71 |
Les protéines suppressives de tumeurs ING1, ING2 et ING3 : régulation par sumoylation et implication dans la réponse aux dommages à l'ADN / The tumor suppressor proteins ING1, ING2 and ING3 : regulation by sumoylation and involvement in the DNA Damage ResponseGuérillon, Claire 08 October 2014 (has links)
Les gènes ING (Inhibitor of Growth) sont des gènes candidats suppresseurs de tumeurs conservés de la Levure à l'Homme. Les protéines ING ont des fonctions suppressives de tumeurs de type I ou « caretaker » car elles participent aux processus de maintien de la stabilité du génome en régulant la réplication et la réparation de l'ADN. Elles ont aussi des fonctions suppressives de tumeurs de type II ou « gatekeeper » puisqu'elles sont impliquées dans la régulation de la prolifération cellulaire de façon dépendante et indépendante de p53 et car elles contrôlent la transcription génique en participant au remodelage de la chromatine. L'objectif de ma thèse est de mieux comprendre l'implication de ING1, ING2 et ING3 dans les voies de suppression des tumeurs. Nos travaux montrent que ING1 est sumoylée sur la lysine 193 principalement par l'E3 SUMO ligase PIAS4, afin de réguler l'ancrage de ING1 sur le promoteur de gènes cibles pour réguler leur transcription. Nous avons aussi décrit pour la première fois l'implication de ING2 et de ING3 dans la réponse aux cassures double brin de l'ADN. Nous montrons que cette fonction est conservée entre ING2, ING3 et leur orthologues, respectivement, Pho23 et Yng2 chez la Levure Saccharomyces cerevisiae. ING2 contrôle l'accumulation de PIAS4 au niveau des sites de dommages et régule la sumoylation de l'E3 ubquitine ligase RNF168, afin de permettre la signalisation et la réparation des cassures double brin de l'ADN. ING3 est nécessaire à l'accumulation de 53BP1 et contrôle la réparation de ces dommages. Ces travaux contribuent donc à une meilleure connaissance du rôle des ING dans les voies de suppression des tumeurs. Ils permettent de mieux comprendre comment ING1 régule la transcription génique et décrivent une nouvelle fonction suppressive de tumeur de type I ou « caretaker » pour ING2 et ING3 dans le maintien de la stabilité du génome. / ING (Inhibitor of Growth) genes are tumor suppressor gene candidates conserved from Yeast to Humans. ING proteins have type I tumor suppressive functions or "caretaker" because they participate in the maintenance of genome stability by regulating DNA replication and repair processes. They have also tumor suppressive functions of type II or "gatekeeper" because they are involved in the regulation of cell proliferation in p53 dependent and independent manners. They also participate in the regulation of gene transcription by regulating chromatin remodeling. The aim of my thesis was to better understand how ING1, ING2 and ING3 are involved in tumor suppressive pathways. Our work shows that ING1 is sumoylated on lysine 193 mainly by the SUMO E3 ligase PIAS4 to regulate ING1 anchoring on target gene promoters to control gene transcription. We have also described the involvement of ING2 and ING3 in the DNA double strand breaks response. We show the conservation of this function between ING2, ING3 and their orthologs, respectively, Pho23 and Yng2 in Yeast Saccharomyces cerevisiae. ING2 controls the accumulation of PIAS4 at DNA damage sites and regulates the sumoylation of the E3 ubiquitin ligase RNF168, to regulate DNA double strand break signaling and repair. ING3 is necessary for the accumulation of 53BP1 and promotes DNA damage repair. This work contributes to a better understanding of the role of ING proteins in tumor suppression. It thus provides new insights of how ING1 regulates gene transcription and emphasizes a new tumor suppressive function of type I or "caretaker" for ING2 and ING3 in the genome stability maintenance.
|
72 |
Implication of DNA damage and repair in viability and differentiation of muscle stem cells / Implication des dommages à l’ADN et leur réparation sur la viabilité et la différentiation des cellules souches musculairesSutcu, Haser 20 September 2018 (has links)
Les cassures double-brin (DSB) sont des dommages dangereux de l’ADN et représentent un facteur de risque pour la stabilité du génome. Le maintien de l'intégrité du génome est essentiel pour les cellules souches adultes, qui sont responsables de la régénération des tissus endommagés et de l'homéostasie tissulaire tout au long de la vie. La régénération musculaire chez l'adulte repose sur les cellules souches musculaires (cellules satellites, SCs) qui possèdent une remarquable capacité de réparation des DSB, mais dont le mécanisme sous-jacent reste inconnu. Ce projet de thèse consistait à étudier comment la différenciation musculaire est affectée lorsque la réparation des DSB est altérée, et quels sont le(s) mécanisme(s) et les conséquences de ce défaut de réparation sur la régénération musculaire. Au cours de cette étude, il est apparu de façon originale que les facteurs de réparation des DSB peuvent affecter la myogenèse, indépendamment de leur fonction dans la réparation de l'ADN. La présente étude a porté sur le rôle de la protéine kinase dépendante de l'ADN (DNA-PK), un facteur crucial pour la réparation non-homologue des DSBs (NHEJ), au cours de la différenciation musculaire chez la souris. L’étude a ciblé l'activation des SCs et la régénération musculaire in vitro et in vivo et a également abordé la régulation de cette kinase. Le rôle "canonique" de la DNA-PK, et donc du NHEJ, dans les SCs a également été étudié en présence de lésions de l'ADN radio-induites. Le rôle d’ATM, une kinase qui orchestre les réponses cellulaires aux DSB, a également été abordé dans le contexte de la régénération musculaire. Ces résultats confirment la notion émergente du rôle multifonctionnel des protéines de réparation de l’ADN dans d’autres processus physiologiques que la réparation elle-même, ce qui m’a également permis de réaliser une étude bibliographique. Ce travail i) identifie de nouveaux régulateurs de la myogenèse et ii) contribue à la compréhension de la résistance des cellules souches musculaires au stress génotoxique. Ces résultats pourraient avoir des implications dans l'amélioration des thérapies cellulaires de la dysfonction musculaire en agissant sur les régulateurs nouvellement découverts. / DNA double-strand breaks (DSBs) are dangerous DNA damages and a risk factor for genome stability. The maintenance of genome integrity is crucial for adult stem cells that are responsible for regeneration of damaged tissues and tissue homeostasis throughout life. Muscle regeneration in the adult relies on muscle stem cells (satellite cells, SCs) that have a remarkable DSB repair activity, but the underlying mechanism is not known. The aims of the present PhD project were to investigate how muscle differentiation is affected when DSB repair is impaired, and which are the mechanism(s) and the consequences on muscle regeneration. During this study, a novel possibility has arisen, namely that DSB repair factors affects myogenesis independently of their DNA repair activity, suggesting a novel function, not previously anticipated, of these factors. The present study has addressed the role of DNA-dependent protein kinase (DNA-PK), a crucial factor in non-homologous end-joining (NHEJ) repair of DSBs, in muscle differentiation in the mouse. Studies have targeted SC activation and muscle regeneration in vitro and in vivo and also addressed the regulation of this kinase. In parallel the more “canonical” role of DNA-PK, and thereby of NHEJ, has been investigated in SCs via radiation-induced DNA damage. The role of ATM, a kinase that orchestrates cellular responses to DSBs in muscle regeneration has also been addressed. These results support the emerging notion of multifunctional repair proteins in a variety of physiological processes beyond the repair process itself, on which I have conducted a bibliographical study. This work i) identifies novel regulators of myogenesis, and ii) helps understanding the resistance of muscle stem cells to genotoxic stress. It has potential implications for improving cellular therapies for muscle dysfunction by acting on the newly discovered regulators.
|
73 |
Quantification of Radiation Induced DNA Damage Response in Normal Skin Exposed in Clinical SettingsSimonsson, Martin January 2011 (has links)
The structure, function and accessibility of epidermal skin provide aunique opportunity to study the DNA damage response (DDR) of a normaltissue. The in vivo response can be examined in detail, at a molecularlevel, and further associated to the structural changes, observed at atissue level. We collected an extensive skin biopsy material frompatients undergoing fractionated radiotherapy for 5 to 7 weeks. Several end-points inthe DDR pathways were examined before, during and after the treatment. Quantification of DNA double strand break (DSB) signalling focirevealed a hypersensitivity to doses below 0.3Gy. Furthermore, aconsiderable amount of foci persisted between fractions. The low dosehypersensitivity was observed throughout the treatment and was alsoobserved for several key parameters further downstream in the DDR-pathway, such as p21-associated checkpoint activation, apoptosisinduction and reduction in basal keratinocyte density (BKD).Furthermore, for dose fractions above 1.0 Gy, a distinct acceleration inDDR was observed half way into treatment. This was manifested as anaccelerated loss of basal keratinocytes, mirrored by a simultaneousincrease in DSBs and p21 expression. Quantifications of mitotic events revealed a pronounced suppression ofmitosis throughout the treatment which was clearly low dosehypersensitive. Thus, no evidence of accelerated repopulation could beobserved for fraction doses ranging from 0.05 to 2Gy. Our results suggest that the keratinocyte response primarily isdetermined by checkpoints, which leads to pre-mitotic cell elimination by permanent growth arrest and apoptosis. A comparison between the epidermal and dermal sub-compartments revealsa consistent up-regulation of the DDR response during treatment. Adifference was however observed in the recovery phase after treatment,where miR-34a and p21 remain up-regulated in dermis more persistentlythan in epidermis. Our observations suggest that the recovery phaseafter treatment can provide important clues to understand clinicalobservations such as the early and late effects observed in normaltissues during fractionated radiotherapy.
|
74 |
Biochemical characterization of Aprataxin, the protein deficient in Ataxia with Oculomotor Apraxia type 1Hancock, Janelle Louise January 2008 (has links)
Neurodegenerative disorders are heterogenous in nature and include a range of ataxias with oculomotor apraxia, which are characterised by a wide variety of neurological and ophthalmological features. This family includes recessive and dominant disorders. A subfamily of autosomal recessive cerebellar ataxias are characterised by defects in the cellular response to DNA damage. These include the well characterised disorders Ataxia-Telangiectasia (A-T) and Ataxia-Telangiectasia Like Disorder (A-TLD) as well as the recently identified diseases Spinocerebellar ataxia with axonal neuropathy Type 1 (SCAN1), Ataxia with Oculomotor Apraxia Type 2 (AOA2), as well as the subject of this thesis, Ataxia with Oculomotor Apraxia Type 1 (AOA1). AOA1 is caused by mutations in the APTX gene, which is located at chromosomal locus 9p13. This gene codes for the 342 amino acid protein Aprataxin. Mutations in APTX cause destabilization of Aprataxin, thus AOA1 is a result of Aprataxin deficiency. Aprataxin has three functional domains, an N-terminal Forkhead Associated (FHA) phosphoprotein interaction domain, a central Histidine Triad (HIT) nucleotide hydrolase domain and a C-terminal C2H2 zinc finger. Aprataxins FHA domain has homology to FHA domain of the DNA repair protein 5’ polynucleotide kinase 3’ phosphatase (PNKP). PNKP interacts with a range of DNA repair proteins via its FHA domain and plays a critical role in processing damaged DNA termini. The presence of this domain with a nucleotide hydrolase domain and a DNA binding motif implicated that Aprataxin may be involved in DNA repair and that AOA1 may be caused by a DNA repair deficit. This was substantiated by the interaction of Aprataxin with proteins involved in the repair of both single and double strand DNA breaks (XRay Cross-Complementing 1, XRCC4 and Poly-ADP Ribose Polymerase-1) and the hypersensitivity of AOA1 patient cell lines to single and double strand break inducing agents. At the commencement of this study little was known about the in vitro and in vivo properties of Aprataxin. Initially this study focused on generation of recombinant Aprataxin proteins to facilitate examination of the in vitro properties of Aprataxin. Using recombinant Aprataxin proteins I found that Aprataxin binds to double stranded DNA. Consistent with a role for Aprataxin as a DNA repair enzyme, this binding is not sequence specific. I also report that the HIT domain of Aprataxin hydrolyses adenosine derivatives and interestingly found that this activity is competitively inhibited by DNA. This provided initial evidence that DNA binds to the HIT domain of Aprataxin. The interaction of DNA with the nucleotide hydrolase domain of Aprataxin provided initial evidence that Aprataxin may be a DNA-processing factor. Following these studies, Aprataxin was found to hydrolyse 5’adenylated DNA, which can be generated by unscheduled ligation at DNA breaks with non-standard termini. I found that cell extracts from AOA1 patients do not have DNA-adenylate hydrolase activity indicating that Aprataxin is the only DNA-adenylate hydrolase in mammalian cells. I further characterised this activity by examining the contribution of the zinc finger and FHA domains to DNA-adenylate hydrolysis by the HIT domain. I found that deletion of the zinc finger ablated the activity of the HIT domain against adenylated DNA, indicating that the zinc finger may be required for the formation of a stable enzyme-substrate complex. Deletion of the FHA domain stimulated DNA-adenylate hydrolysis, which indicated that the activity of the HIT domain may be regulated by the FHA domain. Given that the FHA domain is involved in protein-protein interactions I propose that the activity of Aprataxins HIT domain may be regulated by proteins which interact with its FHA domain. We examined this possibility by measuring the DNA-adenylate hydrolase activity of extracts from cells deficient for the Aprataxin-interacting DNA repair proteins XRCC1 and PARP-1. XRCC1 deficiency did not affect Aprataxin activity but I found that Aprataxin is destabilized in the absence of PARP-1, resulting in a deficiency of DNA-adenylate hydrolase activity in PARP-1 knockout cells. This implies a critical role for PARP-1 in the stabilization of Aprataxin. Conversely I found that PARP-1 is destabilized in the absence of Aprataxin. PARP-1 is a central player in a number of DNA repair mechanisms and this implies that not only do AOA1 cells lack Aprataxin, they may also have defects in PARP-1 dependant cellular functions. Based on this I identified a defect in a PARP-1 dependant DNA repair mechanism in AOA1 cells. Additionally, I identified elevated levels of oxidized DNA in AOA1 cells, which is indicative of a defect in Base Excision Repair (BER). I attribute this to the reduced level of the BER protein Apurinic Endonuclease 1 (APE1) I identified in Aprataxin deficient cells. This study has identified and characterised multiple DNA repair defects in AOA1 cells, indicating that Aprataxin deficiency has far-reaching cellular consequences. Consistent with the literature, I show that Aprataxin is a nuclear protein with nucleoplasmic and nucleolar distribution. Previous studies have shown that Aprataxin interacts with the nucleolar rRNA processing factor nucleolin and that AOA1 cells appear to have a mild defect in rRNA synthesis. Given the nucleolar localization of Aprataxin I examined the protein-protein interactions of Aprataxin and found that Aprataxin interacts with a number of rRNA transcription and processing factors. Based on this and the nucleolar localization of Aprataxin I proposed that Aprataxin may have an alternative role in the nucleolus. I therefore examined the transcriptional activity of Aprataxin deficient cells using nucleotide analogue incorporation. I found that AOA1 cells do not display a defect in basal levels of RNA synthesis, however they display defective transcriptional responses to DNA damage. In summary, this thesis demonstrates that Aprataxin is a DNA repair enzyme responsible for the repair of adenylated DNA termini and that it is required for stabilization of at least two other DNA repair proteins. Thus not only do AOA1 cells have no Aprataxin protein or activity, they have additional deficiencies in PolyADP Ribose Polymerase-1 and Apurinic Endonuclease 1 dependant DNA repair mechanisms. I additionally demonstrate DNA-damage inducible transcriptional defects in AOA1 cells, indicating that Aprataxin deficiency confers a broad range of cellular defects and highlighting the complexity of the cellular response to DNA damage and the multiple defects which result from Aprataxin deficiency. My detailed characterization of the cellular consequences of Aprataxin deficiency provides an important contribution to our understanding of interlinking DNA repair processes.
|
75 |
The Role of Saccharomyces Cerevisiae MRX Complex and Sae2 in Maintenance of Genome StabilityGhodke, Indrajeet Laxman January 2015 (has links) (PDF)
In eukaryotes, the repair of DSBs is accomplished through two broadly defined processes: Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR). The central step of HR is pairing and exchange of strands between two homologous DNA molecules, which is catalyzed by the conserved Rad51/RecA family of proteins. Prior to this step, an essential step in all HR pathways i.e. 5'→3' resection of broken DNA ends to generate 3' single stranded DNA tails. At the molecular level, initiation of DNA end resection is accomplished through the concerted action of MRX complex (Mre11, Rad50 and Xrs2) and Sae2 protein.
To elucidate the molecular basis underlying DSB end resection in S. cerevisiae mre11 nuclease deficient mutants, we have performed a comprehensive analysis of the role of S. cerevisiae Mre11 (henceforth called as ScMre11) in the processing of DSB ends using a variety of DNA substrates. We observed that S. cerevisiae Mre11(ScMre11) exhibits higher binding affinity for single- over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Furthermore, reconstitution of DSB end resection network in-vitro revealed that Rad50, Xrs2, and Sae2 potentiated the DNA unwinding activity of Mre11. Since the exonuclease activity of Mre11 is of the opposite polarity to that expected for resection of DSBs, unwinding activity of Mre11 in conjunction with Rad50, Xrs2, and Sae2 might provide an alternate mechanism for the generation of ssDNA intermediates for DSB end repair and HR. Additionally, ScMre11 displays strong homotypic as well as heterotypic interaction with Sae2. In summary, our results revealed important insights into the mechanism of DSB end processing and support a model in which Sae2, Rad50, and Xrs2 positively regulate the ScMre11-mediated DNA unwinding activity via their direct interactions or through allosteric effects on the DNA or cofactors.
Prompted by the closer association of MRX and Sae2 during DSB end processing, we asked whether Sae2 and its endonuclease activity is required for cellular response to replication stress caused by DNA damage. Toward this end, we examined the sensitivity of S. cerevisiae wild type, sae2Δ and various SAE2 mutant strains defective in phosphorylation and nuclease activity in the presence of different genotoxic agents, which directly or indirectly generate DSBs during replication. We found that S. cerevisiae lacking SAE2 show decreased cell viability, altered cell cycle dynamics after DNA damage, and more specifically, that Sae2 endonuclease activity is essential for these biological functions. To corroborate the genetic evidences for role of SAE2 during replicative stress, we investigated SAE2 functions in-vitro. For this, we purified native Sae2 protein and nuclease dead mutant of Sae2 i.e. sae2G270D. Our studies revealed dimeric forms of both the wild type and mutant forms of Sae2. Furthermore, Sae2 displays higher binding affinity and catalytic activity with branched DNA structures, such as Holliday junction and replication forks. By using nuclease dead Sae2 protein i.e. sae2G270D, we confirmed that the endonuclease activity is not fortuitous and is intrinsic to Sae2 polypeptide. Furthermore, nuclease-defective Mre11 stimulates Sae2endonuclease activity. Mapping of the cleavage sites of Sae2 revealed a distinct preference for cleavage on the 5' end of the Holliday junction, suggesting the importance of Sae2 nuclease during recombination mediated restart of the reversed replication fork. In summary, our data clearly demonstrate a previously uncharacterized role for Sae2 nuclease activity in resection of DSB ends, processing of intermediates of DNA replication/repair and attenuation of DNA replication stress-related defects in S. cerevisiae.
|
76 |
Chromatin structure and DNA repair / Etude de la structure de la chromatine dans la réparation de I'ADNHoffbeck, Anne-Sophie 25 October 2013 (has links)
Notre génome est continuellement endommagé par des agents provoquant des lésions de l’ADN. Les cassures doubles brins de l’ADN (CDBs) sont les lésions les plus dangereuses. En effet, une CDB mal réparée peut mener à des aberrations de l’ADN pouvant conduire à l’apparition d’un cancer. Dans le but d’éviter les effets délétères des CDBs, nos cellules ont développé une voie de signalisation, nommée réponse aux dommages de l’ADN (RDA), permettant la détection des cassures et l’activation des points de contrôle du cycle cellulaire afin d’arrêter le cycle pendant la réparation des CDBs. Une des caractéristiques principales de la RDA est l’accumulation d’un grand nombre de facteurs sur l’ADN autour de la cassure, formant un foyer visible en microscopie. Cependant, l’efficacité de réparation de l’ADN est entravée par la structure condensée de la chromatine environnante. Les mécanismes de réparation de l’ADN surmontent ce problème en recrutant de nombreuses protéines permettant le réarrangement de la chromatine afin de faciliter la réparation. Le but de mon travail de thèse est d’identifier de nouvelles protéines impliquées dans le remodelage de la chromatine autour des CDBs. D’une part nous avons pour but d’identifier le protéome complet d’un foyer de réparation de l’ADN grâce à la technique PICh (Proteomics of Isolated Chromatin loci). D’autre part, nous étudions le rôle de l’oncoprotéine SET/TAF-1β, que nous avons identifié lors d’un criblage siRNA réalisé dans le but de découvrir de nouveaux facteurs chromatiniens impliqués dans la réparation des CDBs. / Various DNA damaging agents, that can cause DNA lesions, assault constantly our genome. The most deleterious DNA lesions are the breaks occurring in both strands of DNA (Double stand breaks: DSBs). Inefficient repair of DSBs can lead to aberrations that may induce cancer. To avoid these deleterious effects of DSBs, cells have developed signalling cascades which entail detection of the lesions and spreading of the signal that leads to arrest in cell cycle progression and efficient repair. A major characteristic of DNA damage response (DDR) is the accumulation of a vast amount of proteins around the DSBs that are visible in the cell as DNA damage foci. However, efficient DNA repair is hampered by the fact that genomic DNA is packaged into chromatin. The DNA repair machinery overcomes this condensed structure to access damaged DNA by recruiting many proteins that remodel chromatin to facilitate efficient repair. The aim of my PhD work is to identify novel proteinsinvolved in the DDR and/or the remodelling of chromatin surrounding DSBs. On one hand, we take advantage of the PICh (Proteomics of Isolated Chromatin loci) technique and we aim to identify the entire proteome of DNA repair foci. On the other hand, we study the role of the oncogene SET/TAFIβ, a major hit of a siRNA screen performed to identify novel chromatin related proteins that play role in repair of DSBs.
|
77 |
The Role of DNA Damage in Skin Stem CellsKarambela, Andriana 01 June 2017 (has links)
The accurate maintenance of genomic integrity in stem cells (SCs) is essential for tissue homeostasis and its deregulation leads to developmental defects, cancer and ageing. We have shown that Brca1, key homologous recombination (HR) gene and critical regulator of the choice of the DNA double strand break (DSB) repair pathway, is specifically required for hair follicle formation and the establishment and maintenance of adult hair follicle SC pool in a conditional knock-out (CKO) mouse model. Brca1 loss leads to DNA damage-induced cell death in the hair follicle (HF), particularly in the matrix transient amplifying progenitors and moderately so in prospective quiescent adult HF SCs. This cell loss causes compensatory hyper-proliferation of the prospective HF SCs and their subsequent depletion. In striking contrast, the interfollicular epidermis (IFE) and its resident SCs remain unaffected by Brca1 deletion. I uncovered two mechanisms underlying the ability of the SCs and progenitors of the IFE to survive the deletion of Brca1. Collectively, this data reveals how distinct SCs and progenitors respond differently to Brca1 loss. Furthermore we show how the IFE can survive Brca1 loss through the use of two particular mechanisms as to sustain tissue homeostasis. The mechanisms uncovered here are likely to be relevant in other tissue-specific SCs and will have important implications in understanding cancer initiation and ageing. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
|
78 |
Développement d'un outil de simulation multi-échelle adapté au calcul des dommages radio-induits précoces dans des cellules exposées à des irradiations d'ions légers (proton et alpha) / Development of a multi-scale simulation tool for early radio-induced damage assessment in cells exposed to light ions irradiations (proton and alpha)Meylan, Sylvain 21 October 2016 (has links)
Ce travail de thèse, réalisé dans le cadre des projets de recherche ROSIRIS (IRSN) et Geant4-DNA, porte sur la construction d’une simulation multi-échelle dédiée au calcul des dommages radio-induits précoces à l’ADN qui peuvent apparaître suite à l’irradiation d’un noyau cellulaire. L’outil développé s’appuie sur une version modifiée du code de Monte Carlo Geant4-DNA et est capable de simuler dans le détail le transport et les interactions physiques entre l’irradiation ionisante et la matière biologique (étape physique), la création d’espèces chimiques (étape physico-chimique) et les réactions et processus de diffusion de ces dernières (étape chimique). Durant la simulation de ces trois étapes, un modèle géométrique de l’ADN, décrivant l’ensemble du génome humain avec une précision moléculaire, est généré avec un nouveau logiciel développé dans le cadre de cette thèse : DnaFabric. Les premiers résultats obtenus pour des irradiations avec des protons et des ions alpha sont détaillés et comparés à des données de la littérature. Un bon accord est observés avec ces dernières illustrant ainsi la cohérence de l’ensemble de la simulation. L’influence très significative du critère de sélection utilisé pour identifier les dommages à l’ADN est également démontrée. / This work was performed in the frame of the ROSIRIS (IRSN) and Geant4-DNA research projects and describes the development of a simulation tool to compute radioinduced early DNA damages in a cell nucleus. The modeling tool is based on a modified version of the Monte Carlo code Geant4-DNA and is able to simulate the physical interactions between ionizing particles and the biological target (physical stage), the creation of chemical species within the cell nucleus (physico-chemical stage) as well as the reactions and diffusion processes of these chemical species (chemical stage). During all the simulation, a geometrical model that describes the DNA content of a human diploid cell nucleus is taken into account. This model was generated with a new software (DnaFabric) developed in the frame of this work and has a molecular level of detail.The first results (in term of DNA strand breaks) obtained with this tool are detailed and compared with experimental data from the literature. The good agreement between the simulation results and those data shows the coherence of our modeling. The significant influence of the selection criteria used to identify the DNA damages is also demonstrated.
|
79 |
Etude moléculaire de mécanismes de résistance acquise aux dérivés du platine et évaluation pharmacologique de nouveaux dérivés du platine à activité antitumorale / Molecular assessment of acquired resistance to platinum derivates and pharmacological evaluation of new platinum complexesMoretto, Johnny 03 October 2011 (has links)
Les dérivés du platine (i.e. cisplatine et oxaliplatine) représentent une des classes pharmacologiques les plus utilisées en oncologie, notamment dans les cancers colorectaux. Cependant, leur efficacité est limitée par l’émergence de résistances acquises. Nous avons alors étudié in vitro dans différentes lignées cancéreuses coliques humaines (HCT116, LoVo, SW480, HT29) les conséquences à long terme des dérivés du platine lorsqu’ils sont utilisés dans des conditions tenant compte de la sensibilité cellulaire. Ils provoquent des cassures double-brin (objectivées par l’expression de -H2AX), dont le taux dépend du système p53/p21, du complexe MRN et du niveau de stabilité microsatellitaire. Ils induisent aux plus fortes concentrations ( IC50), une cytostase qui s’accompagne de la formation de cellules géantes macrocytaires et endopolyploïdes, dont certaines acquièrent un phénotype sénescent. Dans le même temps, l’activation des mécanismes de réparation des CDB varie en fonction du dérivé du Pt et de la lignée considérée. A plus long terme, des cellules « résistantes » se développent : elles ont une ploïdie normale, et se caractérisent par une plus grande résistance aux dérivés du platine et la présence de novo d’anomalies chromosomiques récurrentes leur conférant un avantage sélectif potentiel en terme de prolifération. Ces mécanismes pourraient contribuer à expliquer en clinique la survenue d’une résistance à une chimiothérapie pourtant initialement efficace. Parallèlement, nous avons évalué in vitro et in vivo de nouveaux complexes de platine obtenus par pharmacomodulation, et associant un noyau intercalant dérivé de la phénanthroline ou de l’acridine. Les résultats in vitro montrent globalement une amélioration significative de la cytotoxicité. Toutefois, un des composés les plus cytotoxiques in vitro, le [(5,6-diméthyl-1,10-phénanthroline) (S,S-diaminocyclohexane)platine(II)], n’exerce pas d’effet antitumoral dans un modèle syngénique de cancer colique chez le rat BD-IX, mais montre une néphrotoxicité marquée. Ces données soulignent l’insuffisance du criblage in vitro et la discordance in vitro/in vivo. / Platinum compounds (i.e. cisplatin and oxaliplatin) represent a class of DNA-damaging agents widely used in clinic especially in the treatment of colorectal cancer. However, their effectiveness is restricted because of emergence of acquired resistance. Therefore, long-term effects of platinum compounds, used at conditions reflecting the in vitro cellular sensibility, were assessed in vitro in several human colon cancer cell lines (HCT116, LoVo, SW480, HT29). Their cytotoxicity is related to double-strand break formation (objectived by -H2AX expression), which depends on p53/p21 status, MRN complex and microsatellite stability of the cell line. Furthermore, at the highest concentrations ( IC50), cells stopped their proliferation and exhibited phenotypic alterations resulting from progressive polyploidy and/or senescence. In the same time, DNA repair systems are activated differently according to the platinum derivate and the cell line. At later stages, cells that are more resistant to platinum compounds than their parental counterpart emerged. They have recovered their basal level of ploidy and acquired de novo recurrent chromosomal aberrations. Such mechanisms could contribute to the recurrence of clinical malignancies, even after an effective initial response to chemotherapy. On the other hand, pharmacological evaluation of new platinum compounds with phenanthroline or acridine intercalating ligand was performed in vitro and in vivo. Globally, many compounds exhibited a higher cytotoxic effect than cisplatin or oxaliplatin in all cell lines studied. Unfortunately, in vivo investigations of one of the most cytotoxic compounds ([(5,6-dimethyl-1,10-phenanthroline) (S,S-diaminocyclohexane)platinum(II)]) did not exhibit antitumor effect in BD-IX rats bearing peritoneal carcinomatosis, whatever the route of administration used (systemic or local), but it displayed nephrotoxicity. These results query the in vitro/in vivo correlation and reconsider the place of the in vivo screening.
|
80 |
Rôle du système ubiquitine protéasome dans les séparations de phase nucléairesSen Nkwe Dibondo, Nadine 04 1900 (has links)
Le système ubiquitine-protéasome représente une plateforme de signalisation cellulaire chez les eucaryotes et joue un rôle majeur dans la coordination des processus cellulaires. Des progrès récents suggèrent que l’ubiquitination joue un rôle important dans les phénomènes de séparation de phase liquide-liquide (LLPS), un processus permettant la localisation d’une quantité accrue de protéines dans un compartiment subcellulaire, afin de réaliser une fonction biologique. En effet, il a été démontré que l’ubiquitination joue un rôle central dans les mécanismes qui gouvernent la LLPS durant la formation des granules de stress dans le cytoplasme ou les foci de réparation de l’ADN dans le noyau. D’autre part, chez la levure, des travaux ont montré que le protéasome est capable de s’assembler sous forme de granules dans le cytoplasme suite à un stress métabolique. Toutefois, les mécanismes par lesquels le système ubiquitine-protéasome ainsi que ses régulateurs contrôlent les processus de LLPS restent à déterminer.
Dans la première étude de cette thèse, nous avons investigué le mécanisme d’action de la déubiquitinase USP16, qui a été suggérée comme un régulateur négatif de la LLPS, empêchant la formation des foci de réparations de dommages à l’ADN. Cependant, nos résultats démontrent que USP16 est majoritairement cytoplasmique et que seulement une entrée forcée de USP16 dans le noyau empêche la formation des foci de réparation des cassures double brin induites par des radiations ionisagntes et ce en favorisant la déubiquitination de l’histone H2A. De plus, aucune translocation nucléaire de USP16 n’a été observée durant le cycle cellulaire ou suite à des dommages à l’ADN. Nos travaux montrent que USP16 est activement exclue du noyau via son signal d’export nucléaire et régulerait indirectement la LLPS menant à la formation des foci de réparation de l’ADN.
Dans la deuxième étude, nous décrivons le comportement dynamique des protéines du protéasome lors d’une LLPS induite par un stress métabolique. Nos résultats indiquent que le protéasome forme des foci distincts dans le noyau des cellules humaines en réponse à une privation de nutriments. Nous avons constaté que ces foci sont enrichis en ubiquitine conjuguée et nous avons démontré que le récepteur d’ubiquitine Rad23B ainsi que l’absence des acides aminés non essentiels sont des éléments clés nécessaires à l’assemblage de ces foci du
iv
protéasome. De plus, des expériences de survie cellulaire montrent que la présence de ces foci est associée à la mort des cellules par apoptose.
En conclusion, nos travaux mettent en lumière l’importance du système ubiquitine-protéasome dans la formation et la régulation des foci cellulaires suite à une LLPS. De même, cette étude aidera également à approfondir notre compréhension sur les mécanismes qui gouvernent l’homéostasie des protéines, la survie cellulaire et le développement du cancer. / The ubiquitin-proteasome system represents a major cell-signaling platform in eukaryotes and plays a pivotal role in the coordination of cellular processes. Recent studies provided evidence that ubiquitination plays a role in liquid-liquid phase separation (LLPS), a process that results in the localization of highly increased levels of a protein in a defined subcellular compartment, in order to achieve a biological function. Indeed, ubiquitination has been shown to play a central role in the mechanisms that govern LLPS and subsequent formation of stress granules in the cytoplasm or the DNA repair foci in the nucleus. On the other hand, several studies have shown that the proteasome itself is able to form granules in the cytoplasm following metabolic stress in yeasts. However, the mechanisms by which the ubiquitin-proteasome system and its regulators control LLPS processes remain to be determined. In the first study of this thesis, we investigated the mechanism of action of USP16 deubiquitinase, which has been suggested as a negative regulator of LLPS preventing the formation of DNA damage repair foci. However, our results demonstrate that USP16 is predominantly cytoplasmic and that only enforced nuclear entry of USP16 prevents the formation of repair foci after double strand breaks induced by ionizing radiation, and this by promoting the deubiquitination of histone H2A. In addition, no nuclear translocation of USP16 was observed during cell cycle or following DNA damage. Our study shows that USP16 is actively excluded from the nucleus via its nuclear export signal and would indirectly regulate LLPS that lead to DNA repair foci. In the second study, we describe the dynamic behavior of proteasome proteins during metabolic stress, a process that involves LLPS. Our results indicate that the proteasome forms distinct foci in the nucleus of human cells in response to nutrients deprivation. We found that these foci are enriched with conjugated ubiquitin and demonstrated that the ubiquitin receptor Rad23B as well as the absence of nonessential amino acids are the key elements necessary for the assembly of these proteasome foci. In addition, cell survival experiments show that the presence of these foci is associated with cell death by apoptosis. In conclusion, our work has shed new light on the importance of the ubiquitin-proteasome system in the formation and regulation of cell foci following LLPS. Likewise, this
vi
study will also help deepen our understanding of the mechanisms leading to protein homeostasis, cell survival and cancer development.
|
Page generated in 0.1079 seconds