi pouco explorada. Por isso, abordamos neste trabalho o transporte de cargas em uma junção
PQ-SC-PQ com resolução temporal. Utilizando técnicas de função de Green de não-equilíbrio,
particularmente, o formalismo de Kadanoff-Baym, escrevemos um conjunto de equações diferenciais acopladas, solucionado numericamente. Analisando as oscilações de Rabi que surgem
na evolução temporal da corrente elétrica e das ocupações dos PQs, fomos capazes de identificar assinaturas de mecanismos de espalhamento através da junção, isto é, o tunelamento direto
e a CAR. Adicionalmente, propusemos a expansão deste sistema pela sua inserção na estrutura
de um fotodiodo, aplicando luz laser sobre um dos PQs. Os resultados mostram que ocorre a
separação dos níveis opticamente excitados em dubletos de Autler-Townes, para acoplamentos
fracos entre os PQs. Consequentemente, é observada a ocorrência de CAR, mediada pelo laser
aplicado, através dos níveis que compõe o dubleto. Os resultados tem dependência também
com a tensão fonte-dreno aplicada ao dispositivo, que pode estar no limite de bias alta (HB) ou
zero (ZB). Este é o primeiro trabalho a analisar a separação de pares de Cooper assistida por
fótons em uma junção PQ-SC-PQ, em regime de não-equilíbrio. Embora os resultados experimentais ainda sejam escassos, a inclusão de um SC em um fotodiodo de PQs híbrido permite
novos mecanismos de formação de fotocorrente, abrindo novas possibilidades de aplicações
desse sistema. / The theoretical and experimental knowledge accumulated in the last decades on semiconductors quantum dots (QDs) impulses the emergence of many current proposals for using them in
hybrid systems. The ability to control their optoelectronic properties, as well as the control of
fabrication techniques, made them the perfect candidates to compose junctions with superconductors (SCs), whose individual characteristics are also remarkable. These junctions can be
simple, with a single QD coupled to a SC, or multiple: a connection of two superconducting
terminals through a QD (a Josephson-like junction) and the junction of two QDs through a SC.
The latter is known as a Cooper-pairs splitter, a device suggested as a source of entangled particles, for which is required the occurrence of crossed Andreev reflection (CAR) on the interfaces
of the junction. Junctions of QDs with SCs and with topological SCs have also been proposed
in two-level systems as qubits for both trivial and topological quantum computation. Despite
the study of QD-SC junctions being currently in evidence, the literature review shows that the
analysis of transient regime was little explored. Therefore, we address in this work the topic
of time-dependent charge transport in a QD-SC-QD junction. By using non-equilibrium Green
functions techniques, particularly, the Kadanoff-Baym formalism, we write down a set of coupled differential equations, which is numerically solved. Examining the Rabi oscillations that
appears on the time evolution of electric current and QDs occupations, we were able to identify
signatures of the scattering mechanisms through out the junction, i. e., direct tunnelling and
CAR. Additionally, we propose to use this system as a photodiode, with the aid of a laser beam
over one of the QDs. The results show the splitting of the optically excited states in Autler-
Townes doublets, for a weak coupling between the QDs. Hence, CAR mediated by the applied
laser was observed through the energy levels that compose the doublet. The results depend
also with the source-drain potential applied to the device, which can be high bias (HB) or zero
bias (ZB). The present work is the first to analyse the splitting of Cooper pairs assisted by photons in a QD-SC-QD junction, in nonequilibrium regime. Although the experimental results
are still sparse, the inclusion of a SC in a QD hybrid photodiode allows new mechanisms of
photocurrent formation, creating possibilities in future applications. / Tese (Doutorado)
|
64 |
Návrh optické přístupové sítě FTTx / FTTx network designTejkal, Vladimír January 2009 (has links)
The main goal of this diploma thesis was to implement the proposal of optical access networks in the selected location. Introduce is focused on the physical layer of network. This includes optical fibers, optical cables, connectors, optical splitters, and more. According to the place of termination of optical fiber will be studied best FTTx connections. According to network topology distinguished point to point and point to multipoint network. Networks points to point are also known as an active optical network and for each user are restricted to a separate fiber. Point to multipoint networks known as passive optical network. In terms of the PON is defined by many standards. For a selected location will be choice the most appropriate solution. Finally, the measurement will be made and will be considered for monitoring the route. Before the design of optical access networks, I made an illustrative simulation in program OptSim. Performed simulations helps to study the transmission characters of optical networks, depending on the physical architecture. In general, for the design of high-capabilities networks for large companies will be more appropriate active topology that provides due wavelength multiplexes high transmission capacity. To join in the urban areas with a large number of separate houses, it is more appropriate use of passive topology. For the design of optical networks has been selected location with multiple housing buildings. The end customer is not given the requirement for high data transfer rates as large companies. For the proposal was selected FTTB networks which is suitable because of lower costs. The second variant of the proposal was a passive optical network according to standard GPON. This standard was chosen because of the high splitting ratio. For both solutions was developed the entire proposal by ITU-T with a detailed drawing documentation. In the selected area was conducted measuring the optical networks in order to verify the possibility of extension actual solutions. For a sample issue of measurements, I made several measurements using optical reflectometer over an optical splitter in order to prove the need for measurements during construction. FTTH networks gaining in popularity more and more, but price is the limiting factor.
|
65 |
A Numerical Study of the Gas-Particle Flow in Pipework and Flow Splitting Devices of Coal-Fired Power PlantSchneider, Helfried, Frank, Thomas, Pachler, Klaus, Bernert, Klaus 17 April 2002 (has links)
In power plants using large utility coal-fired boilers for generation of electricity the coal is pulverised in coal mills and then it has to be pneumatically transported and distributed to a larger number of burners (e.g. 30-40) circumferentially arranged in several rows around the burning chamber of the boiler. Besides the large pipework flow splitting devices are necessary for distribution of an equal amount of pulverised fuel (PF) to each of the burners. So called trifurcators (without inner fittings or guiding vanes) and ''riffle'' type bifurcators are commonly used to split the gas-coal particle flow into two or three pipes/channels with an equal amount of PF mass flow rate in each outflow cross section of the flow splitting device. These PF flow splitting devices are subject of a number of problems. First of all an uneven distribution of PF over the burners of a large utility boiler leads to operational and maintenance problems, increased level of unburned carbon and higher rates of NOX emissions. Maldistribution of fuel between burners caused by non uniform concentration of the PF (particle roping) in pipe and channel bends prior to flow splitting devices leads to uncontrolled differences in the fuel to air ratio between burners. This results in localised regions in the furnace which are fuel rich, where insufficient air causes incomplete combustion of the fuel. Other regions in the furnace become fuel lean, forming high local concentrations of NOX due to the high local concentrations of O2. Otherwise PF maldistribution can impact on power plant maintenance in terms of uneven wear on PF pipework, flow splitters as well as the effects on boiler panels (PF deposition, corrosion, slagging).
In order to address these problems in establishing uniform PF distribution over the outlet cross sections of flow splitting devices in the pipework of coal-fired power plants the present paper deals with numerical prediction and analysis of the complex gas and coal particle (PF) flow through trifurcators and ''riffle'' type bifurcators. The numerical investigation is based on a 3-dimensional Eulerian- Lagrangian approach (MISTRAL/PartFlow-3D) developed by Frank et al. The numerical method is capable to predict isothermal, incompressible, steady gas- particle flows in 3-dimensional, geometrically complex flow geometries using boundary fitted, block-structured, numerical grids. Due to the very high numerical effort of the investigated gas-particle flows the numerical approach has been developed with special emphasis on efficient parallel computing on clusters of workstations or other high performance computing architectures. Besides the aerodynamically interaction between the carrier fluid phase and the PF particles the gas-particle flow is mainly influenced by particle-wall interactions with the outer wall boundaries and the inner fittings and guiding vanes of the investigated flow splitting devices. In order to allow accurate quantitative prediction of the motion of the disperse phase the numerical model requires detailed information about the particle-wall collision process. In commonly used physical models of the particle-wall interaction this is the knowledge or experimental prediction of the restitution coefficients (dynamic friction coefficient, coefficient of restitution) for the used combination of particle and wall material, e.g. PF particles on steel.
In the present investigation these parameters of the particle-wall interaction model have been obtained from special experiments in two test facilities. Basic experiments to clarify the details of the particle-wall interaction process were made in a test facility with a spherical disk accelerator. This test facility furthermore provides the opportunity to investigate the bouncing process under normal pressure as well as under vacuum conditions, thus excluding aerodynamically influences on the motion of small particles in the near vicinity of solid wall surfaces (especially under small angles of attack). In this experiments spherical glass beads were used as particle material. In a second test facility we have investigated the real impact of non-spherical pulverised fuel particles on a steel/ceramic target. In this experiments PF particles were accelerated by an injector using inert gas like e.g. CO2 or N2 as the carrier phase in order to avoid dust explosion hazards. The obtained data for the particle-wall collision models were compared to those obtained for glass spheres, where bouncing models are proofed to be valid. Furthermore the second test facility was used to obtain particle erosion rates for PF particles on steel targets as a function of impact angles and velocities.
The results of experimental investigations has been incorporated into the numerical model. Hereafter the numerical approach MISTRAL/PartFlow-3D has been applied to the PF flow through a ''riffle'' type bifurcator. Using ICEM/CFD-Hexa as grid generator a numerical mesh with approximately 4 million grid cells has been designed for approximation of the complex geometry of the flow splitting device with all its interior fittings and guiding vanes. Based on a predicted gas flow field a large number of PF particles are tracked throughout the flow geometry of the flow-splitter. Besides mean quantities of the particle flow field like e.g. local particle concentrations, mean particle velocities, distribution of mean particle diameter, etc. it is now possible to obtain information about particle erosion on riffle plates and guiding vanes of the flow splitting device. Furthermore the influence of different roping patterns in front of the flow splitter on the uniformness of PF mass flow rate splitting after the bifurcator has been investigated numerically.
Results show the efficient operation of the investigated bifurcator in absence of particle roping, this means under conditions of an uniform PF particle concentration distribution in the inflow cross section of the bifurcator. If particle roping occurs and particle concentration differs over the pipe cross section in front of the bifurcator the equal PF particle mass flow rate splitting can be strongly deteriorated in dependence on the location and intensity of the particle rope or particle concentration irregularities. The presented results show the importance of further development of efficient rope splitting devices for applications in coal-fired power plants. Numerical analysis can be used as an efficient tool for their investigation and further optimisation under various operating and flow conditions.
|
66 |
Enhancing the Performance of Si Photonics: Structure-Property Relations and Engineered Dispersion RelationsNikkhah, Hamdam January 2018 (has links)
The widespread adoption of photonic circuits requires the economics of volume manufacturing offered by integration technology. A Complementary Metal-Oxide Semiconductor compatible silicon material platform is particularly attractive because it leverages the huge investment that has been made in silicon electronics and its high index contrast enables tight confinement of light which decreases component footprint and energy consumption. Nevertheless, there remain challenges to the development of photonic integrated circuits. Although the density of integration is advancing steady and the integration of the principal components – waveguides, optical sources and amplifiers, modulators, and photodetectors – have all been demonstrated, the integration density is low and the device library far from complete. The integration density is low primarily because of the difficulty of confining light in structures small compared to the wavelength which measured in micrometers. The device library is incomplete because of the immaturity of hybridisation on silicon of other materials required by active devices such as III-V semiconductor alloys and ferroelectric oxides and the difficulty of controlling the coupling of light between disparate material platforms. Metamaterials are nanocomposite materials which have optical properties not readily found in Nature that are defined as much by their geometry as their constituent materials. This offers the prospect of the engineering of materials to achieve integrated components with enhanced functionality. Metamaterials are a class of photonic crystals includes subwavelength grating waveguides, which have already provided breakthroughs in component performance yet require a simpler fabrication process compatible with current minimum feature size limitations.
The research reported in this PhD thesis advances our understanding of the structure-property relations of key planar light circuit components and the metamaterial engineering of these properties. The analysis and simulation of components featuring structures that are only just subwavelength is complicated and consumes large computer resources especially when a three dimensional analysis of components structured over a scale larger than the wavelength is desired. This obstructs the iterative design-simulate cycle. An abstraction is required that summarises the properties of the metamaterial pertinent to the larger scale while neglecting the microscopic detail. That abstraction is known as homogenisation. It is possible to extend homogenisation from the long-wavelength limit up to the Bragg resonance (band edge). It is found that a metamaterial waveguide is accurately modeled as a continuous medium waveguide provided proper account is taken of the emergent properties of the homogenised metamaterial. A homogenised subwavelength grating waveguide structure behaves as a strongly anisotropic and spatially dispersive material with a c-axis normal to the layers of a one dimensional multi-layer structure (Kronig-Penney) or along the axis of uniformity for a two dimensional photonic crystal in three dimensional structure. Issues with boundary effects in the near Bragg resonance subwavelength are avoided either by ensuring the averaging is over an extensive path parallel to boundary or the sharp boundary is removed by graded structures. A procedure is described that enables the local homogenised index of a graded structure to be determined. These finding are confirmed by simulations and experiments on test circuits composed of Mach-Zehnder interferometers and individual components composed of regular nanostructured waveguide segments with different lengths and widths; and graded adiabatic waveguide tapers. The test chip included Lüneburg micro-lenses, which have application to Fourier optics on a chip. The measured loss of each lens is 0.72 dB.
Photonic integrated circuits featuring a network of waveguides, modulators and couplers are important to applications in RF photonics, optical communications and quantum optics. Modal phase error is one of the significant limitations to the scaling of multimode interference coupler port dimension. Multimode interference couplers rely on the Talbot effect and offer the best in-class performance. Anisotropy helps reduce the Talbot length but temporal and spatial dispersion is necessary to control the modal phase error and wavelength dependence of the Talbot length. The Talbot effect in a Kronig-Penny metamaterial is analysed. It is shown that the metamaterial may be engineered to provide a close approximation to the parabolic dispersion relation required by the Talbot effect for perfect imaging. These findings are then applied to the multimode region and access waveguide tapers of a multi-slotted waveguide multimode interference coupler with slots either in the transverse direction or longitudinal direction. A novel polarisation beam splitter exploiting the anisotropy provided by a longitudinally slotted structure is demonstrated by simulation.
The thesis describes the design, verification by simulation and layout of a photonic integrated circuit containing metamaterial waveguide test structures. The test and measurement of the fabricated chip and the analysis of the data is described in detail. The experimental results show good agreement with the theory, with the expected errors due to fabrication process limitations. From the Scanning Electron Microscope images and the measurements, it is clear that at the boundary of the minimum feature size limit, the error increases but still the devices can function.
|
67 |
The Effect of a Splitter Plate on the Flow around a Surface-Mounted Finite Circular Cylinder2011 September 1900 (has links)
Splitter plates are passive flow control devices for reducing drag and suppressing vortex shedding from bluff bodies. Most studies of splitter plates involve the flow around an “infinite” circular cylinder, however, in the present study the flow around a surface-mounted finite-height circular cylinder, with a wake-mounted splitter plate, was studied experimentally in a low-speed wind tunnel using a force balance and single-component hot-wire anemometry. Four circular cylinders of aspect ratios AR = 9, 7, 5 and 3 were tested for a Reynolds number range of Re = 1.9×10^4 to 8.2×10^4. The splitter plates had lengths, relative to the cylinder diameter, of L/D = 1, 1.5, 2, 3, 5 and 7, thicknesses ranging from T/D = 0.10 and 0.15, and were the same height as the cylinder being tested. The cylinders were partially immersed in a flat-plate turbulent boundary layer, where the range of boundary layer thickness relative to the cylinder diameter was δ/D = 1.4 to 1.5.
Measurements were made of the mean drag force coefficient, the Strouhal number at the mid-height position, and the Strouhal number and power spectra along the cylinder height. For all four finite circular cylinders, the splitter plates were effective at reducing the magnitude of the Strouhal number, and weakening or even suppressing vortex shedding, depending on the specific combination of AR and L/D. Compared to the case of an infinite circular cylinder, the splitter plate is less effective at reducing the mean drag force coefficient of a finite circular cylinder. The largest drag reduction was obtained for the cylinder of AR = 9 and splitter plates of L/D = 1 to 3, while negligible drag reduction occurred for the shorter cylinders.
|
68 |
Model metropolitní optické sítě / Model of the metropolitan optical networkPrudík, Jiří January 2008 (has links)
The purpose of this master’s thesis is foremost to provide a simple guide how to build elements of optical metropolitan area network. The basic model consists to sequence of construction, network topology, passive and active parts. The collection contains examples of alternative technology such as Wireless LAN with different frequency. The optical network construction based on optical cable, fibres, splices, trays, adapters, connectors and active parts for example a lot of media convertor models. After that there are demonstrating type of wavelength division multiplexer used in metropolitan area network – passive planar PCL splitter. One of the passive planar splitter are used to increase optical fibre channel. At the end of the collection a simplified examples of used measurements – optical time domain reflectometry and optical fibre transmission. Contains standard protocols or reflectogram. The conclusion of this thesis summarizes costs of FTTb (Fibre To The Building) model of optical metropolitan area network in Czech republic and future contribution for society.
|
69 |
Městské lázně / The Municipal BathsTunková, Martina January 2010 (has links)
"The sick body needs a doctor friend sick souls." (Menandros)
|
Page generated in 0.0734 seconds