• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 10
  • 7
  • 7
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ESTUDO IN SITU DA DEFORMAÇÃO CRIOGÊNICA DE METAIS CFC DE DIFERENTES ENERGIAS DE DEFEITO DE EMPILHAMENTO

Izumi, Marcel Tadashi 22 February 2018 (has links)
Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2018-04-26T13:22:22Z No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Marcel Tadshi Izumi.pdf: 4222698 bytes, checksum: e7c749993223b983b4e37d54985610de (MD5) / Made available in DSpace on 2018-04-26T13:22:22Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Marcel Tadshi Izumi.pdf: 4222698 bytes, checksum: e7c749993223b983b4e37d54985610de (MD5) Previous issue date: 2018-02-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Três metais CFC comercialmente puros (alumínio, cobre e prata) foram deformados por ensaios de tração uniaxial e caracterizados por difração de raios X in situ, utilizando uma fonte síncrotron, em temperatura ambiente (293K) e criogênica (77K). A supressão parcial da recuperação dinâmica decorrente do processamento criogênico permite melhorias nas propriedades mecânicas, tais como ductilidade e resistência. Esta supressão resulta em um aumento na densidade de defeitos internos dos metais durante a deformação, promovendo um refino microestrutural e aumento da microdeformação. O refino microestrutural é manifestado pela evolução de dimples na superfície de fratura e pela redução do tamanho médio de cristalitos. Todos os metais apresentaram maior resistência mecânica em temperaturas criogênicas, entretanto somente o cobre e a prata apresentaram aumento de ductilidade. Esse comportamento é atribuído à menor energia de defeito de empilhamento destes metais em comparação com o alumínio. / Three FCC commercially pure metals (aluminum, copper and silver) were deformed by uniaxial tensile tests and were characterized by in situ X-ray diffraction, using a synchrotron source, at room (293K) and cryogenic (77K) temperatures. The partial suppression of dynamic recovery due to cryogenic processing allows an improvement in mechanical properties, such as ductility and strength. This suppression results in an increase in the internal defects density of metals during the strain, promoting microstructural refining and increase of microstrain. The microstructural refinement is manifested by dimples evolution on the fracture surface and reduction of average crystallite size. All metals present higher mechanical strength at cryogenic temperature, nevertheless the ductility only was increased in copper and silver. This behavior is attributed to lower stacking fault energy of these metals in comparison with aluminum.
12

Manufacturing, mechanical properties and corrosion behaviour of high-Mn TWIP steels

Hamada, A. S. (Atef Saad) 09 October 2007 (has links)
Abstract Austenitic high-Mn (15–30 wt.%) based twinning-induced plasticity (TWIP) steels provide great potential in applications for structural components in the automotive industry, owing to their excellent tensile strength-ductility property combination. In certain cases, these steels might also substitute austenitic Cr-Ni stainless steels. The aim of this present work is to investigate the high-temperature flow resistance, recrystallisation and the evolution of microstructure of high-Mn steels by compression testing on a Gleeble simulator. The influence of Al alloying (0–8 wt.%) in the hot rolling temperature range (800°C–1100°C) is studied in particular, but also some observations are made regarding the influence of Cr alloying. Microstructures are examined in optical and electron microscopes. The results are compared with corresponding properties of carbon and austenitic stainless steels. In addition, the mechanical properties are studied briefly, using tension tests over the temperature range from -80°C to 200°C. Finally, a preliminary study is conducted on the corrosion behaviour of TWIP steels in two media, using the potentiodynamic polarization technique. The results show that the flow stress level of high-Mn TWIP steels is considerably higher than that of low-carbon steels and depends on the Al concentration up to 6 wt.%, while the structure is fully austenitic at hot rolling temperatures. At higher Al contents, the flow stress level is reduced, due to the presence of ferrite. The static recrystallisation kinetics is slower compared to that of carbon steels, but it is faster than is typical of Nb-microalloyed or austenitic stainless steels. The high Mn content is one reason for high flow stress as well as for slow softening. Al plays a minor role only; but in the case of austenitic-ferritic structure, the softening of the ferrite phase occurs very rapidly, contributing to overall faster softening. The high Mn content also retards considerably the onset of dynamic recrystallisation, but the influence of Al is minor. Similarly, the contribution of Cr to the hot deformation resistance and static and dynamic recrystallisation, is insignificant. The grain size effectively becomes refined by the dynamic and static recrystallisation processes. The tensile testing of TWIP steels revealed that the Al alloying and temperature have drastic effects on the yield strength, tensile strength and elongation. The higher Al raises the yield strength because of the solid solution strengthening. However, Al tends to increase the stacking fault energy that affects strongly the deformation mechanism. In small concentrations, Al suppresses martensite formation and enhances deformation twinning, leading to high tensile strength and good ductility. However, with an increasing temperature, SFE increases, and consequently, the density of deformation twins decreases and mechanical properties are impaired. Corrosion testing indicated that Al alloying improves the corrosion resistance of high-Mn TWIP steels. The addition of Cr is a further benefit for the passivation of these steels. The passive film that formed on 8wt.% Al-6wt.%Cr steel was found to be even more stable than that on Type 304 steel in 5–50% HNO3 solutions. A prolonged pre-treatment of the steel in the anodic passive regime created a thick, protective and stable passive film that enhanced the corrosion resistance also in 3.5% NaCl solution.
13

Počítačové modelování slitin s vysokou entropií / Computer modeling of high-entropy alloys

Papež, Pavel January 2021 (has links)
This Master’s thesis is focused on theoretical study of the high entropy alloy CoCrNi using ab initio calculations. The focus was on the effect of short range order on the relative stability of FCC and HCP structures and the value of stacking fault energy.The results show increase of stability in both types of structures wtih decreasing number of Cr-Cr nearest neighbours. The effect of the number of Cr-Cr nearest neighbours on the stacking fault energy previously shown in literature was not observed. However the strong dependency was found on the change of short range order caused by the shift of (1 1 1) planes after the transformation from the FCC to HCP structure. The effect of interstitial atoms C a N was also studied. Both these interstitials stabilise FCC structure and thus cause the increase of stacking fault energy. Both interstitials prefer octahedral positions with higher amount of Cr in their nearest neighbour shell.
14

Amélioration des propriétés physiques et mécaniques d'aciers TWIP FeMnXc : influence de la solution solide, durcissement par précipitation et effet composite / Improvement of the physical and mechanical properties of FeMnXc TWIP steels : influence of the solid solution, precipitation hardenig and composition effect

Dumay, Alexis 21 March 2008 (has links)
Les aciers TWIP se déforment par maclage et par glissement de dislocations, avec pour conséquence de forts taux d’écrouissage. Les mécanismes de déformation sont contrôlés par l’énergie de faute d’empilement (EFE). Un modèle de prévision de l’EFE et une régression de TNéel (transition antiferro/paramagnétique) de l’austénite sont proposés pour les systèmes FeMnXC (X = Cu, Cr, Al, Si et Ti). Les nuances FeMnCuC étudiées ont une EFE plus faible que la nuance de référence Fe22Mn0,6C. La formation de martensite [epsilon]?se substitue au maclage, sans dégradation des caractéristiques mécaniques en traction. La contrainte d'écoulement diminue avec la teneur en carbone et la formation de martensite [alpha]' aux plus basses EFE réduit l'allongement à rupture. La substitution d'une partie du manganèse par du cuivre permet un gain de 20% sur le module d'Young à température ambiante, en abaissant TNéel en dessous de 0ºC. La précipitation intragranulaire de carbures de vanadium augmente la limite d’élasticité mais n’influence pas le taux d’écrouissage. Aucune interaction entre précipités et macles n'a été observée en microscopie. Les calculs de cohérence et les mesures au MET montrent que les carbures ont une relation d'orientation avec l'austénite et sont semi-cohérents avec une faible cohérence résiduelle. Les contraintes induites ne semblent pas suffisantes pour piéger de grandes quantités d'hydrogène. Les alliages FeMnC + TiC présentent un fort durcissement par effet composite en début de déformation, tandis que l'écrouissage par effet TWIP n'est pas modifié par la présence des particules TiC. Cependant, le clivage des précipités primaires de grande taille réduit l'allongement à rupture / TWIP steels deformation occurs by twinning and by dislocations gliding which leads to high a strain hardening. The deformation mechanisms are controlled by the stacking fault energy (SFE). A model for the prediction of the SFE and a law for TNéel (antiferro to paramagnetic transition) for austenite are proposed in FeMnXC systems (X = Cu, Cr, Al, Si et Ti). The studied FeMnCuC grades have a lower SFE than the Fe22Mn0,6C reference. The formation of [epsilon]-martensite replaces twinning without any deterioration of the mechanical properties. The flow stress decreases with the carbon content and the formation of [alpha]'-martensite at the lowest SFEs reduces the elongation to fracture. Substituting a part of the manganese content by copper leads to a 20% increase of the Young's Modulus at room temperature by decreasing TNéel below 0ºC. The precipitation of intragranular vanadium carbide increases the yield stress but does not influence the strain hardening rate. No interaction between precipitates and twins has been observed by microscopy. The coherency calculations and the TEM observations show that the carbides have an orientation relation with the austenite and are semi-coherent with a low residual coherency. The resulting stresses do not seem to be high enough to trap large quantities of hydrogen. The FeMnC + TiC alloys exhibit a strong hardening by composite effect at the beginning of deformation, while the strain hardening due to TWIP effect is not modified by the presence of the TiC particles. Meanwhile, cleavage occurs in the largest primary precipitates, which reduces the elongation to fracture
15

Plastizität, deformationsinduzierte Phänomene und Élinvareigenschaften in antiferromagnetischen austenitischen FeMnNiCr-Basislegierungen / Plasticity, deformation induced phenomena and Élinvar properties in antiferromagnetic austenitic FeMnNiCr-base alloys

Geißler, David 19 June 2012 (has links) (PDF)
Hoch manganhaltige Eisenbasislegierungen sind bei Raumtemperatur austenitisch und antiferromagnetisch (afm). Dabei besteht die Besonderheit, dass sich durch Legierung die afm Übergangstemperatur (Néeltemperatur) so einstellen lässt, dass sie nahe Raumtemperatur liegt. FeMn-Basislegierungen zeigen in Abhängigkeit von der Zusammensetzung Transformation Induced Plasticity (TRIP) und/oder Twinning Induced Plasticity (TWIP), d.h. die niedrige Stapelfehlerenergie dieser Legierungen führt zu verformungsinduzierter, metastabiler Phasenbildung (TRIP) bzw. zur Bildung von Verformungszwillingen (TWIP) und dadurch zu außerordentlich hoher Duktilität bei gleichzeitig hoher Verfestigung. Darüber hinaus haben FeMn-Basislegierungen einen ausgeprägten Magnetovolumeneffekt und magnetoelastischen Effekt durch magnetische Ordnung. Daher sind die untersuchten FeMnNiCr-Basislegierungen auch prototypisch für afm Élinvarlegierungen. Da Élinvar jedoch für invariable Elastizität steht, bedingt eine Anwendung als temperaturkompensierte Konstantmodullegierungen die Glättung der ausgeprägten magnetischen Anomalien, die industriell noch in keiner Anwendung realisiert wurde. Der Vorteil dies für eine Anwendung zu erreichen, läge in der Unempfindlichkeit feinmechanischer Bauelemente, gegenüber magnetischen Feldern, die bei den industriell verfügbaren ferromagnetischen Élinvarlegierungen nicht gewährleistet ist. Mit Bezug zu feinmechanischen Schwingsystemen spielen dabei neben der Einstellung der magnetoelastischen Eigenschaften die Prozessierbarkeit, Kaltumformbarkeit und Festigkeit sowie deren wechselseitige Beeinflussung eine große Rolle. Die vorliegende Arbeit befasst sich daher mit der Anwendbarkeit der untersuchten FeMnNiCr-Legierungen. Dabei wurden grundlegende Untersuchungen zur Plastizität durchgeführt, die die mechanische Zwillingsbildung in diesen Legierungen charakterisiert und ein Modell der mechanischen Zwillingsbildung bei kleinen plastischen Dehnungen vorschlägt, das eine Abschätzung der Stapelfehlerenergie erlaubt. Die Untersuchung des Antiferromagnetismus umgeformter Proben zeigt das Auftreten thermoremanenter Magnetisierung (TRM), deren Größe mit dem Umformgrad der untersuchten Proben skaliert. Sie wird den durch Umformdefekte erzeugten unkompensierten Momenten in der afm Spinstruktur zugeschrieben. Diese werden durch eine magnetische Feldkühlung magnetisiert und koppeln durch Austauschwechselwirkung an die umgebende antiferromagnetische Matrix unterhalb der Néeltemperatur. Das komplexe thermomagnetische Verhalten der unkompensierten Momente wird experimentell beschrieben und phänomenologisch gedeutet. Die Weiterentwicklung und Bewertung technischer, ausscheidbarer FeMnNiCrBe- und FeMnNiCr(Ti, Al)-Legierungen wird mit Bezug zu den grundlegenden Untersuchungen dargestellt. Es wird gezeigt, dass die neu entwickelten ausscheidbaren FeMnNiCr(Ti, Al)-Legierungen eine vielversprechende Ausgangsbasis darstellen, afm Élinvarlegierungen technisch umzusetzen. / High manganese iron-base alloys are austenitic and antiferromagnetic (afm) at room temperature. By further alloying it is possible to tune the afm transition temperature (Néel temperature) near room temperature. FeMn-base alloys show extraordinary strain hardening as well as ductility because of Transformation Induced Plasticity (TRIP) and/or Twinning Induced Plasticty (TWIP), i.e. in dependence on composition the generally low stacking fault energy in these alloys allows for the mechanically induced formation of metastable phases (TRIP) or deformation twinning (TWIP). Furthermore, magnetic order causes distinct magnetovolume and magnetoelastic effects in these afm FeMn-base alloys. The investigated FeMnNiCr-base alloys are therefore prototypic for afm Élinvar alloys. However, as Élinvar is meant for invariant elasticity, an application as temperature compensated alloy with constant elastic modulus requires the smoothing of the pronounced magnetic anomalies, that is not industrially available yet. The advantage of afm Élinvar alloys in precision mechanics applications, would be their impassiveness with respect to magnetic fields that is not achievable by their ferromagnetic counterparts. For precision components like mechanic oscillators not only the tuning of the magnetoelastic properties but also the processing, cold formability and mechanical properties as well as their interplay have strong influence. Therefore this work addresses the applicability of the studied FeMnNiCr alloys. Elementary investigations on plasticity characterise the occurrence of TWIP in these alloys and propose a modell for deformation twinning at low plastic strains that allows for an estimation of the stacking fault energy. The investigations on the antiferromagnetism of deformed samples show the appearance of thermoremanent magnetisation (TRM). Its magnitude scales with the degree of deformation. The TRM is therefore attributed to uncompensated moments in the afm spin structure due to deformation induced defects. These are magnetised by a magnetic field cooling and couple to the afm matrix by exchange interaction below the Néel temperature. The complex thermomagnetic behaviour of the uncompensated moments is experimentally described and phenomenologically explained. The further development and assessment of engineering-grade pecipitable FeMnNiCrBe and FeMnNiCr(Ti, Al) alloys is presented in relation to the aforementioned elementary investigations. It is shown that the newly developped precipitable FeMnNiCr(Ti, Al) alloys are good candidates for afm Élinvar alloys in application.
16

Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer und Kupfermischkristalllegierungen

Kauffmann, Alexander 01 July 2014 (has links) (PDF)
Die vorliegende Arbeit zeigt einen Weg, Kupfer und einphasige Kupferlegierungen mit stark verzwillingten Gefügen durch ein technisch relevantes Umformverfahren herzustellen. Der Drahtzug bildet dabei aufgrund seines Spannungszustands und der entsprechenden Texturentwicklung in kubischflächenzentrierten Metallen ein ideales Umformverfahren, um einen Großteil des Gefüges durch mechanische Zwillingsbildung zu verfeinern. Für die Aktivierung der Zwillingsbildung in reinem Kupfer unter den untersuchten Werkstoffvarianten sind Temperaturen nahe der Temperatur des flüssigen Stickstoffs notwendig. Um den Drahtzug in flüssigem Stickstoff umzusetzen, wurden verschiedene Feststoffschmiermittel auf ihre Eignung hin getestet. Die Textur der mit Stickstoffkühlung hergestellten Halbzeuge ist durch eine dreifache Fasertextur bestehend aus <111>-, <001>- und <115>-Fasertexturkomponente charakterisiert. Anhand der strengen Orientierungsverhältnisse konnte der Volumenanteil von verzwillingtem Material bestehend aus Matrixkörnern und Verformungszwillingen auf 71 vol% durch röntgenografische Globaltexturmessungen abgeschätzt werden, wobei das Volumenverhältnis von Zwillingen zu Matrix bei knapp 0,7:1 liegt. Die Zwillinge zeigen eine breite Zwillingslamellenweitenverteilung von wenigen Nanometern bis einige 100 nm im höchstverformten Stadium. Durch die Absenkung der Umformtemperatur und die daraus resultierende Aktivierung der Zwillingsbildung kann die Zugfestigkeit von reinem Kupfer um 140 MPa im Vergleich zu einem ohne Kühlung hergestellten Draht auf 582 MPa erhöht werden. Dabei reduziert sich die elektrische Leitfähigkeit um 6,5% gegenüber einem grobkorngeglühten Kupfer. Eine Absenkung der Stapelfehlerenergie auf 30 mJ/m² in CuAl2 führt zur Aktivierung der mechanischen Zwillingsbildung beim Drahtzug ohne Kühlung. Durch diese Aktivierung der Zwillingsbildung kann bei fortschreitender Verringerung der Stapelfehlerenergie wie in CuAl7 die Zugfestigkeit des umgeformten Drahtes auf weit über 1 GPa erhöht werden. Das entsprechende Gefüge ist dabei ultrafeinkörnig.
17

Modélisation de l’interaction des coeurs de dislocations et des joints de grains / Modeling the interaction of dislocations cores and grains boundaries

Gbemou, Kodjovi 26 April 2017 (has links)
Durant cette thèse, on s’intéresse à l’application et au développement d’une théorie de mécanique des champs de dislocations et de désinclinaisons pour modéliser de façon continue les structures de cœur des dislocations et des joints de grains ainsi que leurs interactions. Le vecteur de Burgers/Frank des dislocations/désinclinaisons est régularisé par l’introduction d’un tenseur densité de dislocations/désinclinaisons. A ces densités de défauts sont associées des déformations et des courbures élastiques et plastiques incompatibles responsables de champs de contraintes et de moments de contraintes internes. Le mouvement des défauts produit de la plasticité et est pris en compte par des équations de transport qui font intervenir des forces motrices agissant sur les densités de défauts. Dans un premier temps, les désinclinaisons sont ignorées et nous appliquons la théorie de champ de dislocations seule pour étudier les structures de cœur de dislocations planaires en comparaison avec le modèle de Peierls-Nabarro. La relaxation d’une structure de cœur de dislocation coin initiale arbitraire révèle un étalement infini des densités de dislocations sous l’action de leur propre champ de contrainte interne. Pour stopper cette relaxation infinie, nous proposons d’ajouter une énergie de misfit dans notre modèle. Cette dernière donne lieu à une contrainte de rappel qui s’oppose à l’étalement des cœurs de dislocations et permet d’obtenir des configurations équilibrées. On retrouve la solution de Peierls-Nabarro si on utilise un potentiel sinusoïdal pour l’énergie. Nous substituons ensuite ce potentiel par des énergies de fautes d’empilement généralisées obtenues à partir de simulations atomistiques pour modéliser la dissociation des dislocations et leur mouvement dans le zirconium et le titane. Dans un deuxième temps, nous considérons la théorie complète et nous développons des lois d’élasticité constitutives qui sont propres aux défauts cristallins. Nous proposons qu’en plus des tenseurs élastiques habituels, des tenseurs d’élasticité additionnels existent au niveau du cœur des défauts et relient respectivement les contraintes aux courbures et les moments de contraintes aux déformations. Ces tenseurs sont de nature non locale par définition à cause des relations cinématiques entre déformations et courbures. Ils sont non nuls au niveau des cœurs des défauts où les hétérogénéités de déformations et de courbures sont fortes et deviennent nuls loin des défauts par centrosymétrie. On applique ces nouvelles lois d’élasticité à des distributions de dislocations et de désinclinaisons. On montre que les termes non locaux donnent lieu à des contraintes/moments de contraintes de rappel qui s’opposent aux parties locales. Dans le cas de la dislocation coin, on montre que sa représentation avec un dipôle de désinclinaison coin permet d’obtenir une configuration équilibrée sans l’ajout d’énergie de misfit. On étudie ensuite les interactions élastiques entre dislocations et joints de grains / In this contribution, we apply and develop a mechanical theory of dislocation and disclination fields, to model in a continuous way the core structure of dislocations and grain boundaries, as well as their interactions. The Burgers/Frank vector of dislocations/disclinations is regularized by the introduction of dislocation/disclination density tensors. Incompatible elastic and plastic strains and curvatures are associated to these defect densities and they lead to internal stress and couple stress fields. The motion of defects yields plasticity. It is accounted for by transport equations, where driving forces act on the defect densities. First, we overlook disclinations and we apply the pure dislocation model to investigate the structure of planar dislocation cores, in comparison with the Peierls-Nabarro model. The self-relaxation of an initially arbitrary core structure of an edge dislocation reveals that an infinite spreading of the dislocation density occurs under its own stress field. To stop this endless relaxation, we propose to add a misfit energy in our model. The latter yields a restoring stress that opposes to the spreading of dislocation cores and allows predicting equilibrium core structures. We retrieve the Peierls-Nabarro solution when we use a sinusoidal potential for the misfit energy. We then substitute this sinusoidal potential for generalized stacking fault energies as obtained from atomistic simulations, in order to model the dissociation and motion of dislocations in zirconium and titanium. Second, we consider the full theory and we develop elastic constitutive laws that are specific to crystal defects. We propose that in addition to standard elasticmoduli tensors, additional elastic tensors exist in the core regions of defects and relate respectively stresses to curvatures and couple stresses to strains. These tensors are nonlocal by definition due to kinematic relations between strains and curvatures. They are non-zero in the core of defects, where strong heterogeneities of strains and curvatures occur, and they become progressively null far from the defects due to centrosymmetry. We apply these new elastic laws to distributions of dislocations and disclinations. We show that the nonlocal elastic tensors lead to restoring stresses and couple stresses that oppose to their local parts. In the framework of edge dislocations, we show that the representation using dipoles of wedge disclination cores allows predicting equilibrium structures without adding a misfit energy. We then investigate elastic interactions between dislocations and grain boundaries
18

Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer und Kupfermischkristalllegierungen

Kauffmann, Alexander 26 May 2014 (has links)
Die vorliegende Arbeit zeigt einen Weg, Kupfer und einphasige Kupferlegierungen mit stark verzwillingten Gefügen durch ein technisch relevantes Umformverfahren herzustellen. Der Drahtzug bildet dabei aufgrund seines Spannungszustands und der entsprechenden Texturentwicklung in kubischflächenzentrierten Metallen ein ideales Umformverfahren, um einen Großteil des Gefüges durch mechanische Zwillingsbildung zu verfeinern. Für die Aktivierung der Zwillingsbildung in reinem Kupfer unter den untersuchten Werkstoffvarianten sind Temperaturen nahe der Temperatur des flüssigen Stickstoffs notwendig. Um den Drahtzug in flüssigem Stickstoff umzusetzen, wurden verschiedene Feststoffschmiermittel auf ihre Eignung hin getestet. Die Textur der mit Stickstoffkühlung hergestellten Halbzeuge ist durch eine dreifache Fasertextur bestehend aus <111>-, <001>- und <115>-Fasertexturkomponente charakterisiert. Anhand der strengen Orientierungsverhältnisse konnte der Volumenanteil von verzwillingtem Material bestehend aus Matrixkörnern und Verformungszwillingen auf 71 vol% durch röntgenografische Globaltexturmessungen abgeschätzt werden, wobei das Volumenverhältnis von Zwillingen zu Matrix bei knapp 0,7:1 liegt. Die Zwillinge zeigen eine breite Zwillingslamellenweitenverteilung von wenigen Nanometern bis einige 100 nm im höchstverformten Stadium. Durch die Absenkung der Umformtemperatur und die daraus resultierende Aktivierung der Zwillingsbildung kann die Zugfestigkeit von reinem Kupfer um 140 MPa im Vergleich zu einem ohne Kühlung hergestellten Draht auf 582 MPa erhöht werden. Dabei reduziert sich die elektrische Leitfähigkeit um 6,5% gegenüber einem grobkorngeglühten Kupfer. Eine Absenkung der Stapelfehlerenergie auf 30 mJ/m² in CuAl2 führt zur Aktivierung der mechanischen Zwillingsbildung beim Drahtzug ohne Kühlung. Durch diese Aktivierung der Zwillingsbildung kann bei fortschreitender Verringerung der Stapelfehlerenergie wie in CuAl7 die Zugfestigkeit des umgeformten Drahtes auf weit über 1 GPa erhöht werden. Das entsprechende Gefüge ist dabei ultrafeinkörnig.
19

Role Of Stacking Fault Energy On Texture Evolution In Micro- And Nano-Crystalline Nickel-Cobalt Alloys

Radhakrishnan, Madhavan 12 1900 (has links) (PDF)
Plastic deformation of metals and alloys are invariably accompanied by the development of texture. The origin of texture is attributed to the deformation micro-mechanisms associated with processing. The face-centered cubic (FCC) metals and alloys are known to exhibit two distinct types of textures when subjected to large strain rolling deformation, namely, (i) Cu-type texture, commonly seen in high/medium stacking fault energy (SFE) materials, (ii) Bs-type texture in low SFE materials. The circumstances that could result in the formation of Bs-type texture in low SFE materials still remains an open question and no definite mechanism has been uniquely agreed upon. Apart from the SFE, grain size could also influence the deformation mechanism and hence the deformation texture. It is well known that in materials with grain sizes less than 100 nm (referred to as nano-crystalline materials), the microstructures contain large fraction of grain boundaries. This subsequently introduces a variety of deformation mechanisms in the microstructure involving grain boundary-mediated processes such as grain boundary sliding and grain rotation, in addition to slip and twinning. A clear understanding of texture evolution in nano-crystalline materials, particularly at large strains, is a topic that remains largely unexplored. The present work is an attempt to address the aforementioned issues pertaining to the evolution of deformation texture, namely, (i) the effect of SFE and (ii) the effect of grain size, in FCC metals and alloys. Nickel-cobalt alloys are chosen as the model system for the present investigation. The addition of cobalt to nickel leads to a systematic reduction of SFE as a function of cobalt content. In this thesis, three alloys of Ni-Co system have been considered, namely, nickel – 20 wt.% cobalt, nickel – 40 wt.% cobalt and nickel – 60 wt.% cobalt. For a comparison, pure nickel has also been subjected to similar study. Chapter 1 of the thesis presents a detailed survey of literature pertaining to the evolution of rolling textures in FCC metals and alloys, and chapter 2 includes the details of the experimental techniques and characterization procedures, which are commonly employed for the entire work. Chapter 3 addresses the effect of stacking fault energy on the evolution of rolling texture. The materials subjected to study in this chapter are microcrystalline Ni-Co alloys. The texture evolution in Ni-20Co is very similar to pure Ni, and a characteristic Cu-type rolling texture is observed. The evolution of texture in these materials is primarily attributed to the intense dislocation activity throughout the deformation stages. In Ni-40Co, a medium SFE material, the rolling texture was predominantly Cu-type up to a strain of ε = 3 (95% thickness reduction). However, beyond this strain level, namely at ε = 4 (98%), the texture gets transformed to Bs-type with orientations maxima predominantly close to Goss ({110} <001>) position. Simultaneously, the Cu component which was dominant until 95% reduction has completely disappeared. The analysis of microstructures indicate that deformation is mostly accommodated by dislocation slip up to 95%, however, at ε > 3, Cu-type shear bands get initiated, preferably in the Cu-oriented ({112} <111>) grains. The sub-grains within the shear bands show preferred orientation towards Goss, which indicates that the Cu component should have undergone transformation and resulted in high fraction of Goss component. In Ni-60Co alloy, Bs-type texture forms in the early stages of deformation (ε ~ 0.5) itself and further deformation results in strengthening of the texture with an important difference that the maximum in orientation distribution has been observed at a location close to Goss component, rather than at exact Bs-location. The development of Bs-type texture is accompanied by the complete absence of Cu and S components. Extensive EBSD analyses show that the deformation twinning gets initiated beyond 10% reduction and was found extensively in most of the grains up to 50% reduction. At higher strains, tendency for twinning ceases and extensive shear banding is observed. A non-random distribution of orientations close to Goss orientation was found within the shear bands. The near-Goss component in the Ni-60Co alloy can be explained on the basis of deformation twinning and shear banding. Thus, a reasonable understanding of the deformation texture transition in the extreme SFE range has been developed. In chapter 4, the effect of fine grain size on the evolution of rolling texture has been addressed. Nanocrystalline (nc) nickel-cobalt alloys with a mean grain size of ~20 nm have been prepared by pulse electro-deposition method. For a comparison, nc Nickel (without cobalt) with similar grain size has also been deposited. For all the materials, a weakening of the initial fiber texture is observed in the early stage of room temperature rolling (ε ~ 0.22). A combination of equiaxed grain microstructure and texture weakening suggests grain boundary sliding as an operative mechanism in the early stage of rolling. At large strain (ε = 1.2), Ni-20Co develops a Cu-type texture with high fractions of S and Cu components, similar to pure Ni. The texture evolution in Ni-40Co and Ni-60Co alloys is more towards Bs-type. However, the texture maximum occurs at a location 10° away from the Goss. The evolution of Cu and S components in nc Ni-60Co alloy takes place simultaneously along with the α-fiber components during rolling. Microstructural investigation by TEM indicates deformation twinning to be more active in all the materials up to 40% reduction. However, no correlation could be drawn between the texture evolution and the density of twins. The deformation of nc Ni-20Co alloy, is also accompanied by significant grain growth at all the stages of rolling. The increase in grain size, subsequently, renders the texture to be of Cu-type. However, Ni-40Co and Ni-60Co alloys show high grain stability. The absence of strain heterogeneities such as shear bands, and the lack of significant fraction of deformation twins indicate that the observed Bs-type texture could be due to planar slip. The increase in deformation beyond 70% reduction caused a modest reduction in the intensity of deformation texture. The microstructural observation indicates the occurrence of restoration mechanisms such as recovery/ recrystallization at large strains. The overall findings of the investigation have been summarized in chapter 5. The deformation mechanism maps relating stacking fault energy with amount of strain and with grain size are proposed for micro- and nano- crystalline materials respectively.
20

Theoretical methods for the electronic structure and magnetism of strongly correlated materials

Locht, Inka L. M. January 2017 (has links)
In this work we study the interesting physics of the rare earths, and the microscopic state after ultrafast magnetization dynamics in iron. Moreover, this work covers the development, examination and application of several methods used in solid state physics. The first and the last part are related to strongly correlated electrons. The second part is related to the field of ultrafast magnetization dynamics. In the first part we apply density functional theory plus dynamical mean field theory within the Hubbard I approximation to describe the interesting physics of the rare-earth metals. These elements are characterized by the localized nature of the 4f electrons and the itinerant character of the other valence electrons. We calculate a wide range of properties of the rare-earth metals and find a good correspondence with experimental data. We argue that this theory can be the basis of future investigations addressing rare-earth based materials in general. In the second part of this thesis we develop a model, based on statistical arguments, to predict the microscopic state after ultrafast magnetization dynamics in iron. We predict that the microscopic state after ultrafast demagnetization is qualitatively different from the state after ultrafast increase of magnetization. This prediction is supported by previously published spectra obtained in magneto-optical experiments. Our model makes it possible to compare the measured data to results that are calculated from microscopic properties. We also investigate the relation between the magnetic asymmetry and the magnetization. In the last part of this work we examine several methods of analytic continuation that are used in many-body physics to obtain physical quantities on real energies from either imaginary time or Matsubara frequency data. In particular, we improve the Padé approximant method of analytic continuation. We compare the reliability and performance of this and other methods for both one and two-particle Green's functions. We also investigate the advantages of implementing a method of analytic continuation based on stochastic sampling on a graphics processing unit (GPU).

Page generated in 0.1117 seconds