• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 27
  • 20
  • 12
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synchronous Voltage Reversal Control of Thyristor Controlled Series Capacitor

Ängquist, Lennart January 2002 (has links)
Series compensation of transmission lines is an effectiveand cheap method of improving the power transmission systemperformance. Series capacitors virtually reduces the length ofthe line making it easier to keep all parts of the power systemrunning in synchronism and to maintain a constant voltage levelthroughout the system. In Sweden this technology has been inuse since almost 50 years. The possibility to improve the performance of the ACtransmission system utilizing power electronic equipment hasbeen discussed a lot since about ten years. Some newsemiconductor based concepts have been developed beside thesince long established HVDC and SVC technologies. The ThyristorControlled Series Capacitor (TCSC) is one such concept. Byvarying the inserted reactance an immediate and well-definedimpact on the active power flow in the transmission line isobtained. Several potential applications, specifically poweroscillation damping, benefit from this capability. The conceptimplied the requirement to design a semiconductor valve, whichcan be inserted directly in the high-voltage power circuit.This certainly presented a technical challenge but thestraightforward approach appeared to be a cost-effectivealternative with small losses. It was also realized that the TCSC exhibits quite differentbehaviour with respect to subsynchronous frequency componentsin the line current as compared to the fixed series capacitorbank. This was a very interesting aspect as the risk ofsubsynchronous resonance (SSR), which just involves such linecurrent components, has hampered the use of series compensationin power systems using thermal generating plants. The thesis deals with the modelling and control aspects ofTCSC. A simplifying concept, the equivalent, instantaneousvoltage reversal, is introduced to represent the action of thethyristor controlled inductive branch, which is connected inparallel with the series capacitor bank in the TCSC. The idealvoltage reversal is used in the thesis in order to describe andexplain the TCSC dynamics, to investigate its apparentimpedance at various frequencies, as a platform forsynthesizing the boost control system and as the base elementin deriving a linear, small-signal dynamical model of thethree-phase TCSC. Quantitative Feedback Theory (QFT) then hasbeen applied to the TCSC model in order to tune its boostregulator taking into account the typical variation ofparameters that exists in a power system. The impact of theboost control system with respect to damping of SSR is finallybeing briefly looked at. <b>Keywords:</b>Thyristor Controlled Series Capacitor, TCSC,FACTS, reactive power compensation, boost control, phasorestimation, Quantitative Feedback Theory, subsynchronousresonance, SSR.
22

Modeling and Control of VSC-HVDC Links Connected to Weak AC Systems

Zhang, Lidong January 2010 (has links)
For high-voltage direct-current (HVDC) transmission, the strength of the ac system is important for normal operation. An ac system can be considered as weak either because its impedance is high or its inertia is low. A typical high-impedance systemis when an HVDC link is terminated at a weak point of a large ac system where the short-circuit capacity of the ac system is low. Low-inertia systems are considered to have limited number of rotating machines, or no machines at all. Examples of such applications can be found when an HVDC link is powering an isand system, or if it is connected to a wind farm. One of the advantages of applying a voltage-source converter (VSC) based HVDC systemis its potential to be connected to very weak ac systems where the conventional linecommutated converter (LCC) based HVDC system has difficulties. In this thesis, the modeling and control issues for VSC-HVDC links connected to weak ac systems are investigated. In order to fully utilize the potential of the VSC-HVDC system for weak-ac-system connections, a novel control method, i.e., powersynchronization control, is proposed. By using power-synchronization control, the VSC resembles the dynamic behavior of a synchronous machine. Several additional functions, such as high-pass current control, current limitation, etc. are proposed to deal with  issues during operation. For modeling of ac/dc systems, the Jacobian transfer matrix is proposed as a unified modeling approach. With the ac Jacobian transfer matrix concept, a synchronous ac system is viewed upon as one multivariable feedback system. In the thesis, it is shown that the transmission zeros and poles of the Jacobian transfer matrix are closely related to several power-system stability phenomena. The similar modeling concept is extended to model a dc system with multiple VSCs. It is mathematically proven that the dc system is an inherently unstable process, which requires feedback controllers to be stabilized. For VSC-HVDC links using power-synchronization control, the short-circuit ratio (SCR) of the ac system is no longer a limiting factor, but rather the load angles. The righthalf plane (RHP) transmission zero of the ac Jacobian transfer matrix moves closer to the origin with larger load angles, which imposes a fundamental limitation on the achievable bandwidth of the VSC. As an example, it is shown that a VSC-HVDC link using powersynchronization control enables a power transmission of 0.86 p.u. from a system with an SCR of 1.2 to a system with an SCR of 1.0. For low-inertia systemconnections, simulation studies show that power-synchronization control is flexible for various operation modes related to island operation and handles the mode shifts seamlessly. / QC20100607
23

Synchronous Voltage Reversal Control of Thyristor Controlled Series Capacitor

Ängquist, Lennart January 2002 (has links)
<p>Series compensation of transmission lines is an effectiveand cheap method of improving the power transmission systemperformance. Series capacitors virtually reduces the length ofthe line making it easier to keep all parts of the power systemrunning in synchronism and to maintain a constant voltage levelthroughout the system. In Sweden this technology has been inuse since almost 50 years.</p><p>The possibility to improve the performance of the ACtransmission system utilizing power electronic equipment hasbeen discussed a lot since about ten years. Some newsemiconductor based concepts have been developed beside thesince long established HVDC and SVC technologies. The ThyristorControlled Series Capacitor (TCSC) is one such concept. Byvarying the inserted reactance an immediate and well-definedimpact on the active power flow in the transmission line isobtained. Several potential applications, specifically poweroscillation damping, benefit from this capability. The conceptimplied the requirement to design a semiconductor valve, whichcan be inserted directly in the high-voltage power circuit.This certainly presented a technical challenge but thestraightforward approach appeared to be a cost-effectivealternative with small losses.</p><p>It was also realized that the TCSC exhibits quite differentbehaviour with respect to subsynchronous frequency componentsin the line current as compared to the fixed series capacitorbank. This was a very interesting aspect as the risk ofsubsynchronous resonance (SSR), which just involves such linecurrent components, has hampered the use of series compensationin power systems using thermal generating plants.</p><p>The thesis deals with the modelling and control aspects ofTCSC. A simplifying concept, the equivalent, instantaneousvoltage reversal, is introduced to represent the action of thethyristor controlled inductive branch, which is connected inparallel with the series capacitor bank in the TCSC. The idealvoltage reversal is used in the thesis in order to describe andexplain the TCSC dynamics, to investigate its apparentimpedance at various frequencies, as a platform forsynthesizing the boost control system and as the base elementin deriving a linear, small-signal dynamical model of thethree-phase TCSC. Quantitative Feedback Theory (QFT) then hasbeen applied to the TCSC model in order to tune its boostregulator taking into account the typical variation ofparameters that exists in a power system. The impact of theboost control system with respect to damping of SSR is finallybeing briefly looked at.</p><p><b>Keywords:</b>Thyristor Controlled Series Capacitor, TCSC,FACTS, reactive power compensation, boost control, phasorestimation, Quantitative Feedback Theory, subsynchronousresonance, SSR.</p>
24

Analysis Of SubSynchronous Resonance With Voltage Source Converter Based FACTS And HVDC Controllers

Nagesh Prabhu, * 09 1900 (has links) (PDF)
No description available.
25

Aspects on Dynamic Power Flow Controllers and Related Devices for Increased Flexibility in Electric Power Systems

Johansson, Nicklas January 2011 (has links)
This thesis studies different aspects of Flexible AC Transmission System (FACTS) devices which are used to improve the power transfer capability and increase the controllability in electric power systems. In the thesis, different aspects on the usage and control of Dynamic Power Flow Controllers (DPFC) and related FACTS devices are studied. The DPFC is a combination of a Phase Shifting Transformer (PST) and a Thyristor Switched Series Capacitor (TSSC)/Thyristor Switched Series Reactor (TSSR). The thesis proposes and studies a new method, the Ideal Phase-Shifter (IPS) method, for selection and rating of Power Flow Controllers (PFC) in a power grid. The IPS method, which is based on steady-state calculations, is proposed as a first step in the design process for a PFC. The method uses the Power controller plane, introduced by Brochu et al in 1999. The IPS method extends the usage of decoupling methods in the Power controller plane to a power system of arbitrary size. The IPS method was in the thesis used to compare the ratings of different PFC:s required to improve the power transfer capability in two test systems. The studied devices were here the PST, the TSSC/TSSR and the DPFC. The thesis treats control of ideal Controlled Series Capacitors (CSC), TCSC, TSSC/TSSR, and DPFC. The goals of the FACTS controllers which are developed are Power Oscillation Damping (POD), fast power flow control, and transient stability improvement in the power system. New adaptive control strategies for POD and power flow control are proposed and studied in different models of power systems by time-domain simulations. A strategy for transient stability improvement is also proposed and studied. Additionally, different methods for study of Subsynchronous Resonance (SSR), which is associated with series compensation in power systems, are investigated. Here, four of the most common methods for frequency scanning to determine the electrical damping of subsynchronous oscillations in a power grid are studied. The study reveals significant differences of the electrical damping estimates of the studied standard methods when applied to a four-machine test system. / QC 20110819
26

Sintese de indutancia negativa para aplicação serie em redes de energia eletrica / Negative inductance synthesis for series applications on the electrical network

Silva, Leonardo de Araujo 30 March 2007 (has links)
Orientador: Jose Antenor Pomilio / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-09T17:17:10Z (GMT). No. of bitstreams: 1 Silva_LeonardodeAraujo_D.pdf: 14156071 bytes, checksum: f544bd5c73e51000deee838abcc80fa7 (MD5) Previous issue date: 2007 / Resumo: Nesta tese é introduzida uma nova estratégia de controle que permite a síntese de indutâncias negativas para realização da compensação série de linhas de transmissão. O método, que é baseado na estratégia SDR (Síntese Direta de Reatâncias), opera com realimentação de estados e requer a medição de variáveis locais. Em relação aos métodos tradicionais, usando capacitores, a compensação através de indutância negativa pode ter desempenho superior, pois é possível conseguir sistemas mais estáveis, sem risco de ressonâncias, e com desempenho dinâmico superior, o que permite a realização de outras funções desejáveis, tais como o amortecimento de oscilações eletromecânicas e a compensação de cintilação luminosa. Dada a elevada potência requerida pela aplicação, sugere-se a utilização do Conversor Multinível em Cascata Assimétrico, que apresenta alto rendimento e é capaz de produzir uma tensão de saída de baixo conteúdo harmônico. Para este conversor, foi introduzida uma estratégia de controle que permite uma implementação sem que sejam necessárias fontes CC. Sugere-se também um procedimento para escolha do capacitor de filtragem que permite uma redução da corrente no conversor para uma dada condição de operação. São apresentados alguns estudos sobre a estabilidade da compensação série com indutância negativa. Para a técnica de controle proposta, são realizados estudos de autovalores, que permitem verificar a robustez com variação de parâmetros. Através de simulações, verificasse a estabilidade com a presença de elementos não modelados na planta, como capacitâncias parasitas. Também são apresentados estudos sobre a estabilidade para um modelo de simulação da ressonância subsíncrona, que considera o modelo do gerador e características mecânicas do eixo da turbina. Os resultados obtidos com estes estudos de estabilidade, bem com os resultados experimentais, indicam que a técnica proposta é viável para a aplicação / Abstract: This thesis introduces a new control strategy of realizing negative inductances with static converters for series compensation of transmission lines. The proposed method, which is basedon DRS (Direct Reactance Synthesis) technique, requires state feedback of variables that can be measured locally. The use of negative inductances instead of capacitors may yield performance improvement because there is no risk of resonance and it is possible to obtain higher stability margins and better dynamic performance. Consequently, it is possible to realize some useful functions that are not possible with conventional strategies, just as flicker ompensation and smoothing of electromechanical oscillations. Series compensation requires high power static converters and, due to this, the use of the Asymmetrical Cascaded Multilevel Converters (ACMC) is suggested. This high efficiency power converter is capable of producing a low THD output voltage using less power switches than other topologies. This thesis also introduces a DC control strategy for ACMC, which may allow negative inductance implementation with no DC sources. It is also suggested a design procedure for choosing the filter capacitance that reduces the required current capability of the power converter. Some studies regarding the stability of series compensation with negative inductances were carried on. For the new control strategy, it was possible to perform the eigenvalues analysis, that proved therobustness under some parameters variations. The stability considering elements that were not modeled, just as stray capacitances or generator and turbine shaft, were tested through simulations. The simulations and experimental results corroborate to prove that the control strategy is suitable for this application / Doutorado / Energia Eletrica / Doutor em Engenharia Elétrica
27

Hydropower generator and power system interaction

Bladh, Johan January 2012 (has links)
After decades of routine operation, the hydropower industry faces new challenges. Large-scale integration of other renewable sources of generation in the power system accentuates the role of hydropower as a regulating resource. At the same time, an extensive reinvestment programme has commenced where many old components and apparatus are being refurbished or replaced. Introduction of new technical solutions in existing power plants requires good systems knowledge and careful consideration. Important tools for research, development and analysis are suitable mathematical models, numerical simulation methods and laboratory equipment. This doctoral thesis is devoted to studies of the electromechanical interaction between hydropower units and the power system. The work encompasses development of mathematical models, empirical methods for system identification, as well as numerical and experimental studies of hydropower generator and power system interaction. Two generator modelling approaches are explored: one based on electromagnetic field theory and the finite element method, and one based on equivalent electric circuits. The finite element model is adapted for single-machine infinite-bus simulations by the addition of a network equivalent, a mechanical equation and a voltage regulator. Transient simulations using both finite element and equivalent circuit models indicate that the finite element model typically overestimates the synchronising and damping properties of the machine. Identification of model parameters is performed both numerically and experimentally. A complete set of equivalent circuit parameters is identified through finite element simulation of standard empirical test methods. Another machine model is identified experimentally through frequency response analysis. An extension to the well-known standstill frequency response (SSFR) test is explored, which involves measurement and analysis of damper winding quantities. The test is found to produce models that are suitable for transient power system analysis. Both experimental and numerical studies show that low resistance of the damper winding interpole connections are vital to achieve high attenuation of rotor angle oscillations. Hydropower generator and power system interaction is also studied experimentally during a full-scale startup test of the Nordic power system, where multiple synchronised data acquisition devices are used for measurement of both electrical and mechanical quantities. Observation of a subsynchronous power oscillation leads to an investigation of the torsional stability of hydropower units. In accordance with previous studies, hydropower units are found to be mechanically resilient to subsynchronous power oscillations. However, like any other generating unit, they are dependent on sufficient electrical and mechanical damping. Two experimentally obtained hydraulic damping coefficients for a large Francis turbine runner are presented in the thesis.

Page generated in 0.0513 seconds