1 |
Low Dimensional Supersymmetric Gauge Theories and Mathematical ApplicationsZou, Hao 21 May 2021 (has links)
This thesis studies N=(2,2) gauged linear sigma models (GLSMs) and three-dimensional N=2 Chern-Simons-matter theories and their mathematical applications. After a brief review of GLSMs, we systematically study nonabelian GLSMs for symplectic and orthogonal Grassmannians, following up a proposal in the math community. As consistency checks, we have compared global symmetries, Witten indices, and Calabi-Yau conditions to geometric expectations. We also compute their nonabelian mirrors following the recently developed nonabelian mirror symmetry. In addition, for symplectic Grassmannians, we use the effective twisted superpotential on the Coulomb branch of the GLSM to calculate the ordinary and equivariant quantum cohomology of the space, matching results in the math literature. Then we discuss 3d gauge theories with Chern-Simons terms. We propose a complementary method to derive the quantum K-theory relations of projective spaces and Grassmannians from the corresponding 3d gauge theory with a suitable choice of the Chern-Simons levels. In the derivation, we compare to standard presentations in terms of Schubert cycles, and also propose a new description in terms of shifted Wilson lines, which can be generalized to symplectic Grassmannians. Using this method, we are able to obtain quantum K-theory relations, which match known math results, as well as make predictions. / Doctor of Philosophy / In this thesis, we study two specific models of supersymmetric gauge theories, namely two-dimensional N=(2,2) gauged linear sigma models (GLSMs) and three-dimensional N=2 Chern-Simons-matter theories. These models have played an important role in quantum field theory and string theory for decades, and generated many fruitful results, improving our understanding of Nature by drawing on many branches in mathematics, such as complex differential geometry, intersection theory, quantum cohomology/quantum K-theory, enumerative geometry, and many others. Specifically, this thesis is devoted to studying their applications in quantum cohomology and quantum K-theory. In the first part of this thesis, we systematically study two-dimensional GLSMs for symplectic and orthogonal Grassmannians, generalizing the study for ordinary Grassmannians. By analyzing the Coulomb vacua structure of the GLSMs for symplectic Grassmannians, we are able to obtain the ordinary and equivariant quantum cohomology for these spaces. A similar methodology applies to 3d Chern-Simons-matter theories and quantum K-theory, for which we propose a new description in terms of shifted Wilson lines.
|
2 |
Vides et modularité dans les théories de jauge supersymétriques N = 1* / Modularity and vacua in N = 1* supersymmetric gauge theoryBourget, Antoine 01 July 2016 (has links)
Nous explorons la structure des vides dans une déformation massive de la théorie de Yang-Mills maximalement supersymétrique en quatre dimensions. Sur un espace-temps topologiquement trivial, la théorie des orbites nilpotentes dans les algèbres de Lie rend possible le calcul exact de l'indice de Witten. Nous en donnons les fonctions génératrices pour les algèbres classiques, et recourons à un calcul explicite pour les exceptionnelles. Après compactification sur un cercle, un lien entre les théories de jauge supersymétriques et les systèmes intégrables est exploitable pour réduire la chasse aux vides à une extrémisation du hamiltonien de Calogero-Moser elliptique twisté. Une analyse soigneuse des propriétés globales du groupe de jauge et des opérateurs de ligne est nécessaire pour obtenir un accord parfait. En combinant exploration numérique sur ordinateur et contrôle analytique grâce à la théorie des formes modulaires, nous exhibons la structure des vides massifs pour des algèbres de rang petit, et mettons en évidence de nouvelles propriétés modulaires. Nous montrons que des branches de vides de masse nulle existent, et nous en donnons la structure exacte pour les algèbres de rang deux. / We investigate the vacuum structure of a massive deformation of the maximally supersymmetric Yang-Mills gauge theory in four dimensions. When the topology of spacetime is trivial, the Witten index can be computed exactly for any gauge group using the theory of nilpotent orbits in Lie algebras. We provide generating functions for classical algebras and an explicit calculation for the exceptional ones. Upon compactification on a circle, one can use a bridge between supersymmetric gauge theories and complex integrable systems to reduce the analysis of vacua to the search of extrema of the twisted elliptic Calogero-Moser Hamiltonian. A careful inspection of global properties of the gauge group and line operators are needed to reach total agreement. Using a combination of numerical exploration on a computer and analytical control through the theory of modular forms, we determine the structure of massive vacua for low-rank gauge algebras and exhibit new modular properties. We also show that massless branches of vacua can exist, and provide an analytic description for rank two gauge algebras.
|
3 |
TOPICS IN SUPERSYMMETRIC GAUGE THEORIES AND THE GAUGE-GRAVITY DUALITYEDALATI AHMADSARAEI, MOHAMMAD 05 October 2007 (has links)
No description available.
|
4 |
Superconformal indices, dualities and integrabilityGahramanov, Ilmar 29 July 2016 (has links)
In dieser Arbeit behandeln wir exakte, nicht-perturbative Ergebnisse, die mithilfe der superkonformen Index-Technik, in supersymmetrischen Eichtheorien mit vier Superladungen (d. h. N=1 Supersymmetrie in vier Dimensionen und N=2 in drei Dimensionen) gewonnen wurden. Wir benutzen die superkonforme Index-Technik um mehrere Dualitäts Vermutungen in supersymmetrischen Eichtheorien zu testen. Wir führen Tests der dreidimensionalen Spiegelsymmetrie und Seiberg ähnlicher Dualitäten durch. Das Ziel dieser Promotionsarbeit ist es moderne Fortschritte in nicht-perturbativen supersymmetrischen Eichtheorien und ihre Beziehung zu mathematischer Physik darzustellen. Im Speziellen diskutieren wir einige interessante Identitäten der Integrale, denen einfache und hypergeometrische Funktionen genügen und ihren Bezug zu supersymmetrischen Dualitäten in drei und vier Dimensionen. Methoden der exakten Berechnungen in supersymmertischen Eichtheorien sind auch auf integrierbare statistische Modelle anwendbar. Dies wird im letzten Kapitel der vorliegenden Arbeit behandelt. / In this thesis we discuss exact, non-perturbative results achieved using superconformal index technique in supersymmetric gauge theories with four supercharges (which is N = 1 supersymmetry in four dimensions and N = 2 supersymmetry in three). We use the superconformal index technique to test several duality conjectures for supersymmetric gauge theories. We perform tests of three-dimensional mirror symmetry and Seiberg-like dualities. The purpose of this thesis is to present recent progress in non-perturbative supersymmetric gauge theories in relation to mathematical physics. In particular, we discuss some interesting integral identities satisfied by basic and elliptic hypergeometric functions and their relation to supersymmetric dualities in three and four dimensions. Methods of exact computations in supersymmetric theories are also applicable to integrable statistical models, which we discuss in the last chapter of the thesis.
|
5 |
Laços de Wilson supersimétricos na correspondência AdS/CFT / Supersymmetric Wilson loops in the AdS/CFT correspondenceKuraoka, Dhyan Victor Hiromitsu 29 May 2013 (has links)
O objetivo desta dissertação é revisar os operadores laços de Wilson no contexto da correspondência AdS/CFT. Estes operadores, presentes em qualquer teoria de calibre, são importantes por nos fornecer um parâmetro de ordem para a transição de fase confinante/desconfinante. Além disso, eles são particularmente importantes no estudo da correspondência AdS/ CFT pois: i) Eles nos dão, em alguns casos, resultados exatos graças ao fato de poderem ser localizados em um modelo de matrizes, desta forma nos permitindo fazer testes altamente não triviais da correspondência; ii) Eles são os objetos da teoria de calibre que são duais as cordas propagando no interior do espaço, nos dando um rico dicionário entre quantidades no interior (AdS) e na borda do espaço (CFT). Depois de revisarmos os laços de Wilson em teorias de calibre e a correspondência Ads/CFT, introduziremos a definição dos laços de Wilson supersimétricos 1/2 BPS. Calcularemos eles para o caso de um acoplamento fraco e para qualquer outro valor da constante de acoplamento usando técnicas de modelos de matrizes. Finalmente, compararemos nossos resultados com computações de superfícies minimais no interior do espaço, encontrando uma concordância perfeita. / The aim of this thesis is to review Wilson loop operators in the contexto f the AdS/CFT correspondence. These operators, wich are present in any gauge theory, are important because they furnish an order parameter for confinement/deconfinement phase transitions. Besides this, they are particularly relevant in the study of the AdS/CFT correspondence because: i) they allow, in some cases, for exact results thanks to localization to matrix models and make it possible to perform highly non-trivial tests of the correspondence; ii) they are the gauge theory objects dual to strings propagating in the bulk of the space and give a rich dictionary between bulk (AdS) and boundary (CFT) quantities. After reviews of Wilson loops in gauge theories and of the Ads/CFT correspondence, we will introduce the definition of 1/2 BPS supersymmetric Wilson loops, we will compute them at weak coupling and then at any order in the coupling constant via matrix model techniques, and finally we will compare our results with minimal surface computations in the bulk, finding perfect agreement.
|
6 |
Laços de Wilson supersimétricos na correspondência AdS/CFT / Supersymmetric Wilson loops in the AdS/CFT correspondenceDhyan Victor Hiromitsu Kuraoka 29 May 2013 (has links)
O objetivo desta dissertação é revisar os operadores laços de Wilson no contexto da correspondência AdS/CFT. Estes operadores, presentes em qualquer teoria de calibre, são importantes por nos fornecer um parâmetro de ordem para a transição de fase confinante/desconfinante. Além disso, eles são particularmente importantes no estudo da correspondência AdS/ CFT pois: i) Eles nos dão, em alguns casos, resultados exatos graças ao fato de poderem ser localizados em um modelo de matrizes, desta forma nos permitindo fazer testes altamente não triviais da correspondência; ii) Eles são os objetos da teoria de calibre que são duais as cordas propagando no interior do espaço, nos dando um rico dicionário entre quantidades no interior (AdS) e na borda do espaço (CFT). Depois de revisarmos os laços de Wilson em teorias de calibre e a correspondência Ads/CFT, introduziremos a definição dos laços de Wilson supersimétricos 1/2 BPS. Calcularemos eles para o caso de um acoplamento fraco e para qualquer outro valor da constante de acoplamento usando técnicas de modelos de matrizes. Finalmente, compararemos nossos resultados com computações de superfícies minimais no interior do espaço, encontrando uma concordância perfeita. / The aim of this thesis is to review Wilson loop operators in the contexto f the AdS/CFT correspondence. These operators, wich are present in any gauge theory, are important because they furnish an order parameter for confinement/deconfinement phase transitions. Besides this, they are particularly relevant in the study of the AdS/CFT correspondence because: i) they allow, in some cases, for exact results thanks to localization to matrix models and make it possible to perform highly non-trivial tests of the correspondence; ii) they are the gauge theory objects dual to strings propagating in the bulk of the space and give a rich dictionary between bulk (AdS) and boundary (CFT) quantities. After reviews of Wilson loops in gauge theories and of the Ads/CFT correspondence, we will introduce the definition of 1/2 BPS supersymmetric Wilson loops, we will compute them at weak coupling and then at any order in the coupling constant via matrix model techniques, and finally we will compare our results with minimal surface computations in the bulk, finding perfect agreement.
|
Page generated in 0.1194 seconds