• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 20
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 89
  • 89
  • 84
  • 62
  • 52
  • 26
  • 23
  • 22
  • 20
  • 17
  • 16
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Étude des conséquences génétiques et épigénétiques consécutives à la signalisation persistante des dommages radio-induits de l'ADN / Study of genetic and epigenetic consequences consecutive to the persistent signaling of radiation-induced DNA damage

Vaurijoux, Aurélie 12 December 2016 (has links)
Les cassures double-brin de l’ADN (CDB) sont des événements clés dans la réponse aux rayonnements ionisants qui, avec le profil génétique et épigénétique individuel, peuvent conditionner le devenir des tissus sains d’un individu exposé. À la suite des cassures de la molécule d’ADN et de la déstabilisation de la chromatine, une série de modifications post-traductionnelles des histones se produit, notamment la phosphorylation de la serine 139 de l'histone H2A.X (gamma-H2A.X), conduisant à la formation de foyers radio-induits. La réparation des CDB, et donc la disparition de ces foyers, a lieu dans les heures suivant l’exposition. Toutefois, une certaine proportion de ces foyers gamma-H2A.X persiste 24 heures après l’irradiation. La nature et le rôle de ces foyers persistants sont encore peu clairs. L’objectif de ce travail est d'explorer les caractéristiques de ces foyers persistants et leurs conséquences sur le devenir des cellules. Pour étudier la dynamique des foyers radio-induits, nous avons exposé des HUVEC synchronisées en phase G0/G1 à des doses de 1 et 5 Gy de rayons X. Les foyers radio-induits ont été étudiés à partir de 10 minutes et jusqu'à 7 jours après l'exposition par l’analyse de gamma-H2A.X et de l’association temporelle de la protéine 53BP1 et des CN-PML (corps nucléaires PML). L’impact des foyers persistants sur la prolifération cellulaire a également été exploré. Nous avons analysé en microscopie à fluorescence une moyenne de 4 000 cellules pour chaque condition à l'aide d'une analyse d’image permettant la détection automatique des noyaux et des foyers. L'analyse d'un grand nombre d‘évènements nous a permis de discriminer des sous-populations de cellules ou de foyers sur la base de différentes caractéristiques, telles que leur aire ou la phase du cycle cellulaire, et de mesurer leur représentativité dans l'ensemble de la population de cellules exposées. Ainsi, nous avons déterminé que les foyers gamma-H2A.X persistant ont une aire supérieure à 0,72 ± 0,11 µm² et qu’ils sont toujours colocalisés avec 53BP1. Plus de 70% des cellules exposées à 5 Gy ont au moins un foyer persistant 24 heures après l'exposition. De plus, ces foyers persistants sont observables au moins jusqu'à 7 jours après l’irradiation. Une association spatiale significative entre les CN-PML et les foyers gamma-H2A.X a été observée à partir de 10 minutes après l'exposition et 24 heures après l’exposition, environ 90% des foyers persistants sont associés à un CN-PML. De plus, la présence de foyers persistants ne bloque pas définitivement la prolifération des cellules. Cependant, la fréquence des foyers persistants est plus faible dans les cellules filles que dans les cellules irradiées, probablement en raison d'une certaine proportion de distribution asymétrique des foyers persistants entre les cellules filles. Nous avons également mesuré une corrélation positive entre la présence d'un foyer persistant et la probabilité de mauvaise ségrégation de l'ADN par l'observation de phénomènes de catastrophes mitotiques. Il semble donc que la structure formée après le passage d'un foyer persistant à travers les phases S et G2 soit susceptible d’empêcher la séparation correcte des chromatides sœurs du chromosome affecté. Nous suggérons donc que la nature des foyers persistants n’est pas la même avant et après la première division cellulaire due à une résolution anormale de l'anaphase. Ces assemblages chromosomiques atypiques résultants d’anaphases anormales pourraient être létaux pour la cellule ou entraîner un déséquilibre du dosage génique et une instabilité génomique accrue pouvant conduire à une mosaïque de phénotypes cellulaires. / The DNA double-stranded breaks (DSB) are key events in the cell response to ionizing radiation that may affect, with the individual genetic and epigenetic profile, the fate of healthy tissues of people exposed. Following initial breaks and chromatin destabilization, a set of post-translational modifications of histones occurs, including the phosphorylation of serine 139 of histone H2AX (gamma-H2A.X), which leads to the formation of ionizing radiation-induced foci (IRIF). DSB repair results in the disappearance of most IRIF within hours after exposure. However, a proportion of IRIF remains 24 hours upon irradiation. The nature and role of these persistent IRIF are still unclear. The goal of this work is to explore the characteristics of these persistent IRIF and their consequences on the cell behavior. To investigate the dynamic of IRIF in our model, we exposed G0/G1-phase synchronized HUVECs to 1 or 5 Gy of X-rays. IRIF were studied from 10 minutes up to 7 days after exposure by monitoring gamma-H2A.X foci, their temporal association with 53BP1 protein and PML NBs (Promyelocytic leukemia nuclear bodies), and their impact on cell proliferation. We analyzed a mean of 4 000 cells for each condition using an automated detection of nuclei and foci. The analysis of a large number of cells and foci allowed us to screen subpopulations of cells or foci through different characteristics, such as size, shape or cell cycle phase among others, and to weight their representativeness in the whole population of exposed cells. We identified that persistent gamma-H2A.X foci after irradiation had a size superior to 0.72 ± 0.11 µm² and always collocated with 53BP1. More than 70% of cells exposed to 5 Gy had at least one persistent IRIF 24 hours after exposure and we observed these persistent IRIF up to 7 days post irradiation. A significant spatial association between PML NBs and IRIF was observed from 10 minutes after exposure; at 24h post irradiation, around 90% of persistent IRIF were associated with PML NBs. Moreover we demonstrated that persistent IRIF did not block cell proliferation definitively. The frequency of IRIF was lower in daughter cells, probably due to a certain amount of asymmetric distribution of IRIF between them. We report a positive association between the presence of an IRIF and the likelihood of DNA missegregation by observation of mitotic catastrophes. Hence, the structure formed after the passage of a persistent IRIF across the S and G2 phases may impede the correct segregation of sister chromatids of the chromosome affected. Consequently, the nature of IRIF in the nucleus of daughter cells might differ before and after the first cell division due to an abnormal resolution of anaphase. The resulting atypical chromosomal assembly may be lethal or result in a gene dosage imbalance and possible enhanced genomic instability, and could lead to a patchwork of cell phenotypes.
62

Genome-wide microhomologies enable precise template-free editing of biologically relevant deletion mutations / ゲノムワイドなマイクロホモロジーを活用した正確かつテンプレートフリーなヒト欠失変異のゲノム編集技術の開発

Janin, Grajcarek 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第22379号 / 医科博第109号 / 新制||医科||7(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 遊佐 宏介, 教授 武田 俊一, 教授 近藤 玄 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
63

Fonctions et régulations des protéines PARP2 et de XRCC1 dans la réparation des dommages à l’ADN / Functions and Regulation of PARP2 and XRCC1 Proteins in DNA Repair

Fouquin, Alexis 15 September 2017 (has links)
Les modifications post-traductionnelles des protéines par des polymères d’ADP-ribose (PAR) ou par phosphorylation permet l’assemblage des complexes de la réparation de l’ADN à la chromatine endommagée dont les fonctions sont essentielles pour assurer le maintien de la stabilité du génome. En réponse aux lésions de l’ADN, l’activité de synthèse de PAR des protéines PARP1 et PARP2 est fortement stimulée. Les PAR servent de signalisation pour le recrutement de multiples protéines, dont la protéine plateforme XRCC1.Les études menées au cours de cette thèse ont porté sur l’étude de la régulation des fonctions des protéines PARP1, PARP2 dans la réparation des cassures double brins (CDB) et l’étude des modifications de XRCC1 par phosphorylation en réponse à des dommages de l’ADN. En utilisant des substrats permettant de mesurer l’efficacité des différentes voies de réparation des CDB, nous avons démontré que PARP2, et non PARP1, est impliqué dans la régulation du choix des voies de la réparation des CDB. Plus spécifiquement, nous avons montré que PARP2 stimule l’initiation de la résection des extrémités des CDB dépendante de CtIP, indépendamment de son activité catalytique. Par des approches de vidéo-microscopie, nous avons pu déterminer que PARP2 limite l’accumulation de 53BP1 aux sites de dommages induits par micro-irradiation laser. Nous proposons que la protéine PARP2, en limitant le recrutement de la protéine 53BP1 aux sites de dommages, favorise la réparation des CDB dépendante de la résection des extrémités d’ADN, au détriment de la voie canonique de jonction des extrémités. Ces résultats sont les premiers démontrant un rôle de PARP2 dans le choix des voies de réparation des CDB.En parallèle, nous avons analysé comment la phosphorylation régule les fonctions de la protéine XRCC1. Par des approches in vitro et in vivo, nous avons pu déterminer que l’interdomaine 1 de XRCC1 est phosphorylé par la kinase CDK5. En réponse aux dommages induits par un agent alkylant, XRCC1 est activement déphosphorylé in vivo. De plus, nous avons observé que lorsque l’interdomaine 1 ne peut pas être phosphorylé in vitro, l’interaction de XRCC1 avec les PAR synthétisés par PARP1 et PARP2 augmente, et le recrutement de XRCC1 aux sites de dommages de l’ADN est accru. Ces résultats indiquent pour la première fois que la déphosphorylation de XRCC1 en réponse à un stress génotoxique participe activement à son recrutement aux sites de dommages.Dans leur ensemble, ces travaux ont contribué à améliorer nos connaissances fondamentales des réseaux de protéines impliquées dans la prise en charge des dommages de l’ADN. La compréhension de ces mécanismes est essentielle non seulement car ils participent au maintien de la stabilité du génome mais aussi du fait du développement exponentiel de nouvelles stratégies anti-tumorales qui visent à inhiber les voies de la réparation dans la but de cibler spécifiquement les cellules cancéreuses. / Post-translational modifications of proteins by polymers of ADP-ribose (PAR) or by phosphorylation allow the assembly of DNA repair protein complexes at damaged chromatin and are crucial to ensure genome stability. In response to DNA insults, the synthesis of PAR by the PARP1 and PARP2 proteins is strongly induced. PAR act as a signaling platform for the recruitment of multiples proteins at the sites of DNA damages, including the scaffold protein XRCC1. Research conducted during this PhD have been focused on studying the regulation of PARP1 and PARP2 functions in double-strands break repair (DSBR), and in investigating the role of XRCC1 modifications by phosphorylation in response to DNA damage.Using DNA repair assay allowing us to assess the accuracy of the different DSBR pathways, we demonstrated that PARP2, and not PARP1, is involved in the regulation of DNA double-strands break repair pathway choice. More precisely, we showed that PARP2 stimulates CtIP dependent initiation of end-resection at DSB, independently of its catalytic activity. By live cell imaging, we were able to determine that PARP2 limit 53BP1 accumulation at DNA damage sites induced by laser-microirradiation. We propose that by limiting 53BP1 accumulation at DNA damage sites, PARP2 stimulate DSB repair pathway that depend on DNA end-resection, thus counteracting the canonical end-joining pathway. These results are the first demonstrating a role for PARP2 in DNA DBSR pathway choice.In addition, we analyzed how the functions of XRCC1 are regulated by phosphorylation. Using in vitro and in vivo approaches, we were able to demonstrate that the linker 1 region of XRCC1 is phosphorylated by the CDK5 kinase. XRCC1 is actively dephosphorylated in response to DNA damage induced by an alkylating agent in vivo. We also observed that when the linker 1 cannot be phosphorylated, the XRCC1 interaction between the PAR synthetized by PARP1 and PARP2 is stimulated, and XRCC1 recruitement at the sites of DNA damage is far more efficient. These evidences indicate for the first time that the dephosphorylation of XRCC1 actively participate in its recruitment at the site of DNA damage. Put together, this work contributed to strengthen our fundamental knowledge of the protein network involved in the DNA damage response. Knowledge of those mechanisms is crucial since they participate in maintaining genome stability, and because new antitumoral drugs targeting DNA repair pathways in the attempt to specifically killed tumor cells are exponentially released.
64

Funkce RAD18 v ubikvitinaci na místech dvouřetězcových DNA zlomů / Role of RAD18 in ubiquitin signaling at DNA double-strand breaks

Palek, Matouš January 2021 (has links)
RAD18 is an E3 ubiquitin ligase that prevents the replication forks from collapsing caused by damaged DNA. As an important factor controlling replication, its dysregulation was shown to be associated with some human tumours. However, the clinical relevance of this finding is unknown. The aim of the thesis was evaluation of selected RAD18 variants that had been identified in breast and ovarian cancer patients. This work revealed functional defects of RAD18 variants not only in replication fork protection but also in repair of DNA double-strand breaks. This unconventional role of RAD18 is known to be dependent on upstream ubiquitination events, however, its contribution to the repair per se is not understood. This work aimed to elucidate the function of RAD18 in DNA double-strand break repair by homologous recombination focusing especially on its relationship with 53BP1. Data presented here show that RAD18 effectively disrupts 53BP1 accumulation in the repair foci by competition for the same binding partner and thus promotes resection of DNA ends. This antagonistic function of RAD18 is restricted both spatially (to the vicinity of the repair centre) and temporarily (to S phase). Moreover, it seems to be regulated by existence of RAD18 in two distinct complexes. Potential models for this regulation...
65

A Novel Method to Analyze DNA Breaks and Repair in Human Cells

Goodman, Caitlin Elizabeth 15 May 2018 (has links)
No description available.
66

DNA Double-Strand Break Repair : Molecular Characterization of Classical and Alternative Nonhomologous End Joining in Mitochondrial and Cell-free Extracts

Kumar, Tadi Satish January 2013 (has links) (PDF)
Maintenance of genomic integrity and stability is of prime importance for the survival of an organism. Upon exposure to different damaging agents, DNA acquires various lesions such as base modifications, single-strand breaks (SSBs), and double-strand breaks (DSBs). Organisms have evolved specific repair pathways in order to efficiently correct such DNA damages. Among various types of DNA damages, DSBs are the most serious when present inside cells. Unrepaired or misrepaired DSBs account for some of the genetic instabilities that lead to secondary chromosomal rearrangements, such as deletions, inversions, and translocations and consequently to cancer predisposition. Nonhomologous DNA end joining (NHEJ) is one of the major DSB repair pathways in higher organisms. Mitochondrial DNA (mtDNA) deletions identified in humans are flanked by short directly-repeated sequences, however, the mechanism by which these deletions arise are unknown. mtDNA deletions are associated with various types of mitochondrial disorders related to cancer, aging, diabetes, deafness, neurodegenerative disorders, sporadic and inherited diseases. Compared to nuclear DNA (nDNA), mtDNA is highly exposed to oxidative stress due to its proximity to the respiratory chain and the lack of protective histones. DSBs generated by reactive oxygen species, replication stalling or radiation represents a highly dangerous form of damage to both nDNA and mtDNA. However, the repair of DSBs in mitochondria and the proteins involved in this repair are still elusive. Animals deficient for any one of the known Classical-NHEJ factors are immunodeficient. However, DSB repair (DSBR) is not eliminated entirely in these animals suggesting evidence of alternative mechanism, ‘alternative NHEJ’ (A-NHEJ/A-EJ). Several lines of evidence also suggest that alternative and less well-defined backup NHEJ (B-NHEJ) pathways play an important role in physiological and pathological DSBR. We studied NHEJ in different tissue mitochondrial protein extracts using oligomeric DNA substrates which mimics various endogenous DSBs. Results showed A-EJ, as the predominant pathway in mitochondria. Interestingly, immunoprecipitation (IP) studies and specific inhibitor assays suggested, mitochondrial end joining (EJ) was dependent on A-EJ proteins and independent of C-NHEJ proteins. Further, colocalization studies showed A-EJ proteins localize into mitochondria in HeLa cells. More importantly knockdown experiments showed the involvement of DNA LIGASE III in mitochondrial A-EJ. These observations highlight the central role of A-EJ in maintenance of the mammalian mitochondrial genome. By using oligomeric DNA substrates mimicking various endogenous DSBs, NHEJ in different cancer cell lines were studied. We found that the efficiency of NHEJ varies among cancer cells; however, there was no remarkable difference in the mechanism and expression of NHEJ proteins. Interestingly, cancer cells with lower levels of BCL2 possessed efficient NHEJ and vice versa. Removal of BCL2 by immunoprecipitation and protein fractionation using size exclusion column chromatography showed elevated levels of EJ. Most importantly, the overexpression of BCL2 in vivo or the addition of purified BCL2 in vitro led to the downregulation of NHEJ in cancer cells. Further, we found that BCL2 interacts with KU proteins both in vitro and in vivo using immunoprecipitation and immunofluorescence, respectively. Hence, NHEJ in cancer cells is negatively regulated by the anti-apoptotic protein, BCL2, and this may contribute towards increased chromosomal abnormalities in cancer. In summary, our study showed that the efficiency of EJ in cancers could be regulated by the antiapoptotic protein BCL2. However, it may not affect the mechanistic aspect of EJ. BCL2 instead may interfere with EJ by sequestering KU and preventing it from binding to DNA ends. This may help in better understanding towards increased chromosomal abnormalities in cancer. Study of mitochondrial DSBR in mammalian system highlights the central role of microhomology-mediated A-EJ in the maintenance of the mammalian mitochondrial genome and this knowledge will helpful for the development of future therapeutic strategies against variety of mitochondria associated diseases.
67

Effets des radiations gamma et des électrons de basse énergie sur la fonctionnalité de l'ADN / Effect of gamma radiation and low energy electron on the DNA functionality

Sahbani, Saloua January 2014 (has links)
Résumé : Il est généralement admis que les cassures double-brin (CDB) de l’ADN sont parmi les lésions les plus toxiques induites par les radiations ionisantes (RI). Les CDBs non ou mal réparées peuvent conduire à une instabilité génomique et à la mort cellulaire. La chimioradiothérapie concomitante est l’une des modalités la plus efficace pour le traitement de certains cancers surtout en stade avancé. Le rendement des CDBs a augmenté quand l’ADN a été irradié en présence de cisplatine avec des électrons de basse énergie (EBEs). Notre étude a pour objectif de réévaluer la contribution des CDBs et d’autres lésions induites par les RI dans la létalité cellulaire. L'effet des RI sur la fonctionnalité de l’ADN plasmidique modifié ou non de façon covalente par le cisplatine a été étudié par mesure de l'efficacité de transformation du plasmide dans E. coli. Les complexes cisplatine-ADN ont été préparés de telle sorte qu’il y avait en moyenne deux adduits de cisplatine par plasmide tel que mesuré par ICP-MS. Nos échantillons ont été irradiés en solution avec des doses croissantes de rayonnements gamma (137Cs). La présence de cisplatine a augmenté la formation des CDBs par un facteur de 2.6 par comparaison avec l'ADN non modifié. Malgré cette augmentation, le rendement des CDBs reste très faible et ne peut pas expliquer la perte de fonctionnalité observée. Alors que, les dommages multiples localisés (LMDS) (non-DSB cluster damage) donnant naissance à des CDBs sous l’action des enzymes de réparation la formamidopyrimidine [fapy]-DNA glycosylase (Fpg) et l’endonuclease III (Nth) où leur rendement a été augmenté d’un facteur de 2.1 lorsque l’ADN a été irradié en présence de cisplatine, ont pu expliquer la perte de fonctionnalité observée. Ces résultats suggèrent que le cisplatine peut agir, non seulement comme un agent chimiothérapeutique, mais aussi comme un radiosensibilisateur efficace par addition d’autres lésions à l’ADN. Aussi, pour la première fois nous avons pu évaluer l’effet des EBEs sur la létalité cellulaire. Des films d'ADN ont été préparés en utilisant la méthode d’adsorption douce sur un substrat de graphite pyrolytique, en présence de 1,3- diaminopropane (Dap[indice supérieur]2+) et ont été irradiées avec des EBEs 10 eV. Nous avons pu conclure, qu’en plus des CSBs, CDBs et des dommages de base, les EBEs sont capables aussi d’induire des LMDS (non-DSB cluster damage) et induire la perte de fonctionnalité de l’ADN. Le rendement des CDBs est très faible d’où ils n’ont pas pu expliquer la perte de fonctionnalité de plasmide observée, après irradiation avec les EBEs. Le rendement très faible des LMDS (non-DSB cluster damage) ne peut pas expliquer la perte de fonctionnalité de l’ADN. Il semble que les EBEs sont capables d’induire des dommages très proches les uns des autres et qui ne peuvent pas être révélés par les enzymes de réparation Fpg et Nth. Plus les dommages sont proches les uns des autres, plus leur réparation est difficile, car une de ces lésions peut inhiber la réparation de l’autre la plus proche. // Abstract : It is generally accepted that DNA double-strand breaks (DSB) are among the most toxic lesions induced by ionizing radiation (IR). Unrepaired or misrepaired DSB can lead to genomic instability and cell death. It is known that concomitant chemoradiation therapy is one of the most preferred methods for the treatment of certain cancers especially in advanced stage. The yield of DSBs was increased when DNA was irradiated with low energy electron (LEEs). The aims of our study was to reassess the contribution of DSBs and other lesions induced by indirect and direct effect of IR in cell lethality. The effect of IR on the DNA functionality of the plasmid modified covalently with cisplatin was studied by measuring the transformation efficiency of the plasmid in E. coli. Cisplatin-DNA complexes were prepared such that there was an average of two cisplatin adducts per plasmid as measured by ICP-MS. Aqueous solutions of the samples were irradiated with 137Cs [gamma]-rays at various doses. Gel electrophoresis analysis shows that cisplatin enhances, by a factor of 2.6, the formation of DSB by [gamma]-rays relative to those in unmodified DNA. Despite this increase, the yield of DSBs is very low and cannot explain the loss of functionality observed after transformation with plasmids modified with cisplatin. While locally multiple damaged sites (LMDS) revealed by repair enzymes Fpg (Formamidopyrimidine [fapy]-DNA glycosylase) and Nth (Endonuclease III) as DSB (nonDSB cluster damage), where their yield was increased by a factor of 2.1 when DNA was irradiated in the presence of cisplatin were able to explain the observed loss of DNA functionality. These results suggest that cisplatin may act not only as a chemotherapeutic agent, but also as an effective radiosensitizer by addition of other DNA lesions. For the first time, we could also evaluate the effect of low energy electrons (LEEs) on DNA functionality. Highly ordered DNA films were prepared on pyrolytic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap[superscript]2+) to bind together the plasmids and irradiated with LEE (10 eV). We concluded that in addition to CSBs, DSBs and base damage, LEEs induced the formation of non-DSB cluster damage and also induced the loss of DNA functionality under LEE irradiation. The yields of DSBs and of non-DSB cluster damage are too low and so one unable to explain the loss of DNA functionality. It seems that LEEs are able to induce a high complex damage that cannot be revealed by repair enzymes Fpg and Nth. The high complex damage is difficult to repair possibly because the repair of one lesion, may inhibit the repair of another.
68

Caractérisation fonctionnelle du suppresseur de tumeurs BAP1

Yu, Helen 01 1900 (has links)
La déubiquitinase BAP1 (« BRCA1-Associated Protein1 ») a initialement été isolée pour sa capacité de promouvoir la fonction suppressive de tumeurs de BRCA1. BAP1 est muté de manière homozygote dans plusieurs cancers (tel que le cancer du rein, de la peau, de l’oeil et du sein) suggérant fortement que cette déubiquitinase est un suppresseur de tumeurs. Effectivement, la surexpression de BAP1 réduit la prolifération cellulaire et la croissance tumorale dans des modèles de xénogreffe de souris. Toutefois, la fonction biologique et le mécanisme d’action de cette déubiquitinase restent encore marginalement connus. Ainsi, les objectifs de cette thèse sont de caractériser la fonction biologique de BAP1 et de révéler les bases moléculaires de sa fonction suppressive de tumeurs. Pour déterminer la fonction biologique de BAP1, nous avons immuno-purifié et identifié les protéines associées à BAP1, qui s’avèrent être principalement des facteurs et co-facteurs de transcription. Ensuite, nous avons démontré que BAP1 est un régulateur de la transcription. Parallèlement, un autre groupe a montré que BAP1 chez la drosophile, Calypso, régule l’ubiquitination de H2A et la transcription génique. D’autre part, nos résultats d’analyse d’expression génique globale suggèrent que BAP1 jouerait un rôle important dans la réponse aux dommages à l’ADN. Effectivement, des expériences de gain et de perte de fonction (méthode de l’ARNi, modèle de cellules KO en BAP1 et de cellules déficientes en BAP1 re-exprimant BAP1) ont révélé que cette déubiquitinase régule la réponse aux bris double brin d’ADN par la recombinaison homologue. Nos résultats suggèrent que BAP1 exerce sa fonction suppressive de tumeurs en contrôlant la réparation sans erreur de l’ADN via la recombinaison homologue. En cas d’inactivation de BAP1, les cellules deviendront plus dépendantes du mécanisme de réparation par jonction d'extrémités non-homologues, qui est potentiellement mutagénique causant ainsi l’instabilité génomique. D’autres études seront nécessaires afin de déterminer le rôle exact de BAP1 dans la transcription et de comprendre comment la dérégulation de l’ubiquitination de H2A contribue au développement du cancer. Définir les mécanismes de suppression tumorale est de grand intérêt, non seulement pour comprendre la carcinogénèse mais également pour le développement de nouvelles thérapies contre cette maladie. / The deubiquitinase BAP1 (BRCA1-Associated Protein1) is a nuclear member of the ubiquitin C-terminal hydrolase (UCH) family, previously isolated for promoting the function of the tumor suppressor BRCA1. Importantly, homozygous inactivating mutations of BAP1 have been found in mesothelioma, renal, melanoma and breast cancers strongly suggesting that this deubiquitinase is a tumor suppressor. Indeed BAP1 overexpression reduces cell proliferation and tumor growth in xenograft models. Nonetheless, the biological function and the mechanism of action of this deubiquitinase remain poorly defined. The goals of this thesis are to characterize the biological function of BAP1 and to reveal the molecular basis of its tumor suppressive function. To provide insights into BAP1 biological function, we conducted a tandem affinity immunopurification of BAP1-associated proteins and found that most interacting partners are transcription factors and cofactors. Next, we demonstrated that BAP1 is indeed a transcription regulator. Concomitantly, another group showed that the drosophila BAP1, Calypso, is a Polycomb Group protein that regulates the ubiquitination levels of H2A and gene expression. Indeed, our global gene expression analysis suggests that BAP1 plays important role in DNA damage response. Consistently, loss- and gain- of function experiments (RNAi approach, DT40 chicken B cells KO model and re-introduction of BAP1 in BAP1 null-cells) revealed that BAP1 promotes homologous recombination-mediated DNA double strand break repair. Our data suggest that BAP1 exerts its tumor suppressor function by controlling error-free DNA repair by homologous recombination. Thus, in a situation of BAP1 inactivation, cells might become more reliant on non-homologous end joining, an error-prone DNA repair mechanism, which would result in the accumulation of mutations and chromosomal aberrations, causing genomic instability. Further studies are required to delineate the exact role of BAP1 in transcription and to define how deregulation of H2A ubiquitination pathway contributes to cancer. Defining the mechanisms of tumor suppression is of great interest, not only for understanding cancer development, but also for designing rational cancer therapies.
69

Caractérisation biochimique du complexe Smc5-6

Roy, Marc-André 11 1900 (has links)
Les membres de la famille SMC (Structural Maintenance of Chromosomes), présents dans tous les domaines de la vie, sont impliqués dans des processus allant de la cohésion des chromatides-sœurs jusqu’à la réparation de l’ADN. Chacun des membres de cette famille, composée de 6 membres (Smc1 à Smc6), s’associe avec un autre membre ainsi qu’à des sous-unités non-SMC pour former 3 complexes : cohésine, condensine et Smc5-6. L’implication du complexe Smc5-6 dans plusieurs aspects du maintien de l’intégrité génomique est bien démontrée. Néanmoins, une question fondamentale concernant ce complexe demeure encore sans réponse: comment peut-il être impliqué dans autant d’aspects de la vie d’une cellule? Encore à ce jour, il est difficile de répondre à cette question en raison du manque d’information disponible au sujet des activités biochimiques de ce complexe. C’est pourquoi l’objectif de ce travail consiste en la caractérisation biochimique du complexe Smc5-6. La biochimie de cohésine et condensine suggère diverses possibilités en ce qui a trait aux activités biochimiques du complexe Smc5-6. La première étape de mon projet fut donc d’élaborer une procédure pour la purification de Smc5 et Smc6 après surexpression en levure. Après plusieurs expériences, il apparut clair que les deux protéines possèdent une activité de liaison à l’ADN simple brin (ADNsb) ainsi qu’à l’ADN double brins (ADNdb) et que, même si les protéines peuvent se lier aux deux types d’ADN, elles possèdent une plus grande affinité pour l’ADNsb. De plus, ces expériences permirent de démontrer que l’interaction entre Smc5 ou Smc6 et l’ADNsb est très stable, alors que l’interaction avec l’ADNdb ne l’est pas. Suite à l’obtention de ces résultats, la seconde étape fut la détermination de la ou des partie(s) de Smc5 et Smc6 permettant la liaison à l’ADN. Pour répondre à cette question, une dissection moléculaire fut réalisée, suivi d’une caractérisation des différents domaines constituants Smc5 et Smc6. De cette façon, il fut possible de démontrer qu’il existe deux sites de liaison à l’ADN sur Smc5 et Smc6 ; le premier site se trouvant dans le domaine «hinge» ainsi que dans la région adjacente du domaine «coiled-coil» et le second au niveau de la tête ATPase des deux protéines. Bien que les deux domaines puissent lier l’ADNsb, il fut démontré qu’une différence majeure existe au niveau de leur affinité pour ce type d’ADN. En effet, le domaine «hinge» possède une affinité plus forte pour l’ADNsb que la tête ATPase. De plus, cette dernière est incapable de lier l’ADNdb alors que le domaine «hinge» le peut. L’identification des sites de liaison à l’ADN sur Smc5 et Smc6 permettra de créer de nouveaux mutants possédant un défaut dans la liaison à l’ADN. Ainsi, l’étude du complexe Smc5-6 durant la réparation de l’ADN in vivo sera facilité. / The Smc5-6 complex is part of the SMC (Structural Maintenance of Chromosomes) family and is involved in the maintenance of genome integrity. This complex is required for the replication and repair of DNA. Unfortunately, the DNA substrates recognized by the Smc5-6 complex are still unknown. To address this gap, I used a biochemical approach to purify and functionally characterize the core of the Smc5-6 complex represented by the two SMC proteins. Subsequently, I wanted to understand which part(s) of Smc5 or Smc6 mediate their binding to DNA. I show here that Smc5 and Smc6 bind to all types of DNA tested. Despite this ability to associate with several types of nucleic acids, they have a clear preference for single-stranded DNA (ssDNA). The ability of Smc5 and Smc6 to link DNA independently of each other suggests that both SMC proteins have the potential to target the Smc5-6 complex to its DNA substrates in vivo. Furthermore, the minimal length of ssDNA required for the binding of Smc5 or Smc6 is between 45 to 75 nucleotides. This length of ssDNA is shorter than the size of ssDNA intermediates created during DNA repair or replication reactions. In addition to having a preference for ssDNA, the binding of both SMC proteins to this type of DNA is stronger than their binding to double-stranded DNA (dsDNA). Finally, the molecular dissection of SMC proteins into functional domains revealed that there are two independent DNA-binding sites on each molecule of Smc5 or Smc6. The first region is located in the hinge domain, while the second region is located in the ATPase head of the protein. The affinity and selectivity of independent domains towards DNA substrates suggest a functional differentiation between the two DNA-binding sites of SMC molecules. Indeed, the hinge domain has a greater affinity for ssDNA than the ATPase head. In terms of selectivity, the hinge domain is capable of binding to dsDNA whereas the ATPase head cannot. Taken together, our identification of the DNA-binding domains on Smc5 and Smc6 will enable the creation of new mutants with a defect in their DNA-binding activity. Thus, the study of the Smc5-6 complex during DNA repair, in vivo, will be facilitated.
70

Biochimie analytique de complexes de réparation de l'ADN : élaboration d'un système analytique intégré / Biochemistry of DNA double-strand breaks repair complexes : elaboration of an analytical system

Berthelot, Vivien 12 December 2014 (has links)
Dans les cellules eucaryotes, les cassures double-brin sont réparée selon deux voies principales : la recombinaison homologue et la jonction des extrémités non homologues, toutes deux bien connues dans la littérature. Cependant quelques zones d'ombres persistent quant à deux aspects singuliers de leur mise en œuvre :- Si ces deux mécanismes peuvent opérer dans les cellules, quels sont les déterminismes qui président au choix d'une voie de réparation plutôt que de l'autre ?- Dans le cas où les cassures double-brin sont induites dans l'ADN par des rayonnements ionisants – comme ceux employés en radiothérapie anticancéreuse – coment s'opère la réparation lorsque les extrémités générées ne sont pas compatibles avec une ligation immédiate ? Connaître les protéines impliquées dans ce cas permettrait d'élaborer des adjuvants à la thérapie anticancéreuse.Afin de contribuer à répondre à ces questionnements, nous avons voulu élaborer un système analytique intégré qui permît 1) le recrutement spécifique de complexes de réparation des cassures double-brin de l'ADN sur des phases chromatographiques constituées au laboration, 2) la résolution de ces complexes sur gel d'acrylamide non-dénaturants et leur visualisation et 3) la caractérisation biochimique fine des complexes séparés. La méthodologie élaborée au cours de cette thèse a concerné chacun des trois points ci-dessous : 1) nous avons conçu et mis en œuvre un système chromatographique nous permettant de distinguer les protéines recrutées spécifiquement sur des oligonucléotides duplexes d'ADN dotés d'extrémités libres de l'ADN (mimant des cassures double-brin) des autres protéines se fixant sur la séquence interne des oligonucléotides ; 2) nous avons adapté à notre problématique une méthodologie d'électrophorèse non-dénaturante permettant la résolution des complexes purifiés tout en garantissant leur intégrité au cours de la migration ; 3) grâce à la visualisation directe des complexes résolus dans le gel, nous avons pu déterminer leur composition en protéines par spectrométrie de masse.L'étude biochimique des complexes purifiés a démontré que les complexes purifiés étaient fonctionnels, c'est à dire capable de liguer deux oligonucléotides entre eux. La fouille des données de spectrométrie de masse, obtenues à partir d'un grand nombre d'expériences indépendantes, nous a permis de montrer qu'ils étaient de la physiologie de l'ADN et particulièrement représentatifs de la diversité des mécanismes de réparation.De manière intéressante, nous avons pu observer que certaines protéines recrutées spécifiquement sur les mimes de cassures double-brin de l'ADN, ne sont pourtant pas connues pour intervenir dans les processus de réponse aux dommages de l'ADN (synthèse de nucléotides, checkpoint, topologie de l'ADN, cytosquelette).Le rôle des protéines évoquées ci-dessus sera prochainement caractérisé in cellulo notamment avec des stratégies de type RNAi. D'autre part, nous utiliserons les développements méthodologiques décrits ci-dessus pour étudier les mécanismes de réparation des cassures double-brin radio-induites, tels qu'ils sont mis en jeu dans les cellules tumorales en constituants de nouvelles phases chromatographiques avec des oligonucléotides irradiés. / In eucaryotic cells, DNA double-strand breaks are repaired through two main pathways : the homologous recombination and the non homologous end joining . Altough these pathways are well characterized, two particular aspects of the repair remain poorly understood :- If two separated pathways may occur in the cells, which mechanism(s) govern the choice of the pathway that will ultimately lead to the repair ?- If the double-strand break is induced by ionizing radiations – as those employed in anti-cancerous radiotherapy – how does the repair occur if the DNA ends at the edge of the break are not compatible with a direct ligation ? A proper knowledge of the proteins involved in this repair would allow the development of additives, useful to increase the efficiency of the radiotherapy.To investigate these questions, we designed a new analytical system allowing : 1) the specific recruitment of DNA double-strand break repair complexes on home-made chromatographic phases, 2) the separation of these complexes in a non-denaturing polyacrylamide gel and their subsequent visualization and 3) their biochemical characterization.The methodology developped in this work has been focused on the following points : 1) we designed and implemented a chromatographic system allowing the distinction between proteins recruited onto duplex DNA oligonucleotide with free DNA ends (mimicking DNA double-strand breaks) and proteins fixed onto the internal sequence of the same oligonucleotides ; 2) we adapted to our problematic a methodology of non-denaturing electrophoresis thus allowing the separation of the purified complexes while guaranteeing their integrity during the migration, 3) we also determined their composition by mass spectrometry after their visualization.The biochemical study has shown that the purified complexes were still functionnal, that is they were able to efficiently ligate two oligonucleotides. The study of the data provided by the mass spectrometry analysis of independant experiences proved that the complexes belonged to the DNA physiology and were especially representative of the diversity of the DNA repair pathways.Interestingly, we observed that some of the protein specifically recruited onto the the double-strand breaks were not known to be involved in the DNA repair (nucleotide synthesis, checkpoint, DNA topology, cytoskeleton).The rôle of these proteins should be characterized in cellulo especially with siRNA. On the other hand we will also use the methodological development described above to study the repair mechanisms of radio-induced DNA double-strand breaks occuring in the irradiated tumorous cells. To achieve this study we will elaborate new chromatographic phases with pre-irradiated oligonucleotides.

Page generated in 0.1545 seconds