• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 319
  • 162
  • 89
  • 38
  • 24
  • 22
  • 18
  • 14
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 789
  • 302
  • 253
  • 228
  • 131
  • 121
  • 101
  • 88
  • 87
  • 84
  • 78
  • 72
  • 70
  • 66
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Sensibilização de nanotubos de Tio2 com CdSe pela técnica de RF magnetron sputtering para aplicação em células fotoeletroquímicas

Fernandes, Jesum Alves January 2014 (has links)
Neste trabalho serão apresentados os resultados referentes à síntese e caracterização de materiais híbridos constituídos de nanotubos de TiO2 e clusters de CdSe (Nt-TiO2/CdSe), além de sua aplicação em células fotoeletroquímicas utilizadas na produção de hidrogênio (H2). A primeira etapa do trabalho envolveu a síntese e caracterização dos nanotubos de TiO2. Inicialmente foram encontradas as condições ótimas para síntese e tratamento térmico dos nanotubos. Foi observado que nanotubos de TiO2 apresentam melhor resposta fotoeletroquímica quando obtidos com cerca de 1 μm de comprimento, no entando a temperaturas de tratamento termico estudas neste trabalho não afetaram sifnificativamente seu comportamento fotoeletroquímica. A segunda etapa envolveu a utilização da técnica de RF Magnetron Sputtering para deposição de nanoparticulas e clusters de CdSe sobre os nanotubos. Primeiramente foi realizado um estudo sobre a dependência das propriedades fotoeletroquímicas com a concentração de CdSe sendo a concentração ótima para este sistema de 3,18x1017 at.cm-2 de Cd e Se. Para avaliar o efeito da cristalinidade do TiO2 sobre a resposta fotoeletroquímica do sistema híbrido (Nt-TiO2/CdSe) antes da deposição de CdSe os nanotubos de TiO2 foram submetidos a tratamentos térmicos em diferentes temperaturas. Nesta etapa foi verificado um efeito significativo da temperatura de tratamento térmico dos nanotubos de TiO2 na formação do hibrido, o qual influenciou suas propriedades morfológicas, ópticas e fotoeletroquímicas. Adicionalmente, as amostras de nanotubos recobertos com CdSe foram submetidas a tratamentos térmicos em vácuo resultando em uma melhora significativa das suas propriedades fotoeletroquímicas. A maior fotocorrente foi obtida de uma amostra de nanotubos de TiO2 tratada termicamente a 400°C por 3h seguido da deposição de CdSe e tratamento térmico a 400°C por 30 min em vácuo, gerando uma densidade de corrente de 1,9 mA.cm-2 sob irradiação do espectro solar terrestre ou somente do espectro visível. Os resultados obtidos neste trabalho sugerem que o comportamento sinérgico do material híbrido produzido está relacionado a diminuição da resistência eletrica na interface CdSe/TiO2 e o consequente aumento da transferência de cargas do CdSe para TiO2 após o tratamento de térmico em uma condição específica. De acordo com os resultados indiretos de produção de hidrogênio através de medidas de fotocorrente, podemos concluir que o material hibrido desenvolvido neste trabalho apresenta um grande potencial para geração de hidrogênio. / In this work we present the results obtained from the synthesis and characterization of a hybrid materials consisting of TiO2 nanotubes and CdSe clusters (CdSe/Nt-TiO2) as well as its application in photoelectrochemical cells used to produce hydrogen (H2). The primary step of this work was the synthesis and characterization of the TiO2 nanotubes. At first, the ideal parameters for the synthesis and thermal treatment of the nanotubes were found. The best photoelectrochemical results were obtained from 1 micrometer long nanotubes, however the temperatures studied in this work are not found to have an effect on the photoelectrochemical behavior. The second part of this work concerned the use of RF Magnetron Sputtering to deposit CdSe nanoparticles and agglomerates on the TiO2 nanotubes. From the study of the photoelectrochemical dependence on the CdSe concentration we have found the best concentration to be 3.18x1017 at.cm-2 of Cd and Se. In order to evaluate the effect of TiO2 crystallinity on the photoelectrochemical response of Nt-TiO2/CdSe, CdSe was deposited on TiO2 nanotubes previously treated at different temperatures. The effect of the thermal treatment on the TiO2 nanotubes before CdSe deposition resulted in improved optical, morphological and photoelectrochemical behavior. In addition the CdSe covered TiO2 nanotubes were thermally treated under vacuum resulting in significant improvement of the photoelectrochemical properties. The highest photocurrent density was obtained from the samples thermally treated at 400°C before and after CdSe deposition, generating a photocurrent density of 1.9 mA/cm-2 under simulated sun or visible light irradiation. The results obtained in this work strongly suggest a synergistic behavior in the hybrid material related to a decrease of the electrical resistance at the CdSe/TiO2 interface, hence to an improvement of charge transfer from the CdSe to the TiO2 after thermal annealing at specific conditions. According to the results obtained from indirect measurements of hydrogen production by measuring photocurrent, we conclude that the hybrid material developed in this work presents potential for hydrogen generation.
412

Microestruturas em filmes finos de WO3 : aplicações em microbaterias / WO3 thin films microstructures : applications in microbatteries

Figueroa Cadillo, Robinson 02 May 2007 (has links)
Orientador: Annete Gorenstein / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-08T01:04:35Z (GMT). No. of bitstreams: 1 FigueroaCadillo_Robinson_D.pdf: 6828830 bytes, checksum: 25774e9d4bb796e5048a90db527b894e (MD5) Previous issue date: 2007 / Resumo: Em dispositivos eletroquímicos como microbaterias ou dispositivos eletrocrômicos o catodo está presente na forma de filme fino. Com o objetivo de otimizar a performance de tais dispositivos, a pesquisa cientifica e tecnológica tem sido orientada na busca de novos materiais para o catodo. Este trabalho, contudo, propõe-se estudar a influencia da morfologia e da microestrutura do catodo no comportamento eletroquímico das microbaterias. O material escolhido foi o WO3. As amostras foram depositadas por sputtering reativo, e diversos parâmetros de deposição foram variados. Explorou-se a variação da potência durante a deposição e, trabalhou-se com o substrato inclinado, em modo estacionário ou rodante. Utilizaram-se diversas técnicas de caracterização. A técnica de Microscopia de Força Atômica (AFM) foi utilizada para analise de área da superfície, rugosidade, e tamanho de grão. A técnica de microscopia eletrônica MEV-FEG foi utilizada na analise da seção transversal dos filmes. O estudo eletroquímico por cronopotenciometria cíclica com limite de potencial permitiu a obtenção da capacidade de carga/descarga durante diversos ciclos. Foram obtidas amostras com e sem estrutura colunar; além disto, morfologias tipo hélice ou pilares foram conseguidas com rotação do substrato. A capacidade de carga depende fortemente do tipo de morfologia. Os melhores resultados foram obtidos com alta potência, para todas as estruturas / Abstract: In electrochemical devices like microbatteries or electrochromic devices, the cathode is present in thin film form. In order to optimize the performance of these devices, the scientific and technological research has been oriented in the search of new cathode materials. The aim of this work, however, is to study the influence of the cathode morphology and microstructure on the electrochemical behavior of microbatteries. WO3 was chosen as the thin film compound. The samples were deposited by reactive sputtering, and several deposition parameters were varied. The power during deposition was fixed in different values, and the samples were deposited with inclined substrates either stationary or rotating. Atomic Force Microscopy was used in order to obtain the surface area, roughness and grain size. Scanning electron microscopy was used in the analysis of the cross sections. The electrochemical study using chronopotentiometry with potential limits allowed the obtention of the charge/discharge capacity during several cycles. Depending on the deposition conditions, samples with or without columnar structures were obtained; also, helicoidal or pillar morphologies were attained with the rotation of the substrate. The charge capacity is strongly dependent on the morphology. The best results were obtained with high power, for all structures / Doutorado / Física / Doutor em Ciências
413

Vacuum Brazing of Alumina Ceramic to Titanium Using Pure Gold as Filler Metal for Biomedical Implants

Siddiqui, Mohammad S 08 September 2011 (has links)
One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut ( brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 X 10-8 atm-cc/ sec on a helium leak detector were measured. Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the wetting angle of pure gold to Ti, Ta, Nb and W substrates. Nano tribological scratch testing of thin film of Nb (which demonstrated the best wetting properties towards gold) on polished 96% alumina ceramic is performed to determine the adhesion strength of thin film to the substrate. The wetting studies also determined the thickness of the intermetallic compounds layers formed between Ti and gold, reaction microstructure and the dissolution of the metal into the molten gold.
414

Magnetron sputtering of highly transparent p-conductive NiO thin films / Magnetronsputtring av transparenta och p-ledande tunnfilmer av NiO

Book, Martin January 2020 (has links)
P-type transparent conductors are needed for a wide range of applicationssuch as solar cells and electrochromic smart windows. Solar power is animportant form of energy in today’s society as the threat of global warmingpushes the world towards fossil free energy. Hence a lot of solar cell typeshave been developed, among them tandem cells which are to different typesof solar cells stacked on top of each other. If one of the cells is based ona perovskite, a transparent p-type thin film electrode is needed as a holeconductor and electron blocking layer between the two cells. Nickel oxide(NiO) is a good candidate for this application as it has desired propertiessuch as good hole conduction, a high band gap and a matching work functionto the perovskite. The transmittance of as deposited NiO films by reactivemagnetron sputtered is limited so post deposition annealing is used to increasethe transmittance. This is not possible in this solar cell application as parts ofthe solar cell stack is temperature sensitive.Electrochromic smart windows contain a layer that can change its opticalproperties with the application of a voltage. Such windows are used inbuildings to increase energy efficiency and they contain an electrochromicdevice where NiO is used as an electrode as it has electrochromic properties,but just like with the solar cells, the transmittance of NiO is limited. Thisstudy investigates whether it is possible to make as deposited NiO by reactivemagnetron sputtering transparent, eliminating the need for post depositionannealing. Such a deposition process was found using different sputtermachines with the process point on the edge between metal and oxide modein terms of oxygen flow. This resulted in highly transparent and highlyresistive NiO films with a much higher deposition rate than in oxide mode.
415

Modernizace aparatury IBAD / Improvement of IBAD apparatus

Urbánek, Ivan January 2008 (has links)
This thesis is divided into three main parts dealing with ion beam assisted deposition. In the first part there is a brief description of the IBAD chamber at Institute of Physical Engineering of BUT. There is also a detailed description of control of the IBAD apparatus during deposition. Next part deals with measuring of deposition rates of ion sputtering in order to refine deposition of thin layers. Last part deals with planned and already finished changes that should improve quality and speed of thin layers deposition. Changes include the option of covering the substrate holder, change of the entry flange, design of new insertion chamber with multifunctional substrate holder and the option to control the deposition by computer.
416

Automatizace a řízení depozice multivrstev metodou IBS/IBAD / Automation and control of multilayers deposition by IBS/IBAD

Pavera, Michal January 2011 (has links)
This diploma thesis deals with the automation of the deposition process by ion beam sputtering and ion beam assisted deposition. This work contains drawings of mechanical adjustments of the deposition chamber designed to control shutter and rotation of the target using stepper motors. There are presented ways to control stepper motors and troubleshoot their exact settings. Another task is to design a system for computer control of the deposition process. There are discussed ways to control the ion sources, pressure meter, flow meter and thickness meter, and their connection to a PC via RS-232 and analog-digital converters. It is also designed control program in LabVIEW, which allow automated multilayer deposition. Last part of the thesis deals with testing automatic deposition and results are commented.
417

Investigation of Metallic Dust formed on Steel Substrates in Solar Cell Sputtering Chambers

Friberg, Jakob January 2019 (has links)
Investigations have been done as of why dust particles appear in a circular pattern on the backside of solar cells produced in sputtering chambers at Midsummer AB. An experimental approach was conducted, where solar cells were produced at standard conditions and their backside studied by material analytical methods. The solar cells dust particles were analyzed by energy-dispersive x-ray spectroscopy and x-ray diffraction, deducing that they consisted of iron selenide (Fe0.89Se). Furthermore, the dust particles appear due to formation of a thin iron selenide film that cracks and delaminate upon cooling from process temperature to room temperature. Iron selenide film thickness was found by energy-dispersive x-ray spectroscopy to occur in a pattern with radial symmetry with respect to the cell center, correlating with the film delamination pattern. The reason to the film formation was due to selenium reacting with the substrate steel at high temperatures (>400 ◦C) in deposition chambers having a selenium environment. The film delamination occurs at a critical film thickness at which stresses in the film is high enough for the film to yield and fracture. It was concluded that iron selenide film formation or delamination must be minimized in order to control dust particle formation. These two phenomena can be mitigated by protective substrate films, change of substrate material, selenium environment optimization or temperature profile optimization and should be researched further to find the most effective and viable solution.
418

Studium nových katalytických materiálů pro palivové články s polymerní membránou / Study of new catalytic materials for proton exchange membrane fuel cells

Homola, Petr January 2012 (has links)
Title: Study of new catalytic materials for proton exchange membrane fuel cells Author: Petr Homola Department: Department of Surface and Plasma Science Supervisor: Prof. RNDr. Vladimír Matolín, DrSc. Abstract: Submitted thesis deals with study of thin layers based on platinum and cerium oxides in order to use them in fuel cells with polymer membrane (PEM- FC). A set of samples with different amount of platinum was prepared by means of magnetron sputtering. Samples were investigated by X - ray Photoelectron Spectroscopy (XPS) and results were confronted with sputtering parameters. It was found out that chemical state of platinum is related to its amount in thin layer. The less platinum was contained in thin layer, the less amount of Pt0 state was observed and amounts of Pt2+ and Pt4+ states increased. Furthermore the temperature stability of prepared layers in the interval from room temperature to 250 ◦ C was studied by means of XPS. The adsorption of carbon monoxide was measured by infrared absorption spectroscopy (IRAS). Increasing degree of adsorption on sample probably related to platinum reduction with increased tem- perature was observed. Measurements of other samples were devaluated by strong contamination with nickel carbonyls. Keywords: PEMFC, cerium oxide, magnetron sputtering, XPS, CO adsorption
419

Ultra tenké vrstvy nanášené magnetronovým naprašováním a jejich charakterizace / Ultrathin films deposited by means of magnetron sputtering and their characterization

Petr, Martin January 2017 (has links)
Presented work is focused on the deposition and characterization of thin and ultrathin plasma polymer films, then also on the preparation of nanocomposites metal/plasma polymer. The characterization of plasma polymer films was partly done in-situ without exposing the samples to the atmosphere. The thickness of prepared films was measured by spectral ellipsometry, the chemical composition was measured by XPS. The morphology and optical properties of deposited films were measured ex-situ. It is shown that during the initial stages of growth the properties of plasma polymer films depend on their thickness and also on the material of the substrate. Many interesting applications were explored for prepared nanocomposites metal/plasma polymer. They can be used as superhydrophobic coatings, gradient coatings, substrates for Raman spectroscopy or as antibacterial coatings. Moreover, special optical properties of prepared nanocomposites were studied in detail. Presented work has an experimental character.
420

Ion Beam Synthesis of Ge Nanowires

Müller, Torsten January 2001 (has links)
The formation of Ge nanowires in V-grooves has been studied experimentally as well as theoretically. As substrate oxide covered Si V-grooves were used formed by anisotropic etching of (001)Si wafers and subsequent oxidation of their surface. Implantation of 1E17 Ge+ cm^-2 at 70 keV was carried out into the oxide layer covering the V-grooves. Ion irradiation induces shape changes of the V-grooves, which are captured in a novel continuum model of surface evolution. It describes theoretically the effects of sputtering, redeposition of sputtered atoms, and swelling. Thereby, the time evolution of the target surface is determined by a nonlinear integro-differential equation, which was solved numerically for the V-groove geometry. A very good agreement is achieved for the predicted surface shape and the shape observed in XTEM images. Surprisingly, the model predicts material (Si, O, Ge) transport into the V-groove bottom which also suggests an Ge accumulation there proven by STEM-EDX investigations. In this Ge rich bottom region, subsequent annealing in N2 atmosphere results in the formation of a nanowire by coalescence of Ge precipitates shown by XTEM images. The process of phase separation during the nanowire growth was studied by means of kinetic 3D lattice Monte-Carlo simulations. These simulations also indicate the disintegration of continuous wires into droplets mediated by thermal fluctuations. Energy considerations have identified a fragmentation threshold and a lower boundary for the droplet radii which were confirmed by the Monte Carlo simulation. The here given results indicate the possibility of achieving nanowires being several nanometers wide by further growth optimizations as well as chains of equally spaced clusters with nearly uniform diameter.

Page generated in 0.1731 seconds