Spelling suggestions: "subject:"bariumtitanat"" "subject:"strontium""
31 |
Präparation und Charakterisierung ferroelektrischer perowskitischer Multilagen.: Preparation and electrical characterisation of multilayers of ferroelectric Perovskites.Köbernik, Gert 22 March 2004 (has links)
This work deals with the structural and dielectric properties of Bariumtitanate (BTO) / Strontiumtitanate (STO) superlattices. The investigations were carried during the research for a doctoral thesis on the IFW Dresden, Institute for Metallic Materials (under supervision of Prof. Schulz). These multilayers have been prepared on single crystalline STO of (100) and (111) orientated substrates. All films where grown in an epitaxial mode. Additional superlattices and Bariumstrontiumtitanate (BSTO) thin films on silicon substrates with platinum bottom electrodes have been prepared. Thereby, (111) fibre-textured polycrystalline superlattices were produced. According to our knowledge this result was achieved for the first time (is unique in the world at the moment). According to high resolution TEM investigations of (001) oriented superlattices multilayers with atomically thin interfaces without noticeable interdiffusion have been prepared. XRD pattern of a multilayer consisting of BTO and STO monolayers that have only a thickness adequate one unit cell of BTO respective STO confirm this assumption. Multilayers on (111) oriented STO substrates show a much higher interface roughness than (001) orientated films. Regarding to the examinations in this thesis it is suggested that the roughness is correlated with the reduction of internal stresses by deformation of the stack and not with interdiffusion between the monolayers. For electrical measurements the film thickness has been varied from 30 nm to 300 nm and the periodicity in the range from 0.8 nm to 20 nm. Additionally, BSTO films of equivalent thickness and integral chemical composition were produced. Dielectical measurements were carried out in the temperature range from 20 K to 600 K and hysteresis measurements were done. It has to be pointed out, that multilayers have always lower dielectrical performances then BSTO films. In all cases the dielectric constant (DC) decreases with decreasing film thickness. Multilayers of a small periodicity show the highest DC?s, decreasing with increasing monolayer thickness in all cases. The maximum of DC shifted with decreasing film thickness to higher temperatures thus correlating with an increase of the out of plane lattice parameter. In this paper the mismatch between the stack respectivly the BSTO layers and the substrate has widely been discussed. In the case of BSTO the dielectric data can be qualitatively explained with the theory of strained films, developed mainly by Pertsev, under the assumption of a strain gradient in the thin film. Strain effects do also play an important role in ferroelectric multilayers as well as size and coupling effects between the monolayers. An adequate theory for the description of the dielectric behaviour of the ferroelectric superlattice produced during this research does yet not exist. Some thesis where pointed out, which effects have to be essentially included in to a consistent theory of ferroelectric multilayer. Some practical tips are also given, how to prepare monolayers and superlattices with very high DC and exellent hysteretic behaviour. / Es wurden (001) und (111) orientierte symmetrische BTO/STO-Multilagen auf niobdotierten STO-Einkristallen abgeschieden. Hierbei wurde sowohl die Gesamtschichtdicke, als auch deren Periodizität variiert. Zum Vergleich wurden weiterhin Ba0.5Sr0.5TiO3-Mischschichten unterschiedlicher Dicke präpariert. Aus den HRTEM und XRD Untersuchungen kann geschlossen werden, dass alle erhaltenen Schichten sowohl phasenrein als auch perfekt biaxial texturiert sind. Im Falle der (001) orientierten Multilagen konnten atomar scharfe Grenzflächen zwischen Einzellagen erhalten werden, wobei sich die Einzellagendicke bis auf eine Monolage (0.4 nm) reduzieren lässt. Aus der Schichtdickenabhängigkeit von d(001), dem mittleren out-of-plane Gitterparameter der Schicht, wird geschlossen, dass die Schichten auf den STO-Einkristallen Spannungsgradienten in den Schicht-normalen besitzen und an der Grenzfläche zum Substrat am stärksten verspannt sind. Die (111) orientierten Multilagen auf den STO-Einkristallen zeigen gegenüber den Schichten auf den (100) orientierten STO-Einkristallen eine deutlich erhöhte Interfacerauhigkeit. Vermutet wird, dass dies einerseits durch die andere kristallographische Orientierung der Wachstumsnormalen bedingt ist, weil damit jeweils keine geschlossenen SrO- bzw. BaO- und TiO3-Lagen ausgebildet werden. Andererseits zeigen die TEM-Aufnahmen eine deutliche Zunahme der Welligkeit der Einzellagen mit wachsendem Abstand vom Substrat, die rein mechanischen Effekten zugeschrieben wird. Die Verwölbung der Einzellagen könnte damit der Reduzierung der mechanischen Energie innerhalb des Systems dienen, wobei die Netzebenen dem Verlauf der Einzellagen folgen. Auf platinbeschichteten Siliziumsubstraten konnten erstmals phasenreine (111) fasertexturierte Mischschichten und BTO/STO-Multilagen abgeschieden werden. Grundlage hierfür war die Optimierung des Pt/Ti/SiO2/Si Schichtsystems hinsichtlich seiner thermischen Stabilität bis zu 800°C. Die Textur der Schichten wird von der Platingrundelektrode übernommen und deren Rauhigkeit teilweise verstärkt. Eine mechanische Verwölbung der Einzellagen konnte hier nicht beobachtet werden. Für die elektrischen Messungen wurden auf allen Schichten etwa 50 nm dicke Platinelektroden durch eine Hartmaske mittels Elektronenstrahlverdampfung im Hochvakuum bei etwa 300°C aufgebracht. Anschließend wurden die Schichten an Luft getempert, um das Sauerstoffdefizit, dass sich bei der Elektrodenabscheidung einstellt, auszugleichen. Die elektrischen Messungen zeichnen sich durch den sehr großen untersuchten Temperaturbereich aus. Temperaturabhängige Messungen im Bereich von 30-600 K finden sich für ferroelektrische Dünnschichten sehr selten in der Literatur und stellen für BTO/STO-Multilagen ein Novum dar. Auch die biasabhängige und teilweise auch temperaturabhängige Messung der Kapazität der Multilagen (C-V-Messungen) ist bisher einmalig. Durch die temperaturabhängigen Hysteresemessungen wurden Einblicke in den elektrischen Polungszustand der Schichten erhalten. Dadurch wird eine sinnvolle Interpretation der ε(T)-Kurven erst möglich. Der Vorteil der Integration des Polarisationsstromes unter Verwendung einer Dreieckspannung als Messsignal besteht in der direkten physikalischen Aussage der Strom-Spannungskurven über die Schaltspannung der Schichten.
|
32 |
Defect-induced local electronic structure modifications within the system SrO - SrTiO3 - TiO2Zschornak, Matthias 05 August 2015 (has links) (PDF)
Owing to their versatile orbital character with both local and highly dispersive degrees of freedom, transition metal oxides span the range of ionic, covalent and metallic bonding. They exhibit a vast diversity of electronic phenomena such as high dielectric, piezoelectric, pyroelectric, ferroelectric, magnetic, multiferroic, catalytic, redox, and superconductive properties. The nature of these properties arises from sensitive details in the electronic structure, e.g. orbital mixing and orbital hybridization, due to non-stoichiometry, atomic displacements, broken symmetries etc., and their coupling with external perturbations.
In the work presented here, these variations of the electronic structure of crystals due to structural and electronic defects have been investigated, exemplarily for the quasi-binary system SrO - SrTiO3 - TiO2. A number of binary and ternary structures have been studied, both experimentally as well as by means of electronic modeling. The applied methods comprise Resonant X-ray Scattering techniques like Diffraction Anomalous Fine Structure, Anisotropy of Anomalous Scattering and X-ray Absorption Fine Structure, and simultaneously extensive electronic calculations by means of Density Functional Theory and Finite Difference Method Near-Edge Structure to gain a thorough physical understanding of the underlying processes, interactions and dynamics.
It is analyzed in detail how compositional variations, e.g. manifesting as oxygen vacancies or ordered stacking faults, alter the short-range order and affect the electronic structure, and how the severe changes in mechanical, optical, electrical as well as electrochemical properties evolve. Various symmetry-property relations have been concluded and interpreted on the basis of these modifications in electronic structure for the orbital structure in rutile TiO2, for distorted TiO6 octahedra and related switching mechanisms of the Ti valence, for elasticity and resistivity in strontium titanate, and for surface relaxations in Ruddlesden-Popper phases.
Highlights of the thesis include in particular the methodical development regarding Resonant X-Ray Diffraction, such as the first use of partially forbidden reflections to get the complete phase information not only of the tensorial structure factor but of each individual atomic scattering tensor for a whole spectrum of energies, as well as the determination of orbital degrees of freedom and details of the partial local density of states from these tensors.
On the material side, the most prominent results are the identification of the migration-induced field-stabilized polar phase and the exergonic redox behavior in SrTiO3 caused by defect migration and defect separation.
|
33 |
Defect-induced local electronic structure modifications within the system SrO - SrTiO3 - TiO2: symmetry and disorderZschornak, Matthias 08 May 2015 (has links)
Owing to their versatile orbital character with both local and highly dispersive degrees of freedom, transition metal oxides span the range of ionic, covalent and metallic bonding. They exhibit a vast diversity of electronic phenomena such as high dielectric, piezoelectric, pyroelectric, ferroelectric, magnetic, multiferroic, catalytic, redox, and superconductive properties. The nature of these properties arises from sensitive details in the electronic structure, e.g. orbital mixing and orbital hybridization, due to non-stoichiometry, atomic displacements, broken symmetries etc., and their coupling with external perturbations.
In the work presented here, these variations of the electronic structure of crystals due to structural and electronic defects have been investigated, exemplarily for the quasi-binary system SrO - SrTiO3 - TiO2. A number of binary and ternary structures have been studied, both experimentally as well as by means of electronic modeling. The applied methods comprise Resonant X-ray Scattering techniques like Diffraction Anomalous Fine Structure, Anisotropy of Anomalous Scattering and X-ray Absorption Fine Structure, and simultaneously extensive electronic calculations by means of Density Functional Theory and Finite Difference Method Near-Edge Structure to gain a thorough physical understanding of the underlying processes, interactions and dynamics.
It is analyzed in detail how compositional variations, e.g. manifesting as oxygen vacancies or ordered stacking faults, alter the short-range order and affect the electronic structure, and how the severe changes in mechanical, optical, electrical as well as electrochemical properties evolve. Various symmetry-property relations have been concluded and interpreted on the basis of these modifications in electronic structure for the orbital structure in rutile TiO2, for distorted TiO6 octahedra and related switching mechanisms of the Ti valence, for elasticity and resistivity in strontium titanate, and for surface relaxations in Ruddlesden-Popper phases.
Highlights of the thesis include in particular the methodical development regarding Resonant X-Ray Diffraction, such as the first use of partially forbidden reflections to get the complete phase information not only of the tensorial structure factor but of each individual atomic scattering tensor for a whole spectrum of energies, as well as the determination of orbital degrees of freedom and details of the partial local density of states from these tensors.
On the material side, the most prominent results are the identification of the migration-induced field-stabilized polar phase and the exergonic redox behavior in SrTiO3 caused by defect migration and defect separation.
|
34 |
Pyroelektrische Materialien: elektrisch induzierte Phasenumwandlungen, thermisch stimulierte RadikalerzeugungMehner, Erik 17 October 2018 (has links)
Zur Messung pyrelektrischer Koeffzienten wurde ein Messplatz nach einem erweiterten SHARP-GARN-Verfahren entwickelt und zur Untersuchung von Phasenumwandlungen in Pyroelektrika eingesetzt. Einerseits konnten pyroelektrische Messungen im elektrischen Feld die Pyroelektrizität einer neuen durch elektrisch angetriebene Defektmigration erzeugten Phase in Strontiumtitanat nachweisen. Andererseits gelang es, Ferroelektrizität in der Hochtemperaturphase von Poly(Vinylidenfluorid-Trifluorethylen), mittels phasenreiner Präparation der Hochtemperaturphase unterhalb der CURIEtemperatur und anschließender Polarisierung, nachzuweisen. Ferner ließen sich mittels thermisch angeregter Pyroelektrika Redoxprozesse antreiben, was durch Desinfektion von Escherichia coli Bakterien in wässriger Lösung mittels Lithiumniobat und -tantalat gezeigt wurde. Die Hypothese der Desinfektion durch reaktive Sauerstoffspezies konnte durch spektroskopisch nachgewiesene OH-Radikale - erzeugt mittels thermisch angeregter Bariumtitanatnanopartikel - belegt werden.
|
35 |
Gepulste Laserabscheidung und Charakterisierung funktionaler oxidischer Dünnfilme und HeterostrukturenZippel, Jan 04 December 2012 (has links) (PDF)
In der vorliegenden Arbeit wird das Hauptaugenmerk auf die Untersuchung der Auswirkungen einer Modifikation der zugänglichen Prozessparameter auf die funktionalen Eigenschaften oxidischer Dünnfilme während der gepulsten Laserabscheidung (PLD) gelegt.
Der erste Teil der Arbeit stellt die Herstellung von BaTiO3/SrTiO3-Mehrfach-Heterostrukturen auf thermisch und chemisch vorbehandelten SrTiO3-Substraten mittels gepulster Laserabscheidung (PLD) vor. Die zugängliche in-situ Wachstumskontrolle durch ein reflection high-energy electron diffraction (RHEED)-System ermöglicht es die Wachstumsprozesse in Echtzeit zu überwachen. Angestrebt wird ein stabiler zwei-dimensionaler Wachstumsmodus, der neben glatten Grenzflächen auch eine hohe Dünnfilmqualität ermöglicht. Es wird erstmals die prinzipielle Anwendbarkeit von BaTiO3/SrTiO3-Heterostrukturen als Bragg-Spiegel aufgezeigt. Für BaTiO3- sowie SrTiO3-Dünnfilme wurden die PLD-Parameter Substrattemperatur, Sauerstoffpartialdruck, Energiedichte des Lasers sowie Flussdichte der Teilchen variiert und die Auswirkungen auf die strukturellen, optischen und Oberflächeneigenschaften mittels Röntgendiffraktometrie (XRD), spektraler Ellipsometrie (SE) und Rasterkraftmikroskopie (AFM) beleuchtet.
Im zweiten Teil werden ZnO/MgxZn1−xO-Quantengrabenstrukturen hetero- und homoepitaktisch auf thermisch vorbehandelten a-Saphir- respektive m- und a-orientierten ZnO-Einkristallen vorgestellt. Die Realisierung eines zwei-dimensionalen „layer-by-layer“ Wachstumsmodus wird für die Quantengrabenstrukturen aufgezeigt. Die Quantengrabenbreite lässt sich aus beobachteten RHEED-Oszillationen exakt bestimmen. Ein Vergleich zwischen, mittels Photolumineszenz gemessenen Quantengrabenübergangsenergien als Funktion der Grabenbreite mit theoretisch ermittelten Werten wird vorgestellt, wobei der Unterschied zwischen polaren und nicht-polaren Strukturen mit Blick auf eine Anwendung aufgezeigt wird. Für c-orientierte ZnO-Dünnfilme wird das Wachstum im Detail untersucht und ein alternativer Abscheideprozess im so genannten Intervall PLD-Verfahren vorgestellt.
Die Verifizierung der theoretischen Prognose einer ferromagnetischen Ordnung mit einer Curie-Temperatur oberhalb Raumtemperatur (RT) für kubische, Mangan stabilisierte Zirkondioxid (MnSZ)-Dünnfilme stellt den dritten Teil der Arbeit dar. Die strukturellen Eigenschaften der Dünnfilme werden mittels XRD, AFM sowie Transmissionselektronenmikroskopie (TEM) untersucht. Die Bedingungen einer erfolgreichen Stabilisierung der kubischen Kristallphase durch den Einbau von Mn wird aufgezeigt. Mittels Röntgenphotoelektronenspektroskopie (XPS) sowie Elektronenspinresonanz (EPR) wird der Ladungszustand der, in der Zirkondioxidmatrix eingebauten, Mn-Ionen ermittelt. Die elektrischen Eigenschaftenwerden durch Strom-Spannungsmessungen(IU) sowie der Leitungstyp durch Seebeck-Effekt Messungen charakterisiert. Zur Erhöhung der Leitfähigkeit werden die MnSZ Dünnfilme in verschiedenen Atmosphären thermisch behandelt und Veränderungen durch IU-Messungen aufgezeigt. Ergebnisse von optischen Untersuchungen mittels Transmissionsmessungen und KL werden
präsentiert. Superconducting quantum interference device (SQUID)-Magnetometrie wird zur
Charakterisierung der magnetischen Eigenschaften genutzt. Magnetische Ordnungen im Bereich zwischen 5 K ≤ T ≤ 300 K werden untersucht und der Einfluss von Defekten sowie einer thermischen Behandlung in verschiedenen Atmosphären auf die magnetischen Eigenschaften diskutiert.
|
36 |
Gepulste Laserabscheidung und Charakterisierung funktionaler oxidischer Dünnfilme und Heterostrukturen: Gepulste Laserabscheidung und Charakterisierung funktionaler oxidischerDünnfilme und HeterostrukturenZippel, Jan 09 November 2012 (has links)
In der vorliegenden Arbeit wird das Hauptaugenmerk auf die Untersuchung der Auswirkungen einer Modifikation der zugänglichen Prozessparameter auf die funktionalen Eigenschaften oxidischer Dünnfilme während der gepulsten Laserabscheidung (PLD) gelegt.
Der erste Teil der Arbeit stellt die Herstellung von BaTiO3/SrTiO3-Mehrfach-Heterostrukturen auf thermisch und chemisch vorbehandelten SrTiO3-Substraten mittels gepulster Laserabscheidung (PLD) vor. Die zugängliche in-situ Wachstumskontrolle durch ein reflection high-energy electron diffraction (RHEED)-System ermöglicht es die Wachstumsprozesse in Echtzeit zu überwachen. Angestrebt wird ein stabiler zwei-dimensionaler Wachstumsmodus, der neben glatten Grenzflächen auch eine hohe Dünnfilmqualität ermöglicht. Es wird erstmals die prinzipielle Anwendbarkeit von BaTiO3/SrTiO3-Heterostrukturen als Bragg-Spiegel aufgezeigt. Für BaTiO3- sowie SrTiO3-Dünnfilme wurden die PLD-Parameter Substrattemperatur, Sauerstoffpartialdruck, Energiedichte des Lasers sowie Flussdichte der Teilchen variiert und die Auswirkungen auf die strukturellen, optischen und Oberflächeneigenschaften mittels Röntgendiffraktometrie (XRD), spektraler Ellipsometrie (SE) und Rasterkraftmikroskopie (AFM) beleuchtet.
Im zweiten Teil werden ZnO/MgxZn1−xO-Quantengrabenstrukturen hetero- und homoepitaktisch auf thermisch vorbehandelten a-Saphir- respektive m- und a-orientierten ZnO-Einkristallen vorgestellt. Die Realisierung eines zwei-dimensionalen „layer-by-layer“ Wachstumsmodus wird für die Quantengrabenstrukturen aufgezeigt. Die Quantengrabenbreite lässt sich aus beobachteten RHEED-Oszillationen exakt bestimmen. Ein Vergleich zwischen, mittels Photolumineszenz gemessenen Quantengrabenübergangsenergien als Funktion der Grabenbreite mit theoretisch ermittelten Werten wird vorgestellt, wobei der Unterschied zwischen polaren und nicht-polaren Strukturen mit Blick auf eine Anwendung aufgezeigt wird. Für c-orientierte ZnO-Dünnfilme wird das Wachstum im Detail untersucht und ein alternativer Abscheideprozess im so genannten Intervall PLD-Verfahren vorgestellt.
Die Verifizierung der theoretischen Prognose einer ferromagnetischen Ordnung mit einer Curie-Temperatur oberhalb Raumtemperatur (RT) für kubische, Mangan stabilisierte Zirkondioxid (MnSZ)-Dünnfilme stellt den dritten Teil der Arbeit dar. Die strukturellen Eigenschaften der Dünnfilme werden mittels XRD, AFM sowie Transmissionselektronenmikroskopie (TEM) untersucht. Die Bedingungen einer erfolgreichen Stabilisierung der kubischen Kristallphase durch den Einbau von Mn wird aufgezeigt. Mittels Röntgenphotoelektronenspektroskopie (XPS) sowie Elektronenspinresonanz (EPR) wird der Ladungszustand der, in der Zirkondioxidmatrix eingebauten, Mn-Ionen ermittelt. Die elektrischen Eigenschaftenwerden durch Strom-Spannungsmessungen(IU) sowie der Leitungstyp durch Seebeck-Effekt Messungen charakterisiert. Zur Erhöhung der Leitfähigkeit werden die MnSZ Dünnfilme in verschiedenen Atmosphären thermisch behandelt und Veränderungen durch IU-Messungen aufgezeigt. Ergebnisse von optischen Untersuchungen mittels Transmissionsmessungen und KL werden
präsentiert. Superconducting quantum interference device (SQUID)-Magnetometrie wird zur
Charakterisierung der magnetischen Eigenschaften genutzt. Magnetische Ordnungen im Bereich zwischen 5 K ≤ T ≤ 300 K werden untersucht und der Einfluss von Defekten sowie einer thermischen Behandlung in verschiedenen Atmosphären auf die magnetischen Eigenschaften diskutiert.:Inhaltsverzeichnis
1. Einleitung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1. Thermodynamische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1. Konzept der Übersättigung . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Beschreibung der Grenz- bzw. Oberfläche . . . . . . . . . . . . . . 10
2.2. Keimbildung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1. Thermodynamische Grundlagen der Keimbildung . . . . . .. . . . 12
2.2.2. Atomistische Beschreibung der Keimbildung . . . . . . . . . . . . . 14
2.3. Besonderheiten der Schichtbildung in Homo- und Heteroepitaxie 16
2.3.1. Homoepitaxie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2. Heteroepitaxie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4. Wachstumskinetik in der gepulsten Laserabscheidung . . . . . . . 19
3. Experimentelle Details 21
3.1. Probenherstellung – Gepulste Laser Abscheidung (PLD) . . . . . . 21
3.1.1. Allgemeine Grundlagen der PLD . . . . . . . .. . . . . . . . . . . . . . . . 21
3.1.2. Reflection high-energy electron diffraction . . . . . . . . . . . . . . . 23
3.1.3. PLD-Kammer mit in-situ RHEED . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4. PLD-Kammer ohne in-situ RHEED . . . . . . . . . . . . . . . . . . . . . . 28
3.2. Strukturelle und chemische Charakterisierung . . . . . . . . . . . . . 29
3.2.1. Röntgendiffraktometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2. Rasterkraftmikroskopie . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 31
3.2.3. Transmissionselektronenmikroskopie . . . . . . . . . . . . . . . . . . . 33
3.2.4. Energiedispersive Röntgenspektroskopie . . . . . . . . . . . . . . . . 33
3.2.5. Rutherford-Rückstreuspektrometrie und Partikel-induzierte Röntgenemission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.6. Röntgenphotoelektronenspektroskopie . . . . . . . . . . . . . . . . . . 34
3.3. Optische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1. Transmissionsmessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2. Lumineszenzmessungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3. Spektroskopische Ellipsometrie . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4. Raman-Streuung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4. Magnetische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1. Messungen der Magnetisierung mit einem SQUID-Magnetometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . 39
3.4.2. Elektronenspinresonanz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5. Elektrische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1. Strom-Spannungs-Messungen . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2. Seebeck Effekt Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4. Die Herstellung und Charakterisierung von BaTiO3/SrTiO3-Bragg-Spiegeln mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2. Bragg-Spiegel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3. Die Materialien Strontiumtitanat und Bariumtitanat . . . . . . . . . . 45
4.3.1. Kristallstruktur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2. Substrateigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4. Epitaktische BaTiO3-Dünnfilme . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.1. Heteroepitaktische BaTiO3-Dünnfilme auf SrTiO3 (001)-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.2. Initiale Wachstumsphasen von BaTiO3-Dünnfilmen auf SrTiO3 (001)-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.3. Auswirkung der PLD-Abscheideparameter auf epitaktische BaTiO3-Dünnfilme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.4.4. Veränderung der optischen Konstanten durch die Modifikation
der PLD-Abscheideparameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5. Epitaktische SrTiO3-Dünnfilmen . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.6. Abscheidung von BaTiO3/SrTiO3-Bragg-Spiegel . . . . . . . . . . . . . 73
4.6.1. BaTiO3/SrTiO3-Einfach–Heterostrukturen . . . . . . . . . . . . . . . . 73
4.6.2. BaTiO3/SrTiO3-Mehrfach–Heterostrukturen . . . . . . . . . . . . . . . 78
4.6.3. BaTiO3/SrTiO3-Bragg-Spiegel . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.4. Abschlussbemerkungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5. Die Herstellung und Charakterisierung von ZnO/MgxZn1−xO-Quantengräben mittels
PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2. Die Materialien ZnO und MgxZn1−xO . . . . . . . . . . . . . . . . . . . . . 88
5.2.1. ZnO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.2. MgxZn1−xO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3. Quantengrabenstrukturen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1. Exzitonen im Zinkoxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2. Quantum-Confined Stark Effect . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4. Die Abscheidung von ZnO- und MgxZn1−xO-Dünnfilmen mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1. Heteroepitaktische Abscheidung von ZnO- und MgxZn1−xO-Dünnfilmen auf a-Saphir-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2. Homoepitaktische Abscheidung von ZnO- und MgxZn1−xO-Dünnfilmen auf verschiedenen ZnO-Substraten . . . . . . . . . . . . . . . . 106
5.5. Die Herstellung von ZnO/MgxZn1−xO-Quantengrabenstrukturen auf verschiedenen Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5.1. Heteroepitaktische Quantengrabenstrukturen auf a-Saphir-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.5.2. Anmerkungen zu homoepitaktischen Quantengrabenstrukturen abgeschieden auf c-ZnO-Substraten . . . . . . . . . . . . . . . . . . . . . . . . 143
5.5.3. Homoepitaktischen Quantengrabenstrukturen abgeschieden auf nicht-polaren ZnO-Substraten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.5.4. Abschlussbemerkungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6. Die Herstellung und Charakterisierung von Mangan stabilisierten Zirkondioxid als potentieller verdünnter magnetischer Halbleiter mittels PLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.1. Einführung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.2. Theoretische Grundlagen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.1. Spintronik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.2.2. Verdünnte magnetische Halbleiter . . . . . . . . . . . . . . . . . . . . . 158
6.2.3. Ferromagnetische Kopplung in verdünnten magnetische Halbleitern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.3. Mangan stabilisiertes Zirkondioxid als möglicher DMS . . . . . . . . 162
6.4. Das Material Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.4.1. Die Phasen des Zirkondioxids . . . . . . . . . . . . . . . . . . . . . . . . . 164
6.5. Substrateigenschaften von (001) und (111) orientiertem Yttrium stabilisierten Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.6. Untersuchungen an Mangan stabilisierten Zirkondioxid Dünnfilmen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176
6.6.1. Strukturelle und chemische Charakterisierung . . . . . . . . . . . . 177
6.6.2. Analyse der unterschiedlichen Phasen im Mangan stabilisierten Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
6.6.3. Elektrische und optische Charakterisierung . . . . . . . . . . . . . . 203
6.6.4. Magnetische Charakterisierung von Mangan stabilisiertem Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
6.6.5. Magnetische Charakterisierung von nominell undotiertem Zirkondioxid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
6.6.6. MnSZ-Mehrfach-Heterostrukturen . . . . . . . . . . . . . . . . . . . . . 224
6.6.7. Einfluss einer thermischen Behandlung auf die magnetischen Eigenschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
6.6.8. Zusammenfassung der Messergebnisse . . . . . . . . . . . . . . . . 232
6.7. Abschlussbemerkung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7. Zusammenfassung und Ausblick . . . . . . . . . . . . . . . . . . . . . . . 237
8. Literaturverzeichnis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
A. Symbole und Abkürzungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
B. Liste der Veröffentlichungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
C. Danksagung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
D. Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286
E. Selbstständigkeitserklärung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
|
Page generated in 0.4336 seconds