• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 10
  • 5
  • 3
  • 2
  • Tagged with
  • 66
  • 18
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Receptivity of Boundary-Layer Flows over Flat and Curved Walls

Schrader, Lars-Uve January 2010 (has links)
Direct numerical simulations of the receptivity and instability of boundary layers on flat and curved surfaces are herein reported. Various flow models are considered with the aim to capture aspects of flows over straight and swept wings such as wall curvature, pressure variations, leading-edge effects, streamline curvature and crossflow. The first model problem presented, the flow over a swept flat plate, features a crossflow inside the boundary layer. The layer is unstable to steady and traveling crossflow vortices which are nearly aligned with the free stream. Wall roughness and free-stream vortical modes efficiently excite these crossflow modes, and the associated receptivity mechanisms are linear in an environment of low-amplitude perturbations. Receptivity coefficients for roughness elements with various length scales and for free-stream vortical modes with different wavenumbers and frequencies are reported. Key to the receptivity to free-stream vorticity is the upstream excitation of streamwise streaks evolving into crossflow modes. This mechanism is also active in the presence of free-stream turbulence. The second flow model is that of a Görtler boundary layer. This flow type forms on surfaces with concave curvature, e.g. the lower side of a turbine blade. The dominant instability, driven by a vertically varying centrifugal force, appears as pairs of steady, streamwise counter-rotating vortical rolls and streamwise streaks. The Görtler boundary layer is in particular receptive to free-stream vortical modes with zero and low frequencies. The associated mechanism builds on the excitation of upstream disturbance streaks from which the Görtler modes emerge, similar to the mechanism in swept-plate flows. The receptivity to free-stream vorticity can both be linear and nonlinear. In the presence of free-stream turbulence, nonlinear receptivity is more likely to trigger steady Görtler vortices than linear receptivity unless the frequencies of the free-stream fluctuations are very low. The third set of simulations considers the boundary layer on a flat plate with an elliptic leading edge. This study aims to identify the effect of the leading edge on the boundary-layer receptivity to impinging free-stream vortical modes. Three types of modes with streamwise, vertical and spanwise vorticity are considered. The two former types trigger streamwise disturbance streaks while the latter type excites Tollmien-Schlichting wave packets in the shear layer. Simulations with two leading edges of different bluntness demonstrate that the leading-edge shape hardly influences the receptivity to streamwise vortices, whereas it significantly enhances the receptivity to vertical and spanwise vortices. It is shown that the receptivity mechanism to vertical free-stream vorticity involves vortex stretching and tilting - physical processes which are clearly enhanced by blunt leading edges. The last flow configuration studied models an infinite wing at 45 degrees sweep. This model is the least idealized with respect to applications in aerospace engineering. The set-up mimics the wind-tunnel experiments carried out by Saric and coworkers at the Arizona State University in the 1990s. The numerical method is verified by simulating the excitation of steady crossflow vortices through micron-sized roughness as realized in the experiments. Moreover, the receptivity to free-stream vortical disturbances is investigated and it is shown that the boundary layer is most receptive, if the free-stream modes are closely aligned with the most unstable crossflow mode / QC 20101025
32

[pt] FONTES ÓPTICAS PARA TOMOGRAFIA DE COERÊNCIA ÓPTICA DE ALTA RESOLUÇÃO / [en] OPTICAL SOURCES FOR HIGH-RESOLUTION OPTICAL COHERENCE TOMOGRAPHY

ANDREW HENRY CORDES 10 November 2021 (has links)
[pt] Foram desenvolvidas fontes ópticas para obtenção de imagens por tomografia de coerência óptica com alta resolução. Dois tipos de abordagens foram realizados, uma com um laser contínuo sintonizável, que neste trabalho foi instrumentado com marcadores de frequência óptica, outra com uma fonte óptica pulsada de banda larga. Mediante um processo de calibricação desenvolvido neste trabalho, a fonte contínua forneceu resoluções de 8 μm e alcances até 0,5 mm, enquanto que a fonte pulsada forneceu resoluções de 3 μm e alcances de 300 μm. A fonte pulsada permitiu ainda a obtenção de imagens em tempo real com capacidade de captura de movimento do objeto. / [en] Optical sources to obtain images through high resolution optical coherence tomography were developed. Two approaches were taken, one with a continuously tunable external cavity laser which, in this work, was modified to produce optical frequency markers, the other with an ultra-wideband pulsed source. Using a calibration process we developed in this work the continuously tunable source continued to achieve resolutions 8 μm and ranges of 0.5 mm, while the pulsed source achieved resolutions of 3.3 μm and ranges of 300 μm. The pulsed source has the capacity to capture real time images.
33

Automating Telemetry Tracking Systems Operational Tests

Pedroza, Moises 10 1900 (has links)
International Telemetering Conference Proceedings / October 22-25, 2001 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Automating Telemetry Tracking Systems Operational Readiness Tests is a concept that was introduced at White Sands Missile Range in the early 1980’s. The idea was to determine the condition of a Telemetry Tracking System in a reliable manner in a short time as possible. A series of RF and Servo Tests designed to determine the condition of a Telemetry Tracking System was implemented using HP BASIC. The latest personal computers are faster and have more storage capacity plus the capability to be programmed in higher level languages such as C/C++ and LabView. This technology makes it easier to automate system tests. Many of these tests need to be conducted just prior to supporting a mission. Some tests are required to be performed on mobile systems after moving the system from one location to another, especially if the move was over long distances and rugged terrain. Tests such as G/T are conducted before each mission because it yields accurate information on the Figure of Merit, or, System Sensitivity. Noise Figure Measurements are more difficult to perform to determine the System Sensitivity since modern RF Subsystems have pre-amplifiers with Noise Figures of less than 1.0 dB. The “down-sizing” of personnel increases the possibility of failure in mission support scenarios due to the many critical readiness tests needed to assess the Telemetry Tracking Systems. Also, conventional test methods can be time consuming and are subject to human error. This paper describes four critical tests that have been automated to improve reliability of the test data and decrease the amount of time required to conduct the tests. The “C/C++” language was used to write the automation programs. More tests will be automated later.
34

Swept Source Polarization Sensitive Optical Coherence Tomography for retinal imaging at 1 micron

Elmaanaoui, Badr 20 October 2010 (has links)
Glaucoma is the second leading cause of blindness in the world. The disease is characterized by irreversible damage to retinal ganglion cells. Once glaucoma is detected, further vision loss can be prevented by pharmacological or surgical treatment. However, current diagnostic methods lack the necessary sensitivity and up to 40% of vision maybe irreversibly lost before detection occurs. A Swept Source Polarization-Sensitive Optical Coherence Tomography (SS-PSOCT) instrument for high sensitivity cross-sectional imaging of optical anisotropy in turbid media has been designed, constructed, and verified. A multiple-state nonlinear fitting algorithm was used to measure birefringence of the retinal nerve fiber layer with less than 1%± average uncertainty. To perform eye imaging efficiently a slit-lamp based interface for the SS-PSOCT instrument with a Line Scanning Laser Ophthalmoscope (LSLO) was used. This interface allowed for repeatable, stable, and registered measurements of the retina. A fixation target was used to stabilize the volunteer’s eye and image desired areas of the retina. The LSLO allowed for an optimization of the location of OCT scans on the retina and provided a fundus blood vessel signature for registration between different imaging sessions. The SS-PSOCT system was used to measure depth-resolved thickness, birefringence, phase retardation and optic axis orientation of the retinal nerve fiber layer in normal volunteers. The peripapillary area around the optic nerve head (ONH) is most sensitive to glaucoma changes and hence data was acquired as concentric ring scans about the ONH with increasing diameters from 2mm to 5mm. Imaging of normal patients showed that higher values of phase retardation occurred superior and inferior to the optic nerve head especially next to blood vessels and thicker parts of the retinal nerve fiber layer. / text
35

On stability and receptivity of boundary-layer flows

Shahriari, Nima January 2016 (has links)
This work is concerned with stability and receptivity analysis as well as studies on control of the laminar-turbulent transition in boundary-layer flows through direct numerical simulations. Various flow configurations are considered to address flow around straight and swept wings. The aim of this study is to contribute to a better understanding of stability characteristics and different means of transition control of such flows which are of great interest in aeronautical applications. Acoustic receptivity of flow over a finite-thickness flat plate with elliptic leading edge is considered. The objective is to compute receptivity coefficient defined as the relative amplitude of acoustic disturbances and TS wave. The existing results in the literature for this flow case plot a scattered image and are inconclusive. We have approached this problem in both compressible and incompressible frameworks and used high-order numerical methods. Our results have shown that the generally-accepted level of acoustic receptivity coefficient for this flow case is one order of magnitude too high. The continuous increase of computational power has enabled us to perform global stability analysis of three-dimensional boundary layers. A swept flat plate of FSC type boundary layer with surface roughness is considered. The aim is to determine the critical roughness height for which the flow becomes turbulent. Global stability characteristics of this flow have been addressed and sensitivity of such analysis to domain size and numerical parameters have been discussed. The last flow configuration studied here is infinite swept-wing flow. Two numerical set ups are considered which conform to wind-tunnel experiments where passive control of crossflow instabilities is investigated. Robustness of distributed roughness elements in the presence of acoustic waves have been studied. Moreover, ring-type plasma actuators are employed as virtual roughness elements to delay laminar-turbulent transition. / <p>QC 20161124</p>
36

Development of Extended-Depth Swept Source Optical Coherence Tomography for Applications in Ophthalmic Imaging of the Anterior and Posterior Eye

Dhalla, Al-Hafeez Zahir January 2012 (has links)
<p>Optical coherence tomography (OCT) is a non-invasive optical imaging modality that provides micron-scale resolution of tissue micro-structure over depth ranges of several millimeters. This imaging technique has had a profound effect on the field of ophthalmology, wherein it has become the standard of care for the diagnosis of many retinal pathologies. Applications of OCT in the anterior eye, as well as for imaging of coronary arteries and the gastro-intestinal tract, have also shown promise, but have not yet achieved widespread clinical use.</p><p>The usable imaging depth of OCT systems is most often limited by one of three factors: optical attenuation, inherent imaging range, or depth-of-focus. The first of these, optical attenuation, stems from the limitation that OCT only detects singly-scattered light. Thus, beyond a certain penetration depth into turbid media, essentially all of the incident light will have been multiply scattered, and can no longer be used for OCT imaging. For many applications (especially retinal imaging), optical attenuation is the most restrictive of the three imaging depth limitations. However, for some applications, especially anterior segment, cardiovascular (catheter-based) and GI (endoscopic) imaging, the usable imaging depth is often not limited by optical attenuation, but rather by the inherent imaging depth of the OCT systems. This inherent imaging depth, which is specific to only Fourier Domain OCT, arises due to two factors: sensitivity fall-off and the complex conjugate ambiguity. Finally, due to the trade-off between lateral resolution and axial depth-of-focus inherent in diffractive optical systems, additional depth limitations sometimes arises in either high lateral resolution or extended depth OCT imaging systems. The depth-of-focus limitation is most apparent in applications such as adaptive optics (AO-) OCT imaging of the retina, and extended depth imaging of the ocular anterior segment.</p><p>In this dissertation, techniques for extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.</p> / Dissertation
37

Navier-stokes Calculations Over Swept Wings

Sahin, Pinar 01 September 2006 (has links) (PDF)
In this study, the non-equilibrium Johnson and King Turbulence Model (JK model) is implemented in a three-dimensional, Navier-Stokes flow solver. The main program is a structured Euler/Navier-Stokes flow solver in which spatial discretization is accomplished by a finite volume formulation and a multigrid technique is used as a convergence accelerator. The aim is the validation of this in-house developed CFD (Computational Fluid Dynamics) tool with this enhanced enlarged capability in order to obtain a reliable flow solver that can solve flows over swept wings accurately. Various test cases were evaluated against reference solutions in order to demonstrate the accuracy of the newly implemented JK turbulence model. The selected test cases are NACA 0012 airfoil, ONERA M6 wing, DLR-F4 wing and two wings taken from the 3rd Drag Prediction Workshop. The solutions were analyzed and discussed in detail. The results show appreciably good agreement with the experimental data including force coefficients and surface pressure distributions.
38

Tangential leading edge blowing for flow control on non-slender delta wings

Chard, James January 2018 (has links)
In the military arena there is an increase in demand for Low Observable (LO) flight vehicles. This drive for low observability imposes limits on Leading Edge (LE) sweep angles and prohibits the use of a tailplane/fin resulting in unconventional configurations; a typical example of which are Unmanned Combat Aerial Vehicles (UCAVs). This class of aircraft poses stability and control problems due to the early onset of flow separation. The focus of this project is on the on the use of Tangential Leading Edge Blowing (TLEB) as a means of separation suppression on such vehicles. This project is unique in that the TLEB slot is positioned on the wing lower surface facing the oncoming freestream. Also, the model in this project is representative of the outboard panel of a UCAV wing, a geometry on which TLEB has not been explored in the past. A swept wing model (LE sweep = 47 degrees, AR = 3) was designed. The model has a TLEB nozzle with a slot on the lower surface at approx. 1% yawed chord that spans 0.58 m (approx. 70% LE length). Baseline wing characteristics were obtained with the full slot exposed. The wing showed a variation in pitch between CL = 0 and 0.6 which from oil flow visualisation is believed to be due to laminar separation. At CL = 0.6 there is a positive pitch break which flow visualisation suggests is due to the occurrence of a LE vortex. Sensitivity studies for slot configuration, Re number and transition fixing were carried out. The blowing rates 0.0025, 0.005, 0.025, 0.05 were tested for two slot lengths; one full span (0.58 m) and another third span positioned at the midpoint of the full slot. All blowing rates show some suppression of the LE vortex and therefore reduction in severity of the pitch break at CL = 0.6. High blowing rates produce a negative shift in CM, which CFD suggests is due to a large amount of suction produced on the lower wing surface adjacent to the slot exit. This means the available trim power is less than for the lower blowing rates. Wool tuft results for high blowing rates from the middle slot show an increase in streamwise flow at the TE suggesting TLEB is capable of improving the effectiveness of TE devices. The effectiveness of TLEB at low blowing rates has been shown to be high compared to that found in literature. A 1st order analysis of the impact of TLEB on a full scale system shows realistic options.
39

Optimalizace parkovacích stání pro autobusy a nákladní vozidla / Optimization of parking spaces for buses and trucks

Bedřich, Marek Unknown Date (has links)
Main focus of diploma thesis is optimalization of dimensions stated in parking norm ČSN 73 6056 Parking areas for road vehicles. Goal of the thesis was to optimalize dimensions stated in norm from 2011, eventually come up with a new type of parking space. Thesis is based on recherche, which was done on both previous and actual Czech norms as well as on foreign norms. Change in dimension was possible due to evaluation of swept paths of the individual parking slots. New suggested dimensions are stated in the conclusion.
40

Sweep Stability Characterization of a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) All-Semiconductor Tunable Swept Laser System at 1550 NM for Sensing Applications

Martens Biersach, Roric Christian 01 June 2015 (has links) (PDF)
The short-term jitter and longer-term wander of the frequency sweep profile of a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) laser at 1550 nm used in optical coherence tomography (OCT) and other sensing applications is characterized in this work. The VT-DBR has demonstrated success in source-swept OCT (SSOCT), performing both intensity and phase-sensitive OCT. The purpose of this paper is to investigate one of the unique aspects of the VT-DBR laser that makes it successful in OCT: the stability of the linear optical frequency sweep. A highly stable linear optical frequency sweep implies benefits for further fiber sensing applications including fiber Bragg grating and spectroscopy sensors. Short-term jitter measurements of the optical frequency sweep are taken using a 3-cavity 100 GHz free spectral range solid etalon, an athermal fiber Bragg grating, a molecular-based gas absorption reference cell, and a Mach-Zehnder interferometer. These four optical filters are used to convert time fluctuations into intensity fluctuations that can be measured by high speed optical receivers. Short term jitter values on the order of 0.5 – 0.6 pm RMS (63 – 82 MHz RMS) are typical values in the VT-DBR lasers systems characterized in this work. This level of jitter is compelling for OCT and fiber-sensing applications. Longer-term wander is characterized using a multiple-gas absorption reference cell. The long term stability and temperature insensitivity of the absorption cell is ideal for long-term wander characterization of the laser frequency sweeps. Wander values on the order of 2.6 pm of wavelength shift over an 8 hour time frame are reported in this work. The slope of the frequency versus time function of the laser sweep, on the order of 100 MHz/sample, is found to deviate by no more than 0.03% over the same 8 hour time frame. Both the long term wavelength shift and consistency of the slope indicate that these sources will perform well in OCT and fiber sensing applications. Mechanisms responsible for short-term jitter and longer- term wavelength wander likely include contributions from the laser source itself and from the high speed electronic drive circuitry that creates the wavelength ramp. Investigation of ambient temperature’s influence on the wavelength wander is also highlighted in the work.

Page generated in 0.049 seconds