• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 6
  • 4
  • 1
  • 1
  • Tagged with
  • 68
  • 68
  • 68
  • 26
  • 23
  • 17
  • 16
  • 15
  • 13
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Machine Learning Models for Fueling Inaccuracy Detection using Gas Exchange Signals in Heavy-duty Vehicle Engines

Dufva, Johannes, Lindgren, Andreas January 2021 (has links)
Heavy-duty trucks are important links in the logistic chains of transport. Critical components in trucks include fuel injectors in which inaccuracies can lead to severe financial damage and higher emissions. Intelligent and efficient ways to detect such scenarios are thus of high importance. This thesis applies machine learning algorithms to measured or estimated engine data, focused on gas exchange signals, to detect inaccuracies in fueling quantities. The fueling inaccuracies considered were of low deviations from the nominal curve, with magnitudes not covered by the currently used fueling diagnostics. The data used for the models was generated from Scania test cell engines where different setups of injectors were deliberately set to over- or underfuel.  Seven different machine learning models were used on the data and evaluated on how well they could detect deviations from nominal fueling. The tests were mainly done with a pure data-driven approach but also improved through different data selection techniques and using domain knowledge. An investigation to connect the findings within the thesis to real customer data was initiated in order to make the results useful for e.g. predictive maintenance. The complications connected to why this was not ultimately achieved were discussed.
42

Magnificent beasts of the Milky Way: Hunting down stars with unusual infrared properties using supervised machine learning

Ahlvind, Julia January 2021 (has links)
The significant increase of astronomical data necessitates new strategies and developments to analyse a large amount of information, which no longer is efficient if done by hand. Supervised machine learning is an example of one such modern strategy. In this work, we apply the classification technique on Gaia+2MASS+WISE data to explore the usage of supervised machine learning on large astronomical archives. The idea is to create an algorithm that recognises entries with unusual infrared properties which could be interesting for follow-up observations. The programming is executed in MATLAB and the training of the algorithms in the classification learner application of MATLAB. Each catalogue; Gaia+2MASS+WISE contains ~109, 5×108 and 7×108 (The European Space Agency 2019, Skrutskie et al. 2006, R. M. Cutri IPAC/Caltech) entries respectively. The algorithms searches through a sample from these archives consisting of 765266 entries, corresponding to objects within a <500 pc range. The project resulted in a list of 57 entries with unusual infrared properties, out of which 8 targets showed none of the four common features that provide a natural physical explanation to the unconventional energy distribution. After more comprehensive studies of the aforementioned targets, we deem it necessary for further studies and observations on 2 out of the 8 targets (Nr.1 and Nr.8 in table 3) to establish their true nature. The results demonstrate the applicability of machine learning in astronomy as well as suggesting a sample of intriguing targets for further studies. / Inom astronomi samlas stora mängder data in kontinuerligt och dess tillväxt ökar snabbt för varje år. Detta medför att manuella analyser av datan blir mindre och mindre lönsama och kräver istället nya strategier och metoder där stora datamängder snabbare kan analyseras. Ett exempel på en sådan strategi är vägledd maskininlärning. I detta arbete utnyttjar vi en vägled maskininlärnings teknik kallad klassificering. Vi använder klassificerings tekniken på data från de tre stora astronomiska katalogerna Gaia+2MASS+WISE för att undersöka användningen av denna teknik på just stora astronomiska arkiv. Idén är att skapa en algorithm som identifierar objekt med okontroversiella infraröda egenskaper som kan vara intressanta för vidare observationer och analyser. Dessa ovanliga objekt är förväntade att ha en lägre emission i det optiska våglängdsområdet och en högre emission i det infraröda än vad vanligtvis är observerad för en stjärna. Programmeringen sker i MATLAB och träningsprocessen av algoritmerna i MATLABs applikation classification learner. Algoritmerna söker igenom en samling data bestående av 765266 objekt, från katalogerna Gaia+2MASS+WISE. Dessa kataloger innehåller totalt ~109, 5×108 och 7×108 (The European Space Agency 2019, Skrutskie et al. 2006, R. M. Cutri IPAC/Caltech) objekt vardera. Det begränsade dataset som algoritmerna söker igenom motsvarar objekt inom en radie av <500 pc. Många av de objekt som algoritmerna identifierade som ”ovanliga” tycks i själva verket vara nebulösa objekt. Den naturliga förklaringen för dess infraröda överskott är det omslutande stoft som ger upphov till värmestrålning i det infraröda. För att eliminera denna typ av objekt och fokusera sökningen på mer okonventionella objekt gjordes modifieringar av programmen. En av de huvudsakliga ändringarna var att introducera en tredje klass bestående av stjärnor inneslutna av stoft som vi kallar "YSO"-klassen. Ytterligare en ändring som medförde förbättrade resultat var att introducera koordninaterna i träningen samt vid den slutgiltiga klassificeringen och på så vis, identifiering av intressanta kandidater. Dessa justeringar resulterade i en minskad andelen nebulösa objekt i klassen av ”ovanliga” objekt som algoritmerna identifierade. Projektet resulterade i en lista av 57 objekt med ovanliga infraröda egenskaper. 8 av dessa objekt påvisade ingen av det fyra vanligt förekommande egenskaperna som kan ge en naturlig förklaring på dess överflöd av infraröd strålning. Dessa egenskaper är; nebulös omgivning eller påvisad stoft, variabilitet, Hα emission eller maser strålning. Efter vidare undersökning av de 8 tidigare nämnda objekt anser vi att 2 av dessa behöver vidare observationer och analys för att kunna fastslå dess sanna natur (Nr.1 och Nr.8 i tabell 3). Den infraröda strålningen är alltså inte enkelt förklarad för dessa 2 objekt. Resultaten av intressanta objekt samt övriga resultat från maskininlärningen, visar på att klassificeringstekniken inom maskininlärning är användbart på stora astronomiska datamängder.
43

Automatic loose gravel condition detection using acoustic observations

Kyros, Gionian, Myrén, Elias January 2022 (has links)
Evaluation of the road's condition and state is essential for its upkeep, especially when discussing gravel roads, for the following reasons, among other. When loose gravel is not adequately maintained, it can pose a hazard to drivers, who can lose control of their vehicle and cause accidents. Current maintenance procedures are either laborious or time-consuming. Road agencies and institutions are on the lookout for more effective techniques. This study seeks to establish an automatic method for estimating loose gravel using acoustic observation. On gravelroads, recordings from a car's interior were evaluated and matched to the road's state. The first strategy examined road sections with a four-tier (multiclass) manual classification, based on their perceived condition of loose gravel, in accordance with the Swedish road administration authority’s guidelines. The second, examined two tier (binary) manual classification, distinguishing between roads with low and high maintenance needs. Sound features were extracted and processed for subsequentanalysis. Several supervised machine learning methods and algorithms, combined with selected data preprocessing strategies, were deployed. The performance of each strategy and model is determined by assessing and evaluating their classification accuracy along with other performance metrics. The SVM classifier had the best performance in classifying both multiclass as well as binary gravel road conditions. SVM achieved an accuracy of 57.8% when classifying on a four-tier scale and an accuracy of 82% when classifying on a two-tier scale. These results indicate some merits of using audio features as predictive features in the automatic classification of loose gravel conditions on gravel roads.
44

Creating a Back Stock to Increase Order Delivery and Pickup Availability / Framtagning av ett baklager för att öka tillgängligheten av leverans och upphämtning av ordrar

Nguyen, John, Lindén, Kasper January 2019 (has links)
Apotek Hjärtat wants to keep developing their e-commerce website and improve retrieval and delivery of orders to customers. Click and Collect and Click and Express are two options for retrieving e-commerce orders that are available if all products in the order are present in the store. By implementing a back stock in the stores with popular e-commercial items, all products of an order will more often be present in the store. The back stock will in such a way increase the availability of Click and Collect and Click and Express. The goals for the study are to conduct a pilot study, compare methods and possible solutions to implement a model to reach the goals. The pilot study was made by studying previous works in mathematical statistics methods and machine learning methods. The statistical method was accomplished through the analytical tool Statistical Package for the Social Sciences (SPSS) and Java. The machine learning method was accomplished through Python and the Scikit-learn library. The machine learning method was performed by a regression algorithm that was used to find relations between category sales and pollen forecasts. The statistical and machine learning methods were compared to each other. Both gave identical results, but the machine learning method was more functional and easier to further develop and consequently was chosen. Several models were created for a few selected product categories. The categories that did not work for the models had an unrealistic amount of sold products. These amounts could be negative or extremely high when unknown inputs were introduced. A simulation was made of the back stock to estimate how it would increase the availability of Click and Collect/Click and Express. The machine learning models could need more data for more accurate predictions. A conclusion could be made though that is possible to predict the amount of sold products of certain categories such as Allergy and Child Medicine with pollen halt taken into account. / Apotek Hjärtat vill fortsätta utveckla sin e-handelssida och förbättra upphämtning och leverans av ordrar till kund. Click and Collect och Click and Express är två val för att hämta upp e-handelsordrar som finns tillgängliga om alla produkter i ordern finns i butik. Genom att implementera ett baklager i butiker med populära unika ehandelsprodukter kommer alla produkter i en order oftare att finnas i butik. Baklagret kommer på så vis öka tillgängligheten av Click and Collect och Click and Express. Målen är att utföra en förstudie, samt att jämföra och hitta en bra lösning att implementera en modell för att uppnå målen. Förstudien gick ut på att analysera tidigare arbeten inom matematiska statistikmetoder och maskininlärningsmetoder. Den statistiska metoden utfördes genom det analytiska verktyget Statistical Package for the Social Sciences (SPSS) och Java. Maskininlärningsmetoden utvecklades med hjälp av Python och Scikit-learn biblioteket. Maskinlärningsmetoden utfördes genom en regressionsalgoritm som användes för att ta fram flera modeller för relationer mellan försäljning av kategorier och pollenprognoser. Statistiska metoden och maskininlärningsmetoden jämfördes med varandra. Båda gav identiska resultat men maskininlärning var mer funktionellt och enklare att vidareutveckla och därför valdes den metoden. Flera olika modeller lyckades tas fram för en del produktkategorier. De kategorier som inte fungerade för modellerna hade orealistiska mängder sålda varor. Dessa mängder kunde vara negativa eller extremt höga när okända inputs introducerades. Med hjälp av simulationen var det möjligt att uppskatta hur baklagret skulle öka tillgängligheten av Click and Collect/Express. Maskininlärningsmodellerna skulle behöva mer data, som kommer i framtiden, för att ge en mer precis prediktering mellan pollenvärden. Som slutsats är det möjligt att använda dem i framtiden för vissa kategorier som allergi och barnmedicin.
45

Classification of Healthy and Alzheimer's Patients Using Electroencephalography and Supervised Machine Learning / Klassifiering av friska och alzheimers patienter med hjälp av elektroencefalografi och maskininlärning

Javanmardi, Ramtin, Rehman, Dawood January 2018 (has links)
Alzheimer’s is one of the most costly illnesses that exists today and the number of people with alzheimers diease is expected to increase with 100 million until the year 2050. The medication that exists today is most effective if Alzheimer’s is detected during early stages since these medications do not cure Alzheimer’s but slows down the progression of the disease. Electroencephalography (EEG) is a relatively cheap method in comparison to for example Magnetic Resonance Imaging when it comes to diagnostic tools. However it is not clear how to deduce whether a patient has Alzheimer’s disease just from EEG data when the analyst is a human. This is the underlying motivation for our investigation; can supervised machine learning methods be used for pattern recognition using only the spectral power of EEG data to tell whether an individual has alzheimer’s disease or not? The output accuracy of the trained supervised machine learning models showed an average accuracy of above 80%. This indicates that there is a difference in the neural oscillations of the brain between healthy individuals and alzheimer’s disease patients which the machine learning methods are able to detect using pattern recognition. / Alzheimer är en av de mest kostsamma sjukdomar som existerar idag och antalet människor med alzheimer förväntas öka med omkring 100 miljoner människor tills 2050. Den medicinska hjälp som finns tillgänglig idag är som mest effektiv om man upptäcker Alzheimer i ett tidigt stadium eftersom dagens mediciner inte botar sjukdomen utan fungerar som bromsmedicin. Elektroencefalografi är en relativt billig metod för diagnostisering jämfört med Magnetisk resonanstomografi. Det är emellertid inte tydligt hur en läkare eller annan tränad individ ska tolka EEG datan för att kunna avgöra om det är en patient med alzheimers som de kollar på. Så den bakomliggande motivation till vår undersökning är; Kan man med hjälp av övervakad maskininlärning i kombination med spektral kraft från EEG datorn skapa modeller som kan avgöra om en patient har alzheimers eller inte. Medelvärdet av våra modellers noggrannhet var över 80%. Detta tyder på att det finns en faktiskt skillnad mellan hjärna signalerna hos en patient med alzheimer och en frisk individ, och att man med hjälp av maskininlärning kan hitta dessa skillnader som en människa enkelt missar.
46

Data-Driven Traffic Forecasting for Completed Vehicle Simulation: : A Case Study with Volvo Test Trucks

Shahrokhi, Samaneh January 2023 (has links)
This thesis offers a thorough investigation into the application of machine learning algorithms for predicting the presence of vehicles in a traffic setting. The research primarily focuses on enhancing vehicle simulation by employing data-driven traffic prediction methods. The study approaches the problem as a binary classification task. Various supervised learning algorithms, including Random Forest (RF), Gradient Boosting (GB), Support Vector Machine (SVM), and Logistic Regression (LogReg) were evaluated and tested. The thesis encompasses six distinct implementations, each involving different combinations of algorithms, feature engineering, hyperparameter tuning, and data splitting. The performance of each model was assessed using metrics such as accuracy, precision, recall, and F1-score, and visualizations like ROC-AUC curves were used to gain insights into their discrimination capabilities. While the RF model achieved the highest accuracy at 97%, the AUC score of Combination 2 (RF+GB) suggests that this ensemble model could strike a better balance between high accuracy (86%) and effective class separation (99%). Ultimately, the study identifies an ensemble model as the preferred choice, leading to significant improvements in prediction accuracy. The research also explores working on the problem as a time-series prediction task, exploring the use of Long Short-Term Memory (LSTM) and Auto-Regressive Integrated Moving Average (Auto-ARIMA) models. However, we found that this approach was impractical due to the dataset’s discrete and non-sequential nature. This research contributes to the advancement of vehicle simulation and traffic forecasting, demonstrating the potential of machine learning in addressing complex real-world scenarios.
47

Classification Tree Based Algorithms in Studying Predictors for Long-Term Unemployment in Early Adulthood : An Exploratory Analysis Combining Supervised Machine Learning and Administrative Register Data

Kuikka, Sanni January 2020 (has links)
Unemployment at young age is a negative life event that has been found to have scarring effects for future life outcomes, especially when continuing long-term. Understanding precursors for long-term unemployment in early adulthood is important to be able to target policy interventions in critical junctures in the life course. Paths to unemployment are complex and a comprehensive outlook on the most important factors and mechanisms is difficult to obtain. This study proposes a data-driven, exploratory approach for studying individual and family level factors during ages 0-24, that predict long-term unemployment at the age of 25-30. A supervised machine learning approach was applied to understand associations deriving from longitudinal, individual-level administrative data from a full birth cohort in Finland. The data comprise information about physical and social wellbeing, life course events, as well as demographics, including the parents of the cohort members. Potential predictors were chosen from the data based on theories and previous research, and used to train a model aiming to correctly classify unemployed individuals. A CART algorithm was used to build a classification tree that reveals important variables, ranges of them as well as combinations of factors that together are predictive of long-term unemployment. A random forest algorithm was used to build several trees producing smoothed predictions that reduce overfitting of one tree. CARTs and random forest models were compared to each other to understand how they perform in a research task predicting life outcomes. Both individual and family level factors were found to be predictive of the outcome. Combinations of variables such as GPA lower than ~7.5, ego’s low education level, late work history start, depressive disorders and low parental education and income levels were found to be particularly predictive of unemployment. CART models correctly classified up to 87% of the unemployed, while misclassifying 70% of the employed and having 45% overall accuracy. Testing for CART model stability, finding consistency across several tree models improved robustness. Random forest correctly predicted up to 59% of the unemployed, while also correctly classifying 65% of the employed and producing robust results. The two algorithms together provided valuable insight for better understanding factors contributing to unemployment. The study shows promise for classification tree based methods in studying life course and life outcomes.
48

Predicting Consumer Purchase behavior using Automatic Machine Learning : A case study in online purchase flows / Prediktering av Konsumentbeteenden med Automatisk Maskininlärning : En fallstudie i onlinebaserade köpflöden

Sandström, Olle January 2022 (has links)
Online payment purchase flows are designed to be as effective and smooth as possible in regards to the user experience. The user is in the center of this process, who, to a certain degree decides whether the purchase eventually will be placed. What is left up to the payment provider is the process of enabling an effective purchase flow where information needs to be collected for various purposes. To design these purchase flows as efficiently as possible, this research investigates if and how consumer purchase behavior can be predicted. Which algorithms perform the best at modeling the outcome and what kind of underlying features can be used to model the outcome? The features are graded in regard to their feature importance to see how and how much they affect the best-performing model. To investigate consumer behavior, the task was set up as a supervised binary classification problem to model the outcome of user purchase sessions. Either the sessions result in a purchase or they do not. Several automatic machine learning (also referred to as automated machine learning) frameworks were considered before the choice of using H2O AutoML because of its historical performance on other supervised binary classification problems. The dataset contained information from user sessions relating to the consumer, the transaction, and the time when the purchase was initiated. These variables were either in a numerical or categorical format and were then evaluated using the SHAP importance metric as well as an aggregated SHAP summary plot, which describes how features are affecting the model. The results show that the Distributed Random Forest Algorithm performed the best, generating a 26 percentage points improvement in accuracy, predicting whether a session will be converted into a purchase from an undersampled baseline of 50%. Furthermore two of the most important features according to the model were categorical features related to the intersection of consumer and transaction information. Another time-based categorical variable also proved to be important in the model prediction. The research also shows that automatic machine learning has come a long way in the pre-processing of variables, enabling the developer of the models to more efficiently deploy these kinds of machine learning problems. The results echo some earlier findings confirming the possibility of predicting consumer purchase behavior and in particular, the outcome of a purchase flow consumer session. This implies that payment providers hypothetically could use these kinds of insights and predictions in the development of their flows, to individually cater to specific groups of consumers, enabling a more efficient and personalized payment flow. / Köpflöden för onlinebetalningar är utformade för att vara så effektiva och smidiga som möjligt med avseende på användarupplevelsen. I processen står användaren i centrum, som delvis avgör om köpet i slutändan konverteras eller ej. Det som är upp till betalningsleverantören är möjliggörandet av ett effektivt köpflöde där information behöver samlas in för olika ändamål. För att utforma dessa köpflöden så effektivt som möjligt undersöker detta arbete om och hur konsumenters köpbeteende kan förutsägas. Vilka algoritmer fungerar bäst på att modellera resultatet och vilken typ av underliggande attribut kan användas för att modellera resultatet? Dessa attribut graderas med avseende på deras relevans (feature importance) för att se hur och hur mycket de faktiskt påverkar den bäst presterande modellen. För att undersöka konsumentbeteendet sattes uppgiften upp som ett övervakat binärt klassificeringsproblem för att modellera resultatet av användarnas sessioner. Antingen resulterar sessionerna i ett köp eller så gör de det inte. Flera ramverk för automatisk maskininlärning övervägdes innan valet att använda H2O AutoML på grund av dess historiska prestanda på andra övervakade binära klassificeringsproblem. Dataunderlaget innehöll information från användarsessioner som rör konsumenten, transaktionen och tidpunkten då köpet påbörjades. Dessa variabler var antingen i ett numeriskt eller kategoriskt format och utvärderades sedan med hjälp av SHAP-viktighetsmåttet (SHAP Feature Importance) såväl som ett aggregerat SHAP-diagram, som beskriver hur de olika attributen påverkar modellen. Resultaten visar att Distributed Random Forest algoritmen presterade bäst, genererade en förbättring på 26 procentenheter i noggrannhet (accuracy), i prediktionen av ifall en session omvandlas till ett köp eller ej, baserat på ett undersamplat dataset med en baslinje på 50%. Dessutom var två av de viktigaste attributen enligt modellen kategoriska attribut relaterade till skärningspunkten mellan konsument- och transaktionsinformation. En annan tidsbaserad kategorisk variabel visade sig också vara viktig i prediktionen. Arbetet visar också att automatisk maskininlärning har kommit långt i förbearbetningen av variabler, vilket gör det möjligt för utvecklaren av modellerna att mer effektivt distribuera den här typen av maskininlärningsproblem. Resultaten återspeglar tidigare insikter som bekräftar möjligheten att förutsäga konsumenternas köpbeteende och i synnerhet resultatet av en konsumentsession i ett köpflöde. Detta innebär att betalningsleverantörer hypotetiskt skulle kunna använda denna typ av insikter och förutsägelser i utvecklingen av sina flöden, för att individuellt tillgodose specifika grupper av konsumenter, vilket möjliggör ett ännu mer effektivt och skräddarsytt betalningsflöde.
49

Predicting Customer Satisfaction in the Context of Last-Mile Delivery using Supervised and Automatic Machine Learning

Höggren, Carl January 2022 (has links)
The prevalence of online shopping has steadily risen in the last few years. In response to these changes, last-mile delivery services have emerged that enable goods to reach customers within a shorter timeframe compared to traditional logistics providers. However, with decreased lead times follows greater exposure to risks that directly influence customer satisfaction. More specifically, this report aims to investigate the extent to which Supervised and Automatic Machine Learning can be leveraged to extract those features that have the highest explanatory power dictating customer ratings. The implementation suggests that Random Forest Classifier outperforms both Multi-Layer Perceptron and Support Vector Machine in predicting customer ratings on a highly imbalanced version of the dataset, while AutoML soars when the dataset is subject to undersampling. Using Permutation Feature Importance and Shapley Additive Explanations, it was further concluded that whether the delivery is on time, whether the delivery is executed within the stated time window, and whether the delivery is executed during the morning, afternoon, or evening, are paramount drivers of customer ratings. / Förekomsten av online-shopping har kraftigt ökat de senaste åren. I kölvattnet av dessa förändringar har flertalet sista-milen företag etablerats som möjliggör för paket att nå kunder inom en kortare tidsperiod jämfört med traditionella logistikföretag. Däremot, med minskade ledtider följer större exponering mot risker som direkt påverkar kundernas upplevelse av sista-milen tjänsten. Givet detta syftar denna rapport till att undersöka huruvida övervakad och automtisk maskininlärning kan användas för att extrahera de parametrar som har störst påverkan på kundnöjdhet. Implementationen visar att slumpmässiga beslutsträd överträffar både neurala nätverk och stödvektorsmaskiner i syfte att förutspå kundnöjdhet på en obalanserad version av träningsdatan, medan automatisk maskininlärning överträffar övriga modeller på en balanserad version. Genom användning av metoderna Permutation Feature Importance och Shapley Additive Explanations, framgick att huruvida paketet är försenad, huruvida paketet levereras inom det angivet tidsfönster, och huruvida paketet anländer under morgonen, eftermiddagen, eller kvällen, har störst påverkan på kundnöjdhet.
50

Rotor temperature estimation in Induction Motors with Supervised Machine Learning / Rotor temperatur estimering i induktions motorer med övervakad maskininlärning

Gauffin, Christopher January 2023 (has links)
The electrification of the automotive industry and artificial intelligence are both growing rapidly and can be greatly beneficial for a more sustainable future when combined. Induction machines exhibit many complex relationships between physical and electromagnetic properties that must be calculated in order to produce the correct quantities of torque and speed commanded by the driver. This is why calculations that depend on sensory information are often cross-monitored and supervised to prevent unsafe conditions or damage to the equipment. Safe torque estimation has a substantial role in safety which requires the fulfillment of ASIL C defined by ISO 26262. The calculation of safe torque is based on rotor temperature among other safety parameters. Traditional methods of obtaining rotor temperature include thermal models, state observers, and active parameter estimation. These methods rely on complex mathematical equations that have the risk of being incorrect and can sometimes be unfeasible in a practical environment. Naturally, we investigate whether we can embed Artificial Neural Networks in the software since we know that they can solve complex non-linear problems exceptionally well when combined with supervised machine learning. To supervise and train the network, we must first acquire the rotor temperature in an experimental setting with a temperature sensor. Then we embed the model into the software of an electrical inverter produced by Inmotion using a microcontroller framework. This way, predictions of rotor temperature can be made in a live environment without the sensor. Using the mean squared error of the output and k-fold cross-validation we can apply a corrected t-test to make a comparison and statistical evaluation of the models. The results in this research prove that a machine learning model can in fact be used to replace the current traditional state observer model that is based on stator temperature. We find that when stator and rotor temperatures are uncorrelated and different, the machine learning model is able to generalize much more accurately passing the t-test with an alpha threshold of  α  = 0.05. Results also reveal that the obtained rotor temperature can be used as reliable input for estimating safe torque by evaluating the measurements from a live motor with a realistic safety requirement. / Elektrifieringen av fordonsindustrin och artificiell intelligens växer i snabb takt där de båda har stor potential att vara välgörande för en mer hållbar framtid när de kombineras. Induktionsmotorer grundar sig på många komplicerade förhållanden mellan fysiska och elektromagnetiska egenskaper som måste beräknas för att förse rätt vridmoment och hastighet som föraren begär. Därför är ofta beräkningar som beror på sensorisk information ofta korsövervakad för att förhindra osäkra tillstånd eller skada på utrustningen. Säker vridmoment estimering spelar en stor roll i säkerhet vilket kräver ett uppfyllande av ASIL C definerad av ISO 26262. Beräkningen av denna estimering baseras bland annat på rotor temperatur och andra säkra parametrar. Traditionella metoder för att ta fram rotor temperatur inkluderar termala metoder, tillståndsobserverare och aktiv parameter estimering. Dessa metoder grundar sig på komplexa matematiska ekvationer som har en risk att vara inkorrekta och är ibland ogenomförbara i en praktisk miljö. Naturligt sett så vill vi istället undersöka om vi kan bädda in artificiella neuronnät i mjukvaran eftersom vi vet att de är exceptionellt bra på att lösa komplexa icke-linjära problem i kombination med övervakad maskininlärning. För att övervaka och träna nätverket så måste vi först erhålla rotor temperaturen i en experimentiell miljö med en temperatur sensor. Sedan så kan vi bädda in modellen i mjukvaran för en elektrisk inverterare skapad av Inmotion med ett mikrokontroller ramverk. På så vis så kan vi göra förutsägelser av rotor temperaturen utan behovet av en sensor. Genom att använda medelkvadratfelet och en form av flerstegs validering så kan vi applicera ett korrigerat t-test för att jämföra och göra en statistisk evaluering av modellerna. Resultaten i denna studie visar på att en maskininlärning modell kan användas för att ersätta den nuvarande traditionella modellen som baserar sig på stator temperatur. Vi finner att när stator och rotor temperatur och okorrolerade och olika så generaliserar maskininlärningsmodellen mycket mer exakt och klarar t-testet med en alpha gräns på α = 0.05. Resultaten visar också på att den erhållna rotor temperaturen kan användas som en pålitlig inmatning för att estimera säkert vridmoment genom att evaluera mätningar från en riktig motor med ett realistiskt säkerhetskrav.

Page generated in 0.1301 seconds