• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 43
  • 32
  • 1
  • Tagged with
  • 167
  • 142
  • 141
  • 131
  • 76
  • 70
  • 70
  • 70
  • 48
  • 48
  • 33
  • 30
  • 27
  • 25
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Spherical Individual Cell-Based Models / Sphärische Einzelzell-basierte Modelle - Limitierungen und Anwendungen

Krinner, Axel 14 July 2010 (has links) (PDF)
Over the last decade a huge amount of experimental data on biological systems has been generated by modern high-throughput methods. Aided by bioinformatics, the '-omics' (genomics, transcriptomics, proteomics, metabolomics and interactomics) have listed, quantif ed and analyzed molecular components and interactions on all levels of cellular regulation. However, a comprehensive framework, that does not only list, but links all those components, is still largely missing. The biology-based but highly interdisciplinary field of systems biology aims at such a holistic understanding of complex biological systems covering the length scales from molecules to whole organisms. Spanning the length scales, it has to integrate the data from very different fields and to bring together scientists from those fields. For linking experiments and theory, hypothesis-driven research is an indispensable concept, formulating a cycle of experiment, modeling, model predictions for new experiments and, fi nally, their experimental validation as the start of the new iteration. On the hierarchy of length scales certain unique entities can be identi fied. At the nanometer scale such functional entities are molecules and at the micrometer level these are the cells. Cells can be studied in vitro as independent individuals isolated from an organism, but their interplay and communication in vivo is crucial for tissue function. Control over such regulation mechanisms is therefore a main goal of medical research. The requirements for understanding cellular interplay also illustrate the interdisciplinarity of systems biology, because chemical, physical and biological knowledge is needed simultaneously. Following the notion of cells as the basic units of life, the focus of this thesis are mathematical multi-scale models of multi-cellular systems employing the concept of individual (or agent) based modeling (IBM). This concept accounts for the entity cell and their individuality in function and space. Motivated by experimental observations, cells are represented as elastic and adhesive spheres. Their interaction is given by a model for elastic homogeneous spheres, which has been established for analysis of the elastic response of cells, plus an adhesion term. Cell movement is modeled by an equation of motion for each cell which is based on the balance of interaction, friction and active forces on the respective cell. As a fi rst step the model was carefully examined with regard to the model assumptions, namely, spherical shape, homogeneous isotropic elastic body and apriori undirected movement. The model examination included simulations of cell sorting and compression of multicellular spheroids. Cell sorting could not be achieved with only short range adhesion. However, it sorting completed with long range interactions for small cell numbers, but failed for larger aggregates. Compression dynamics of multi-cellular spheroids was apparently reproduced qualitatively by the model. But in a more detailed survey neither the time scales nor the rounding after compression could be reproduced. Based on these results, the applications consistent with the assumed simpli cations are discussed. One already established application is colony growth in two-dimensional cell cultures. In order to model cell growth and division, a two-phase model of the cell cycle was established. In a growth phase the cell doubles its volume by stochastic increments, and in a mitotic phase it divides into two daughter cells of equal volume. Additionally, control of the cell cycle by contact inhibition is included in the model. After examination of its applicability, the presented model is used for simulations of in vitro growth of mesenchymal stem cells (MSC) and subsequent cartilage formation in multi-cellular spheroids. A main factor for both processes is the oxygen concentration. Experimental results have shown, that i) MSC grow much better in vitro at low than at high oxygen concentrations and ii) the MSC progeny harvested from low oxygen culture produce higher amounts of the cartilage components aggrecan and collagen II in multicellular spheroids than the ones from high oxygen culture. In order to model these processes, IBM was extended by a stochastic model for cellular differentiation. In this model cellular differentiation is captured phenomenologically by two additional individual properties, the degree of differentiation and the lineage or cell type, which are subject to fl uctuations, that are state and environment dependent. After fitting the model parameters to the experimental results on MSC growth in monoclonal expansion cultures at low and high oxygen concentrations, the resulting simulated cell populations were used for initialization of the simulations of cartilage formation in multi-cellular spheroids. The model nicely reproduced the experimental results on growth dynamics and the observed number of functional cells in the spheroids and suggests the following explanation for the difference between the two expansion cultures: due to the stronger pre-differentiation found after expansion in high oxygen, the plasticity of these cells is smaller and less cell adopt the chondrogenic phenotype and start to produce cartilage. Moreover, the model predicts an optimal oxygen concentration for cartilage formation independent of expansion culture and a de-differentiating effect of low oxygen culture within 24h. Because all simulations comply with the concept of hypothesis-driven research and follow closely the experimental protocols, they can easily be tested and are currently used for optimization of a bioreactor for cartilage production. Cell populations are composed of individual cells and regulation of population properties is performed by individual cell, but knowledge about individual cell fates is largely missing due to the problem of single cell tracking. The IBM modeling approach used for modeling MSC growth and differentiation generically includes information of each individual cell and is therefore perfectly suited for tackling this question. Based on the validated parameter set, the model was used to generate predictions on plasticity of single cells and related population dynamics. Single cell plasticity was quantifi ed by calculating transition times into stem cell and differentiated cell states at high and low oxygen concentrations. At low oxygen the results predict a frequent exchange between all subpopulations, while at high oxygen a quasi-deterministic differentiation is found. After quantifying the plasticity of single cells at low and high oxygen concentration, the plasticity of a cell population is addressed in a simulation closely following a regeneration experiment of populations of hematopoietic progenitor cells. In the simulation the regeneration of the distribution of differentiation states in the population is monitored after selection of subpopulations of stem cells and differentiated cells. Simulated regeneration occurs on the time scales estimated from the single cell transition times except the unexpectedly fast regeneration from differentiated cells in the high oxygen environment, which favors differentiation. The latter case emphasizes the importance of single outlier cells in such system, which in this case repopulate less differentiated states with their progeny. In general, cell proliferation and regeneration behavior are in uenced by biomechanical and geometrical properties of the environment e.g. matrix stiffness or cell density. Because in the model cells are represented as physical objects, a variation of friction is linked to cell motility. The cultures of less motile cells become denser at the same size and the effects of contact inhibition of growth more pronounced. This variation of friction coe fficients allows the comparison of cultures with varying degrees of contact inhibition regarding their differentiation structure and the results suggest, that stalled proliferation is su fficient to explain the well-known differentiation effects in confl uent colonies. In addition, the composition of the simulated stem cell pool was analyzed regarding differentiation. In contrast to the established pedigree models, where stem cell can only be produced by asymmetric division, this model predicts that most of the cells in stem cell states descend from progenitor cells of intermediate differentiation states. A more detailed analysis of single cell derived clones revealed properties that could not be described by the model so far. First, a differentiation gradient was observed in larger colonies, that was the opposite of the one predicted by the model. Second, the proliferative activity turned out to depend not only on oxygen, but also to be a property of individual clones persisting over many generations. Because the relation slow growth/pre-differentiation also holds for single cell derived clones, the general model of differentiation is extended by another heritable individual property. Motivated by the decline of proliferation and differentiation in culture and the high metabolic and epigenetic activity during cell division, each division event is assumed to de-stabilize stem cell states. Consequently, in the model the cells age in terms of cell divisions determines the fl uctuations in stem cell states and the environment the mean fl uctuation strength. Including this novel concept, that links aging to growth and differentiation dynamics, into the model reproduces the experimental results regarding differentiation gradient and persistent clonal heterogeneity. The spatial differentiation pattern can largely be explained by the spatio-temporal growth pattern of the mono-clonal cell assembly: cells close to the border of the cell assembly have undergone more cell divisions than those in the interior and therefore their stem cell states are less stable. Heterogeneity of single-cell derived clones depends on the age of the first cell in the clone. When the stem cell fluctuations equal the mean fl uctuations strength, the proliferative activity passes a maximum at a certain age due to the destabilization of stem cell states. Thereafter the proliferative activity decreases, because more time is spent in non-proliferative differentiated states. Considering the number of divisions the cells have already undergone in vivo and after the initial expansion in vitro, it can be assumed that all cells have already passed this maximum. Interestingly, the model also predicts an optimal age for directed differentiation, when cells stably differentiate, but have not lost the required plasticity. According to the model, this clonal heterogeneity may be caused purely in vitro, but hypothetical simulation of in vivo aging yielded results consistent with experiments on MSC from rats of varying age. Finally, the detailed molecular regulation mechanisms in a multi-scale tissue model of liver zonation was studied, in which the key molecular components were explicitly modeled. Hence, this model resolved the intracellular regulation in higher resolution than the above considered differentiation models which had summarized the intracellular control and differentiation mechanisms by a few phenomenological, dynamical variables. The metabolic zonation of the liver is essential for many of the complex liver functions. One of the vitally important enzymes, glutamine synthetase, (GS) is only synthesized in a strictly defi ned pattern. Experimental evidence has shown that a particular pathway, the canonical wnt pathway, controls expression of the gene for GS. A model for transport, receptor dynamics and intracellular regulation mechanism has been set up for modeling the spatio-temporal formation of this pattern. It includes membrane-bound transport of the morphogen and an enzyme kinetics approach to fibeta-catenin-regulation in the interior of the cell. As an IBM this model reproduces the results of co-culture experiments in which two-dimensional arrangements of liver cells and an epithelial liver cell line give rise to different patterns of GS synthesis. The two main predictions of the model are: First, GS-synthesis requires a certain local cell number of wnt releasing cells. And second, a simple inversion of geometry explains the difference between the specifi c GS pattern found in the liver and in the co-culture experiments. Summarizing the results presented in this thesis, it can be concluded that properties such as the occurrence of memory effects and single cells pursuing fates far off the population average could be essential for biological function. Considering the role of single cells in many tissues, the use of individual based methods, that are able to take such effects into account, can be expected to be a very valuable tool for the problems of systems biology.
132

Hes3 regulates cell number in cultures from glioblastoma multiforme with stem cell characteristics

Park, Deric M., Jung, Jinkyu, Masjkur, Jimmy, Makrogkikas, Stylianos, Ebermann, Doreen, Saha, Sarama, Rogliano, Roberta, Paolillo, Nicoletta, Pacioni, Simone, McKay, Ron D., Poser, Steve, Androutsellis-Theotokis, Andreas 28 November 2013 (has links)
Tumors exhibit complex organization and contain a variety of cell populations. The realization that the regenerative properties of a tumor may be largely confined to a cell subpopulation (cancer stem cell) is driving a new era of anti-cancer research. Cancer stem cells from Glioblastoma Multiforme tumors express markers that are also expressed in non-cancerous neural stem cells, including nestin and Sox2. We previously showed that the transcription factor Hes3 is a marker of neural stem cells, and that its expression is inhibited by JAK activity. Here we show that Hes3 is also expressed in cultures from glioblastoma multiforme which express neural stem cell markers, can differentiate into neurons and glia, and can recapitulate the tumor of origin when transplanted into immunocompromised mice. Similar to observations in neural stem cells, JAK inhibits Hes3 expression. Hes3 RNA interference reduces the number of cultured glioblastoma cells suggesting a novel therapeutic strategy.
133

Germline Development of Genetically Female Nile Tilapia ( Oreochromis niloticus ) Reared under Different Temperature Regimes

Habibah, Aulidya N., Pfennig, Frank, Wilting, Jörg, Holtz, Wolfgang, Hoerstgen-Schwark, Gabriele, Wessels, Stephan 26 May 2020 (has links)
In teleosts, elevated temperature during embryogenesis can act on germline cell development, which in turn plays a role for sexual fate. In Nile tilapia, a species with high-temperature-induced masculinization, little is known about the effects of increased temperature on gonadal development in non-masculinized females. The aim of the present work was to investigate persistent effects on the germline of genetically female (XX) Nile tilapia reared at normal (28 ° C) or elevated temperature (36°C) during the critical time of gonadal sex differentiation at 10 to 20 days post fertilization. Nonsex-reversed females were compared to control females to determine persistent effects of temperature on subsequent ovarian development using histological approaches. Germline stem cells were identified using the germline marker Vasa in combination with the proliferation marker PCNA. Vasa- and PCNA-positive germline stem cells were found in ovaries of both high-temperature-treated and control females. In both groups, ovarian germline stem cells were located at the germinal epithelium of the ovigerous lamellae. Although no detrimental effects of high temperature on gonadal development in female Nile tilapia were observed, implications on the reproductive fitness caused by elevated temperature need to be investigated in greater depth.
134

Natural Killer Cells for Therapy of Leukemia

Suck, Garnet, Linn, Yeh Ching, Tonn, Torsten 05 August 2020 (has links)
Clinical application of natural killer (NK) cells against leukemia is an area of intense investigation. In human leukocyte antigen-mismatched allogeneic hematopoietic stem cell transplantations (HSCT), alloreactive NK cells exert powerful anti-leukemic activity in preventing relapse in the absence of graft-versus-host disease, particularly in acute myeloid leukemia patients. Adoptive transfer of donor NK cells post-HSCT or in non-transplant scenarios may be superior to the currently widely used unmanipulated donor lymphocyte infusion. This concept could be further improved through transfusion of activated NK cells. Significant progress has been made in good manufacturing practice (GMP)-compliant large-scale production of stimulated effectors. However, inherent limitations remain. These include differing yields and compositions of the end-product due to donor variability and inefficient means for cryopreservation. Moreover, the impact of the various novel activation strategies on NK cell biology and in vivo behavior are barely understood. In contrast, reproduction of the thirdparty NK-92 drug from a cryostored GMP-compliant master cell bank is straightforward and efficient. Safety for the application of this highly cytotoxic cell line was demonstrated in first clinical trials. This novel ‘off-theshelf’ product could become a treatment option for a broad patient population. For specific tumor targeting chimeric-antigen-receptor-engineered NK-92 cells have been designed.
135

Untersuchung der Knochenheilung unter Einsatz von Hydroxyapatit oderß-Tricalciumphosphat, sowie deren Kombinationen mit autologen Stammzellen und Knochenmark am Tiermodell Schwein: Untersuchung der Knochenheilung unter Einsatz von Hydroxyapatit oderß-Tricalciumphosphat, sowie deren Kombinationen mit autologen Stammzellen und Knochenmark am Tiermodell Schwein

Hildebrandt, Lydia 11 June 2012 (has links)
Angeborene oder erworbene Knochendefekte können infolge ihrer Häufigkeit, ihrer oft mangelhaften spontanen Regenerationsfähigkeit sowie ihrer in der Regel langen Heilungsdauer ein erhebliches medizinisches, soziales und ökonomisches Problem darstellen. Zur Lösung dieses Problems stehen standardisierte und seit langen praktizierte Möglichkeiten wie die Osteosynthese oder die Defektauffüllung mit biologischen Knochenersatzmaterialien zur Verfügung. Auch synthetische Knochenersatzmaterialien, zum Teil in Kombinationen mit regenerativmedizinischen Prinzipien, kommen immer häufiger zum Einsatz wenn aufgrund eines großen Substanzverlustes des Knochens Defekte aufgefüllt werden müssen. Ziel dieser Studie am Tiermodell Schwein war es, die Knochenheilung calvärer Knochendefekte kritischer Größe unter Einsatz zweier verschiedener synthetischer Knochenersatzmaterialien, auf ß-Tricalciumphosphat- (β-TCP; Syntricer®, MedArtis Medizinprodukte und Forschung AG, München, Deutschland) bzw. Hydroxyapatit- Basis (HA; Ostim®, Heraeus-Kulzer, Hanau, Deutschland), angewandt sowohl in reiner Form als auch in Kombination mit autologen Stammzellen bzw. autologem Knochenmark, zu optimieren. Zur Untersuchung standen 16 klinisch gesunde weibliche Schweine der Deutschen Landrasse zur Verfügung. Alle Tiere waren zu Versuchsbeginn etwa 6 Monate alt und das durchschnittliche Lebendgewicht betrug zwischen 50 und 60 kg. Sowohl die β-TCP- als auch die HA-Gruppe umfasste 8 Schweine. Diese wurden wiederum in eine Kurz- und eine Langzeitgruppe zu je 4 Schweinen unterteilt, deren Beobachtungszeitraum 6 bzw. 16 Wochen betrug. Je Schwein wurden vier standardisierte Bohrlochdefekte kritischer Größe am Os frontale gesetzt. Ein Defekt wurde leer gelassen und diente als Kontrolldefekt für die physiologische Knochenheilung. Die drei anderen Defekte wurden einmal mit reinem und die anderen beiden mit biotechnologisch modifiziertem Knochenersatzmaterial aufgefüllt. Die biotechnologische Modifikation der Basissubstanzen erfolgte für einen Defekt durch die Anreicherung mit aus dem Knochenmark entnommenen und kultivierten autologen Stammzellen und für den vierten Defekt mit intraoperativ frisch punktiertem autologem Knochenmark. Die Ergebnisse der Knochenheilung wurden mit Hilfe einer computertomographischen Verlaufskontrolle intra vitam, sowie durch eine mikrotomographische und histologische Untersuchung nach der Euthanasie, untersucht. Sowohl Tier- als auch Versuchsmodell erwiesen sich als geeignet zur Untersuchung der Knochenregeneration mit Knochenersatzmaterialien. Die Knochenregeneration mit Ersatzmaterial führte in beiden Gruppen nach 6 Wochen im Vergleich mit der physiologischen Heilung zu besseren Ergebnissen, wobei sich das HA, wenn auch nicht signifikant, dem β-TCP überlegen zeigte. Die mikrotomographische Untersuchung zeigte aufgrund der höheren Detailerkennbarkeit im Vergleich zum CT einen größeren Unterschied zwischen den beiden Gruppen. So liegen die Mittelwerte im CT für die mit HA und mit dessen biotechnologischen Modifikationen gefüllten Defekte im Durchschnitt bei 11,2 ( ) und in der β-TCP-Gruppe bei 10,3 ( ) während sie für die mikrotomographische Untersuchung im Durchschnitt mit 9,4 ( ) für die mit HA und 5,7 ( ) für die mit β-TCP gefüllten Defekte bewertet wurden. Die histologische Bewertung zeigt den Unterschied zwischen beiden Gruppen bezüglich der Knochenregeneration am deutlichsten. So zeigte sich in der β-TCP-Gruppe ein sehr variabler Anteil an neugebildetem Knochengewebe, während in der HA-Gruppe immer mindestens 75% neugebildetes Knochengewebe nachgewiesen werden konnte. Der Zusatz von frischem Knochenmarkpunktat oder Stammzellen zu den Knochenersatzmaterialien hatte keinen erkennbaren Einfluss auf die Regeneration des Knochens. Synthetische resorbierbare Knochenersatzmaterialien, sowohl auf β-TCP- als auch auf HA-Basis, können die Knochenheilung positiv beeinflussen, und führen damit zu einer schnelleren Knochenregeneration als bei der physiologischen Knochenheilung. Im vorliegenden Modell führt die Kombination mit biotechnologischen Modifikationen wie autologen Stammzellen oder frisch punktiertem Knochenmark nicht zu einer zusätzlichen signifikanten Verbesserung der Knochenregeneration. Das pastöse nanopartikuläre Hydroxyapatit erscheint aufgrund besserer Handhabung, schnellerer Resorption sowie besserer Knochenheilung als das überlegene Material. / Inherited or acquired bone defects can, due to their frequency, their low spontaneous regenerative potential, and their generally long healing trajectories, present a significant medical, social and economical problem. Currently available solutions include standardized and well-established methods such as osteosynthesis or bone grafting using biological bone substitutes. In addition, synthetic bone substitutes, sometimes in combination with regenerative medicine, are increasingly used in cases when large bone defects require significant tissue replacement. The goal of this study was to optimize the healing of calvarial bone defects in pigs through the use of two distinct synthetic bone substitutes, -Tricalciumphosphate (β-TCP; Syntricer®, MedArtis Medizinprodukte und Forschung AG, Munich, Germany) and Hydroxyapatite (HA; Ostim®, Heraeus-Kulzer, Hanau, Germany), applied either in their pure form or in combination with either autologous stem cells or autologous bone marrow. Subjects for this study were 16 clinically healthy female domestic pigs (Deutsche Landrasse). All animals were approximately 6 months of age at the beginning of the study, with live weights between 50 and 60 kg. The animals were split into two groups of 8 for the separate study of HA and β-TCP. Each of these groups was further divided into two groups of 4 pigs, for studies of short and long duration (6 and 16 weeks, respectively). Four standardized drill holes of critical size were made in the Os frontale of each pig. One hole was left untreated as a control of physiological bone healing. Among the remaining three holes, one was filled with pure bone substitute (HA or β-TCP), and the other two were filled with biotechnologically modified bone substitute. This modification of the pure substances consisted for one drill hole of enrichment with autologous stem cells, cultured from bone marrow and, for the final hole, with intraoperative freshly extracted bone marrow. The bone healing results were measured intra vitam by computed tomography (CT), and after euthanasia by microtomography and histology. Both the model animal and experimental design proved useful for this study of bone healing using bone substitutes. Bone regeneration with bone substitutes in both experimental groups was enhanced after 6 weeks when compared with the untreated physiologically healed defects, where HA was superior to β-TCP (though not significantly). Owing to a higher resolution, microtomographic analysis revealed a greater difference between the two study groups than did CT. Thus, the mean values as measured by CT for defects filled with HA and biotechnologically modified HA are 11.2, and for 10.3 for the β-TCP group, while they are 9.4 and 5.7, respectively, as measured by microtomography. The histological assessment revealed the greatest difference in bone healing between the two experimental groups. Here, the β-TCP group displayed highly variable amounts of newly formed bone tissue, whereas each subject in the HA group displayed a minimum of 75% newly formed bone tissue. The addition of freshly extracted bone marrow or stem cells to the bone substitutes had no detectable effect on bone regeneration. Synthetic resorptable bone substitutes, on a basis of both β-TCP and HA, can positively influence bone healing, and thereby lead to a faster regeneration of bone tissue than the physiological process. In the present study, biotechnological modification of bone substitutes with autologous stem cells or bone marrow did not further enhance bone regeneration. Given its easy handling, faster resorption, and better bone healing, the nanoparticulate Hydroxyapatite paste appears to be the superior material.
136

Der Einfluss muriner mesenchymaler Stammzellen auf murine zytokin induzierte Killerzellen in der Kokultur

Bach, Martin 19 June 2014 (has links)
Stimulating lymphocytes with Ifn-γ, anti-CD3, and interleukin-2 promotes the proliferation of a cell population coexpressing T-lymphocyte surface antigens such as CD3, CD8a, and CD25 as well as natural killer cell markers such as NK1.1, CD49, and CD69. These cells, referred to as cytokine-induced killer cells (CIKs), display cytotoxic activity against tumour cells, even without prior antigen presentation, and offer a new cell-based approach to the treatment of malignant diseases. Because CIKs are limited in vivo, strategies to optimize in vitro culture yield are required. In the last 10 years, mesenchymal stem cells (MSCs) have gathered considerable attention. Aside from their uses in tissue engineering and as support in haematopoietic stem cell transplantations, MSCs show notable immunomodulatory characteristics, providing further possibilities for therapeutic applications. In this study, we investigated the influence of murine MSCs on proliferation, phenotype, vitality, and cytotoxicity of murine CIKs in a coculture system. We found that CIKs in coculture proliferated within 7 days, with an average growth factor of 18.84, whereas controls grew with an average factor of 3.7 in the same period. Furthermore, higher vitality was noted in cocultured CIKs than in controls. Cell phenotype was unaffected by coculture with MSCs and, notably, coculture did not impact cytotoxicity against the tumour cells analysed. The findings suggest that cell–cell contact is primarily responsible for these effects. Humoral interactions play only a minor role. Furthermore, no phenotypical MSCs were detected after coculture for 4 h, suggesting the occurrence of immune reactions between CIKs and MSCs. Further investigations with DiD-labelled MSCs revealed that the observed disappearance of MSCs appears not to be due to differentiation processes.:Inhaltsverzeichnis I Abbildungsverzeichnis III Tabellenverzeichnis IV Bibliographische Beschreibung V Abkürzungsverzeichnis VII 1 Einleitung 1 1.1 CIK-Zellen (CIK) 3 1.1.1 Merkmale von CIK-Zellen 3 1.1.2 Wirkungsmechanismen von CIK-Zellen 3 1.1.3 Studienlage 4 1.1.4 Bisherige Ansätze zur Verbesserung der Kultivierungsbedingungen 6 1.2 Mesenchymale Stammzellen (MSC) 7 1.2.1 Allgemein 7 1.2.2 Differenzierung von MSC 7 1.2.3 Heterogenität und Einflussfaktoren der MSC - Identitätsproblematik 8 1.2.4 Charakterisierung von MSC 9 1.2.5 Therapeutische Einsatzmöglichkeiten von MSC 11 2 Zielformulierung 15 3 Material und Methoden 16 3.1 Tiere 16 3.2 Materialien 17 3.2.1 Materialien für Zellkultur 17 3.2.2 Materialien für FACS-Analyse 18 3.2.3 Materialien für Zytotoxizitätsassay 19 3.2.4 Materialien für CFU-F-Assay 20 3.3 Methoden 21 3.3.1 Statistische Auswertung 21 3.3.2 Zellkultur 22 3.3.3 FACS (Fluorescence Activated Cell Sorting) 26 3.3.4 Markierung der MSC mit DiD 28 3.3.5 Zytotoxizitätsassay (LDH-Freisetzungsassay) 29 3.3.6 CFU-F-Assay 32 4 Ergebnisse 34 4.1 Beeinflussung der Wachstumskurve 34 4.1.1 Der Wachstumskurvenverlauf von CIK-Zellen (Kontrollen) 34 4.1.2 Der Wachstumskurvenverlauf von CIK-Zellen in der Kokultur mit MSC 35 4.1.3 Der Wachstumskurvenverlauf in MSC-konditioniertem Medium 37 4.1.4 Der Wachstumskurvenverlauf bei Restimulierung an Tag 14 38 4.2 Beeinflussung des Oberflächenphänotyps 40 4.2.1 Der Oberflächenphänotyp von CIK-Zellen 40 4.2.2 Vergleich Oberflächenphänotyp Kontrollen mit kokultivierten CIK 43 4.3 Beeinflussung der Vitalität 46 4.4 Beeinflussung der Zytotoxizität 48 4.5 Identifizierung der MSC 49 4.5.1 Adhärenz an Plastikoberflächen 50 4.5.2 Fibroblastenähnliche Wachstumsmorphologie 50 4.5.3 Wachstum in Colony-Forming-Units 51 4.5.4 Der Oberflächenphänotyp von MSC 53 4.6 Schicksal der MSC in der Kokultur 54 4.6.1 Der Oberflächenphänotyp der adhärenten Zellen nach Kokultur 54 4.6.2 Kokultur mit DiD gelabelten MSC 57 5 Diskussion 59 5.1 Beeinflussung der Wachstumskurve 60 5.1.1 Mechanismen der Beeinflussung des Wachstumskurvenverlaufs 60 5.1.2 Fehlerbetrachtung 68 5.2 Identifizierung der CIK sowie Beeinflussung von Phänotyp und Vitalität 69 5.3 Beeinflussung der Zytotoxizität 70 5.3.1 Vergleich Zytotoxizität Kontrollen mit Kokulturen 70 5.3.2 Fehlerbetrachtung 71 5.4 Identifizierung der MSC 72 6 Schlussfolgerung 75 7 Ausblick 77 8 Zusammenfassung 79 Literaturverzeichnis 83 Danksagung I
137

Organotypic brain slice co-cultures of the dopaminergic system - A model for the identification of neuroregenerative substances and cell populations

Sygnecka, Katja 23 October 2015 (has links)
The development of new therapeutical approaches, devised to foster the regeneration of neuronal circuits after injury and/or in neurodegenerative diseases, is of great importance. The impairment of dopaminergic projections is especially severe, because these projections are involved in crucial brain functions such as motor control, reward and cognition. In the work presented here, organotypic brain slice co-cultures of (a) the mesostriatal and (b) the mesocortical dopaminergic projection systems consisting of tissue sections of the ventral tegmental area/substantia nigra (VTA/SN), in combination with the target regions of (a) the striatum (STR) or (b) the prefrontal cortex (PFC), respectively, were used to evaluate different approaches to stimulate neurite outgrowth: (i) inhibition of cAMP/cGMP turnover with 3’,5’ cyclic nucleotide phosphodiesterase inhibitors (PDE-Is), (ii) blockade of calcium currents with nimodipine, and (iii) the co-cultivation with bone marrow-derived mesenchymal stromal/stem cells (BM-MSCs). The neurite growth-promoting properties of the tested substances and cell populations were analyzed by neurite density quantification in the border region between the two brain slices, using biocytin tracing or tyrosine hydroxylase labeling and automated image processing procedures. In addition, toxicological tests and gene expression analyses were conducted. (i) PDE-Is were applied to VTA/SN+STR rat co-cultures. The quantification of neurite density after both biocytin tracing and tyrosine hydroxylase labeling revealed a growth promoting effect of the PDE2A-Is BAY60-7550 and ND7001. The application of the PDE10-I MP-10 did not alter neurite density in comparison to the vehicle control. (ii) The effects of nimodipine were evaluated in VTA/SN+PFC rat co-cultures. A neurite growth-promoting effect of 0.1 µM and 1 µM nimodipine was demonstrated in a projection system of the CNS. In contrast, the application of 10 µM nimodipine did not alter neurite density, compared to the vehicle control, but induced the activation of the apoptosis marker caspase 3. The expression levels of the investigated genes, including Ca2+ binding proteins (Pvalb, S100b), immediate early genes (Arc, Egr1, Egr2, Egr4, Fos and JunB), glial fibrillary acidic protein, and myelin components (Mal, Mog, Plp1) were not significantly changed (with the exception of Egr4) by the treatment with 0.1 µM and 1 µM nimodipine. (iii) Bulk BM-MSCs that were classically isolated by plastic adhesion were compared to the subpopulation Sca-1+Lin-CD45--derived MSCs (SL45-MSCs). The neurite growth-promoting properties of both MSC populations were quantified in VTA/SN+PFC mouse co-cultures. For this purpose, the MSCs were seeded on glass slides that were placed underneath the co-cultures. A significantly enhanced neurite density within the co-cultures was induced by both bulk BM-MSCs and SL45-MSCs. SL45-MSCs increased neurite density to a higher degree. The characterization of both MSC populations revealed that the frequency of fibroblast colony forming units (CFU-f ) is 105-fold higher in SL45-MSCs. SL45-MSCs were morphologically more homogeneous and expressed higher levels of nestin, BDNF and FGF2 compared to bulk BM-MSCs. Thus, this work emphasizes the vast potential for molecular targeting with respect to the development of therapeutic strategies in the enhancement of neurite regrowth.:Table of contents Abbreviations 1 1. Introduction 2 1.1 The dopaminergic system 2 1.2 Neurite regeneration following mechanical lesions of the CNS 7 1.3 Organotypic brain slice co-cultures 8 1.4 Promising substances and cells to enhance neuroregeneration 10 1.5 The aim of the thesis 14 2. The original research articles 16 2.1 Phosphodiesterase 2 inhibitors promote axonal outgrowth in organotypic slice co-cultures 17 2.2 Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures 35 2.3 Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model 50 3. References 66 Appendices 73 Summary 73 Zusammenfassung 78 Curriculum Vitae 84 Track Record 85 Selbständigkeitserklärung 87 Acknowledgments 88
138

Entwicklung und Implementierung eines Software-tools zur Einzelzellverfolgung: Programm „CellTracker“

Kunze, Michael 13 February 2018 (has links)
Mittels Zeitrafferaufnahmen ist es möglich, einzelne Zellen und deren Nachkommenschaft innerhalb bestimmter Zellkulturen zu verfolgen. Fortgeschrittene Bilderverarbeitungsmethoden gestatten es, diesen Prozess der Zellverfolgung über Hunderte von aufeinanderfolgenden Bildern weitgehend zu automatisieren und baumartige Zelltrajektorien zu erzeugen. Allerdings kommt es dabei häufig zu Situationen, in denen die entsprechenden Algorithmen zu ungenau werden und ein Benutzereingriff erforderlich ist. Ziel dieser Arbeit war ein entsprechendes Softwaretool zu entwickeln, dass diesen Benutzereingriff gewährleistet und damit die automatische Zellverfolgung komplementiert. Die entsprechende Software ist in der Lage , die zu Grunde liegenden Bildstapel zu laden und als Bildsequenz darzustellen. Darüber hinaus werden zusätzliche Informationen zu den erkannten Zellobjekten und den automatisch generierten Zelltrajektoren (vor-prozessierte Metadaten aus Mathematica) geladen und repräsentiert. Zentrale Aufgabe der Software ist es, eine Plattform zu schaffen, auf der ein geschulter Nutzer die erkannten Trajektorienabschnitte effizient und benutzerfreundlich erkennen und gegebenenfalls miteinander verknüpfen kann. Die entsprechend ergänzten Trajektorien können anschliessend als Metadaten für die weitere Verarbeitung und Auswertung zur Verfügung gestellt werden. Das Softwaretool stellt einen wichtigen Bestandteil einer Auswertepipline für zeitlich ausgedehnte Videoaufnahmen von Zellkulturen dar und leistet damit einen Beitrag zum Verständnis von Zellorganisation und zellulärer Migration.
139

Comparison of Platelet-Rich Plasma and VEGF-Transfected Mesenchymal Stem Cells on Vascularization and Bone Formation in a Critical-Size Bone Defect

Kasten, Philip, Beverungen, Mirjam, Lorenz, Helga, Wieland, Julia, Fehr, Michael, Geiger, Florian January 2012 (has links)
Both platelet-rich plasma (PRP) and vascular endothelial growth factor (VEGF) can promote regeneration. The aim of this study was to compare the effects of these two elements on bone formation and vascularization in combination with bone marrow stromal cells (BMSC) in a critical-size bone defect in rabbits. The critical-size defects of the radius were filled with: (1) a calcium-deficient hydroxyapatite (CDHA) scaffold + phVEGF165-transfected BMSC (VEGF group), (2) CDHA and PRP, or (3) CDHA, autogenous BMSC, and PRP. As controls served: (4) the CDHA scaffold alone and (5) the CDHA scaffold and autogenous BMSC. The volume of new bone was measured by means of micro-CT scans, and vascularization was assessed in histology after 16 weeks. Bone formation was higher in the PRP + CDHA, BMSC + CDHA, and PRP + BMSC + CDHA groups than in the VEGF group (p < 0.05). VEGF transfection significantly promoted vascularization of the scaffolds in contrast to BMSC and PRP (p < 0.05), but was similar to the result of the CDHA + PRP + BMSC group. The results show that VEGF-transfected BMSC as well as the combination of PRP and BMSC improve vascularization, but bone healing was better with the combination of BMSC and PRP than with VEGF-transfected BMSC. Expression of VEGF in BMSC as a single growth factor does not seem to be as effective for bone formation as expanded BMSC alone or PRP which contains a mixture of growth factors. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
140

Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem Cells

Schroeder, Insa S., Sulzbacher, Sabine, Nolden, Tobias, Fuchs, Jörg, Czarnota, Judith, Meisterfeld, Ronny, Himmelbauer, Heinz, Wobus, Anna M. January 2012 (has links)
Embryonic stem (ES) cells offer a valuable source for generating insulin-producing cells. However, current differentiation protocols often result in heterogeneous cell populations of various developmental stages. Here we show the activin A-induced differentiation of mouse ES cells carrying a homologous dsRed-IRES-puromycin knock-in within the Sox17 locus into the endoderm lineage. Sox17-expressing cells were selected by fluorescence-assisted cell sorting (FACS) and characterized at the transcript and protein level. Treatment of ES cells with high concentrations of activin A for 10 days resulted in up to 19% Sox17-positive cells selected by FACS. Isolated Sox17-positive cells were characterized by defini- tive endoderm-specific Sox17/Cxcr4/Foxa2 transcripts, but lacked pluripotency-associated Oct4 mRNA and protein. The Sox17-expressing cells showed downregulation of extraembryonic endoderm (Sox7, Afp, Sdf1)-, mesoderm (Foxf1, Meox1)- and ectoderm (Pax6, NeuroD6)-specific transcripts. The presence of Hnf4α, Hes1 and Pdx1 mRNA demonstrated the expression of primitive gut/foregut cell-specific markers. Ngn3, Nkx6.1 and Nkx2.2 transcripts in Sox17-positive cells were determined as properties of pancreatic endocrine progenitors. Immunocytochemistry of activin A-induced Sox17-positive embryoid bodies revealed coexpression of Cxcr4 and Foxa2. Moreover, the histochemical demonstration of E-cadherin-, Cxcr4-, Sox9-, Hnf1β- and Ngn3-positive epithelial-like structures underlined the potential of Sox17-positive cells to further differentiate into the pancreatic lineage. By reducing the heterogeneity of the ES cell progeny, Sox17-expressing cells are a suitable model to evaluate the effects of growth and differentiation factors and of culture conditions to delineate the differentiation process for the generation of pancreatic cells in vitro. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.068 seconds