• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 2
  • Tagged with
  • 16
  • 16
  • 15
  • 15
  • 13
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bildgebung Aktiver Zonen : Lichtmikroskopische Methoden zur Darstellung präsynaptischer AktiverZonen in lebendem und fixiertem Gewebe / Imaging active zones : Approaches for visualizing active zones with light microscopy in living and fixed tissue

Pauli, Martin January 2012 (has links) (PDF)
Ziel dieser Arbeit war es, strukturelle Veränderungen präsynaptischer Aktiver Zonen als mögliches Korrelat synaptischer Plastizität zu detektieren. Damit soll die Hypothese getestet werden, dass strukturelle Plastizität Aktiver Zonen eine zentrale Rolle bei der Informationsverarbeitung im Gehirn und bei Lern- und Gedächtnisprozessen spielt. Dazu war es notwendig Methoden zu etablieren, die die strukturelle Analyse Aktiver Zonen und deren Veränderung in vitalem Gewebe ermöglichen. Um die Untersuchungen in einem Gewebe mit plastischen Eigenschaften durchzuführen, wurden Methoden zur Herstellung organotypischer hippocampaler Hirnschnittkulturen etabliert, da hippokampale Moosfasersynapsen ausgeprägte präsynaptische Plastizität aufweisen (Bliss und Collingridge, 1993). Durch Einzelzellelektroporation wurde es möglich, individuelle Neurone mit Transgenen zur Markierung der gesamten Zelle (DsRed) und synaptischer Substrukturen wie Aktive Zonen (z.B.: GFP-CAST, einem Fluorophor-markierten AZ-Protein) zu transfizieren. Mit konfokaler Bildgebung transfizierter Zellen konnten strukturierte Anreicherungen von GFP-CAST in Moosfaserboutons dargestellt werden. Konfokale Bildgebung von Doppelimmunfluoreszenzfärbungen zur detaillierten Analyse der Proteinlokalisation zeigte ein diffraktionsbedingtes Auflösungsdefizit, das auch durch die Anwendung von STED-Mikroskopie nicht zufriedenstellend gelöst werden konnte. Um eine präzise Karte synaptischer Proteine zu erstellen, wurde hochauflösende Mikroskopie (dSTORM) mit einer lateralen räumlichen Auflösung von 20 nm etabliert. Dabei erwiesen sich die ausgeprägte Plastizität, die hohe Dichte an Aktiven Zonen und die variable Gestalt der Boutons im hippokampalen Präparat als problematisch. Aus diesem Grund wurde die elektronenmikroskopisch gut charakterisierte neuromuskuläre Endplatte mit ihrer symmetrischen molekularen Struktur als Präparat für dSTORM verwendet. An der Endplatte konnte die molekulare Organisation der Aktiven-Zonen-Proteine Piccolo und Bassoon dargestellt werden. Zudem konnten erstmals die Mündungen postsynaptischer Falten lichtmikroskopisch aufgelöst werden. So gelang es Werkzeuge zu etablieren, die mit lichtmikroskopischen Methoden die Darstellung der Architektur Aktiver Zonen mit molekularer Auflösung ermöglichen. Die Herausforderung wird es sein, diese neue Dimension in funktionellem Kontext zu nutzen. Die experimentellen Grundlagen dazu wurden durch eine spezielle Badkammer und die Etablierung von Rollertubekulturen bereits gelegt. Dabei ermöglicht dSTORM die Adressierung quantitativer Fragestellungen bis hin zur Bestimmung der Molekülanzahl. / The aim of this work was to visualize structural changes of presynaptic active zones (AZ) as a putative correlate of synaptic plasticity in the brain, thereby testing the hypothesis, that structural plasticity is a key player in information processing, learning and memory. Therefore it was necessary to establish methods that allowed the structural analysis of active zones and their changes in living tissue. To do these investigations in a tissue with plastic characteristics, organotypic hippocampal slice cultures have been established, due to distinct presynaptic plasticity of hippocampal mossy fibre boutons (Bliss and Collingridge, 1993). With single cell electroporation it became possible to mark transgenetically individual neurons (DsRed) and synaptic substructures like active zones (GFP-CAST, a fluorophor labelled AZ- Protein). By imaging transfected neuron using confocal light microscopy, discrete accumulations of GFP-CAST were found in mossy fibre boutons. Aiming to analyse protein localisation in detail, confocal imaging of double-immunofluorescence staining revealed a diffraction based lack of lateral resolution, that couldn’t be solved satisfactory by the application of STED microscopy. To generate a precise map of synaptic protein distribution, superresolution light microscopy (dSTORM) was established with a lateral resolution of 20 nm. Pronounced structural plasticity, high active zone density and complex structure of hippocampal mossy fibre boutons turned out to be a drawback of this preparation. Therefore mammalian neuromuscular endplates that are well characterised by electron microscopy and display a highly symmetrical shape were introduced as a preparation for dSTORM. At the endplate dSTORM revealed a differential distribution of active zone proteins Piccolo and Bassoon. Moreover, for the first time it was possible to resolve the aparture of postsynaptic folds by light microscopy. These results show that it was possible to establish tools based on superresolution light microscopy, that are capable of exploring active zone ultrastructure on a molecular level. It will be future tasks to use these novel techniques in a functional context. Based on experimental advances shown in this work like specialised recording chambers for slicecultures or the use of rollertube cultures, dSTORM will allow to address questions concerning synaptic function and plasticity, down to counting single molecules.
2

(Dis-)inhibitory gating of excitatory synaptic plasticity

Wilmes, Katharina Anna 18 November 2016 (has links)
Neuronale Verbindungen verändern sich abhängig von unseren Wahrnehmungen (synaptische Plastizität) - womöglich die Grundlage für Lernen und Gedächtnis. Diese zellulären Prozesse werden jedoch stark reguliert, und können durch den Zustand des Organismus beeinflusst werden. Diese Doktorarbeit befasst sich mit einem Mechanismus durch den zelluläre Lernprozesse in Pyramidalzellen durch lokale hemmende Neurone moduliert werden können. Dazu werden biophysikalische Modelle einzelner Zellen in Mikroschaltkreisen zu Rate gezogen. Der erste Teil dieser Arbeit zeigt, dass hemmende Neurone die Lernsignale in den Dendriten der Pyramidalzelle nach dem Alles-oder-Nichts-Prinzip modulieren. Demnach könnten sie einen binären Schalter für das Lernen darstellen. Im Speziellen modulieren sie ein wichtiges dendritisches Lernsignal: das rückwärts-gerichtete Aktionspotenzial, das die Synapsen über neuronale Aktivität unterrichten kann. Die Hemmung muss zeitlich genau erfolgen wenn es um die Blockierung dieses rückwärts-gerichteten Signals geht; insbesondere, wenn der betrachtete Mechanismus der Lernregulierung gleichzeitig den vorwärts-gerichteten Informationsfluss erhalten soll. Wie diese Arbeit zeigt, kann die gewünschte Taktung dennoch erreicht werden, wenn die hemmenden Neurone in einem gängigen inhibitorischen Feedforward-Schaltkreis eingebettet sind. In einem solchen Schaltkreis werden die hemmenden Neurone und die Pyramidenzellen von der gleichen vorgeschalteten Zellpopulation erregt, sodass die Pyramidalzelle erst erregende und dann hemmende Reize erfährt, was die genaue Taktung zwischen Erregung und Hemmung ermöglicht. Der zweite Teil der Arbeit befasst sich mit der Frage ob und wie solche zeitlich regulierten Feedforward-Schaltkreise im Gehirn etabliert werden können. Es wird demonstriert, dass konkrete Lernregeln für hemmende Synapsen in diesen Schaltkreisen diese so formen kann, dass sie für die individuellen zeitlichen Bedingungen der modulierten Zelle angemessen sind. / The neural correlate of learning is thought to be the experience-dependent adjustment of neuronal connections – synaptic plasticity. However, cellular processes mediating these changes are highly regulated, and can be influenced by the state of the organism. Limiting learning to behaviorally relevant episodes is useful if new experiences can overwrite old memories. In this thesis, we use computational modeling to explore a mechanism by which cellular learning processes in principal neurons can be modulated by another cell type: local inhibitory neurons. Although these cells are known to play a role for learning, the cellular mechanisms by which they influence synaptic plasticity are not completely understood. The aim is hence to shed light onto the cellular mechanisms underlying the regulation of synaptic plasticity. In the first part of this thesis, it is shown that inhibitory neurons can modulate dendritic signals for plasticity in principal neurons in an all-or-none manner. Thereby, inhibition can provide a binary switch for plasticity, which, as further demonstrated, can be specific for inputs arriving via different neural pathways. An important dendritic signal for plasticity is the backpropagating action potential, which informs synapses about neuronal activity and can be modulated by inhibition. We show that the timing requirement for inhibition of theses signals is tight; especially if modulation of plasticity via this mechanism ought to preserve forward-directed stimulus processing in the same neuron. Yet, we demonstrate that the desired timing can be accomplished if inhibition is embedded in a common inhibitory feedforward circuit. The second part of this thesis addresses the question whether and how appropriately timed inhibitory feedforward circuits can be established. We demonstrate that particular plasticity rules at inhibitory synapses can shape microcircuits to become properly adjusted to the individual timing requirements of the modulated neuron.
3

Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training

Enge, Sören, Fleischhauer, Monika, Gärtner, Anne, Reif, Andreas, Lesch, Klaus-Peter, Kliegel, Matthias, Strobel, Alexander 31 March 2017 (has links) (PDF)
Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.
4

Synaptische Plastizität im Kleinhirnkortex von FoxP2-mutanten Mäusen

Stoppe, Muriel 03 January 2012 (has links) (PDF)
Die KE-Familie ist das am ausführlichsten untersuchte Beispiel für eine angeborene spezifische Sprachstörung. Die Sprachstörung in dieser Familie wird durch eine heterozygote Punktmutation im FoxP2-Gen hervorgerufen, die R553H-Mutation. Die betroffenen Mitglieder der Großfamilie haben Defizite beim Erlernen komplexer orofazialer Bewegungsabläufe als Grundlage des fließenden Sprechens und zeigen Störungen beim Sprachverständnis und beim Schreiben. Untersuchungen an der KE-Familie und an Knockout-Tieren hatten Hinweise auf eine Beteiligung des Kleinhirns an der Sprachstörung der KE-Familie geliefert. Entsprechend war zu erwarten, dass genauere Kenntnisse über den Einfluss vom FoxP2-Gen auf Entwicklung und Funktion des Kleinhirns helfen könnten, die Funktion von FoxP2 und seine Rolle bezüglich dieser Sprachstörung, aber auch in Hinblick auf die Sprachfähigkeit des Menschen weiter aufzuschlüsseln. Die Experimente, die der vorliegenden Promotionsarbeit zu Grunde liegen, erforschten erstmals den Einfluss der KE-Mutation im FoxP2-Gen auf synaptischer Ebene durch Untersuchungen am in der Literatur ausführlich beschriebenen erregenden Schaltkreis im Kleinhirnkortex von heterozygoten R552H-Mäusen. Elektrophysiologische Messungen dienten dazu, die Verschaltung der Parallelfasern und Kletterfasern auf die Purkinjezelle auf Veränderungen der Übertragungseigenschaften zu prüfen. Durch Induktion von Langzeitdepression und Paarpulsbahnung an der Parallelfaser-Purkinjezell-Synapse sollte die synaptische Plastizität untersucht werden. Es zeigten sich eine intakte Verschaltung der erregenden Eingänge auf die Purkinjezelle, jedoch Veränderungen der Langzeit- und der Kurzzeitplastizität: Nach Induktion von Langzeitdepression entwickelte sich diese signifikant schneller. Die Paarpulsbahnung war bei kurzen Interstimulusintervallen signifikant verstärkt. Die Befunde sprechen für einen Einfluss des FoxP2-Gens auf die synaptischen Eigenschaften im Kleinhirnkortex. Die Aufschlüsselung dieses Einflusses und seine Bedeutung für die Sprachstörung der KE-Familie und die Sprachentwicklung beim Menschen ist Gegenstand weiterer Forschung.
5

Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training

Enge, Sören, Fleischhauer, Monika, Gärtner, Anne, Reif, Andreas, Lesch, Klaus-Peter, Kliegel, Matthias, Strobel, Alexander 31 March 2017 (has links)
Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.
6

Elektrophysiologische Untersuchungen zur physiologischen und pathologischen neuronalen Plastizität im Subikulum

Wozny, Christian 18 January 2005 (has links)
Im Subikulum der Ratte finden sich zwei unterschiedliche Typen von Pyramidalzellen, die sich auf Grund ihres intrinsischen Entladungsverhaltens unterscheiden. Die Funktion dieser beiden Zelltypen hinsichtlich der synaptischer Neurotransmission ist unklar. Bursterzellen und regulär feuernde Zellen zeigten nach tetanischer Reizung ein unterschiedliches Ausmaß der LTP. Neben der zellspezifischen Ausprägung der LTP fanden sich mehrere Hinweise auf eine zielspezifische Projektion der Efferenzen der vorgeschalteten Area CA1. Die durchgeführten Experimente legen den Schluss nahe, dass Axone von Pyramidalzellen der Area CA1 selektiv auf subikuläre Pyramidenzellen projizieren und so den hippokampalen Informationsfluss steuern und regulieren können. NMDA-Rezeptoren auf beiden Seiten des synaptischen Spaltes spielen hier eine besondere Rolle. Präsynaptische NMDAR der Untereinheit NR2B scheinen an der LTP in Bursterzellen beteiligt zu sein und über einen vermehrten Kalziumeinstrom in die Präsynapse eine langanhaltende Erhöhung der Transmitterausschüttung herbeizuführen. Ebenso zeigten sich abhängig von der Zielzelle Hinweise auf eine unterschiedliche Aktivierung der präsynaptischen Adenylylcyclase-cAMP Kaskade. In Pilokarpin-behandelten Tieren ließ sich nach hochfrequenter Reizung keine langanhaltende Potenzierung der synaptischen Antworten nachweisen. Stattdessen scheinen polysynaptisch latente Verbindungen mittels tetanischer Stimulation aktivierbar zu sein. In einigen Fällen waren diese polysynaptisch latenten Verbindungen per se, in anderen Fällen nach Blockade der GABAergen Neurotransmission aktiv. In Hirnschnittpräparaten von Patienten mit pharmakoresistenter Temporallappenepilepsie konnte im Subikulum spontane rhythmische Aktivität mit einer Frequenz von 0,75 bis 3 Hz aufgezeichnet werden. Diese Aktivität, bestehend aus EPSP/IPSP Sequenzen, wurde sowohl in sklerotischem als auch in nicht sklerotischem Gewebe gefunden. In beiden Gruppen korrelierte die in vitro Aktivität sehr gut mit dem präoperativen Auftreten elektroenzephalografisch detektierter interiktaler Aktivität. Die Blockade GABAerger oder glutamaterger Neurotransmission hob die inhibitorische bzw. exzitatorische Aktivität auf. Dies legt den Schluss nahe, dass sowohl Interneurone wie Pyramidalzellen an der spontanen rhythmischen Aktivität beteiligt sind. / The subiculum plays a key role in processing memory information from the hippocampus to different cortical and subcortical brain regions. Subicular pyramidal cells are classified as regular firing or bursting cells according to their responses to supra-threshold depolarizing current pulses. Synaptic terminals arising from CA1 pyramidal cells do not function as a single compartment but show a specialized synaptic plasticity onto subicular pyramidal cells depending on the discharge properties of the synaptic target. Tetanic stimulation of CA1 axons caused a significantly stronger long-term potentiation (LTP) in bursting cells than in regular firing cells. Postsynaptic bursting was not necessary for the enhanced synaptic potentiation in bursting cells. The LTP in bursting neurons was independent of postsynaptic calcium, induced by presynaptic NR2B-containing autoreceptors and mediated via a adenylyl cylcase-cAMP-dependent signaling cascade. In pilocarpine-treated animals subicular LTP was impaired. A long-lasting increase in synaptic transmission could not be observed after titanic stimulation neither in regular firing cells nor in bursting cells. In human brain slices resected from patients from with drug-resistant temporal lobe epilepsy the subiculum displayed spontaneous rhythmic activity. In sclerotic but also in non-sclerotic hippocampal tissue the subiculum showed cellular and synaptic changes which suffice to generate spontaneous rhythmic activity that is correlated with the occurrence and frequency of interictal discharges recorded in the electroencephalograms of the corresponding patients.
7

Induction and Maintenance of Synaptic Plasticity

Graupner, Michael 11 September 2008 (has links) (PDF)
Synaptic long-term modifications following neuronal activation are believed to be at the origin of learning and long-term memory. Recent experiments suggest that these long-term synaptic changes are all-or-none switch-like events between discrete states of a single synapse. The biochemical network involving calcium/calmodulin-dependent protein kinase II (CaMKII) and its regulating protein signaling cascade has been hypothesized to durably maintain the synaptic state in form of a bistable switch. Furthermore, it has been shown experimentally that CaMKII and associated proteins such as protein kinase A and calcineurin are necessary for the induction of long-lasting increases (long-term potentiation, LTP) and/or long-lasting decreases (long-term depression, LTD) of synaptic efficacy. However, the biochemical mechanisms by which experimental LTP/LTD protocols lead to corresponding transitions between the two states in realistic models of such networks are still unknown. We present a detailed biochemical model of the calcium/calmodulin-dependent autophosphorylation of CaMKII and the protein signaling cascade governing the dephosphorylation of CaMKII. As previously shown, two stable states of the CaMKII phosphorylation level exist at resting intracellular calcium concentrations. Repetitive high calcium levels switch the system from a weakly- to a highly phosphorylated state (LTP). We show that the reverse transition (LTD) can be mediated by elevated phosphatase activity at intermediate calcium levels. It is shown that the CaMKII kinase-phosphatase system can qualitatively reproduce plasticity results in response to spike-timing dependent plasticity (STDP) and presynaptic stimulation protocols. A reduced model based on the CaMKII system is used to elucidate which parameters control the synaptic plasticity outcomes in response to STDP protocols, and in particular how the plasticity results depend on the differential activation of phosphatase and kinase pathways and the level of noise in the calcium transients. Our results show that the protein network including CaMKII can account for (i) induction - through LTP/LTD-like transitions - and (ii) storage - due to its bistability - of synaptic changes. The model allows to link biochemical properties of the synapse with phenomenological 'learning rules' used by theoreticians in neural network studies.
8

Expression and function of PSD-93 isoforms in hippocampal synapses / Expression und Funktion der PSD-93 Isoformen in Synapsen im Hippocampus

Krüger, Juliane Marie 09 August 2010 (has links)
No description available.
9

Modulation of synaptic transmission by the voltage-gated potassium channel Eag1 / Regulierung der synaptische Übertragung vom spannungsabhängigen Kaliumkanal Eag1

Mortensen, Lena Sünke 17 April 2012 (has links)
No description available.
10

Induction and Maintenance of Synaptic Plasticity

Graupner, Michael 18 June 2008 (has links)
Synaptic long-term modifications following neuronal activation are believed to be at the origin of learning and long-term memory. Recent experiments suggest that these long-term synaptic changes are all-or-none switch-like events between discrete states of a single synapse. The biochemical network involving calcium/calmodulin-dependent protein kinase II (CaMKII) and its regulating protein signaling cascade has been hypothesized to durably maintain the synaptic state in form of a bistable switch. Furthermore, it has been shown experimentally that CaMKII and associated proteins such as protein kinase A and calcineurin are necessary for the induction of long-lasting increases (long-term potentiation, LTP) and/or long-lasting decreases (long-term depression, LTD) of synaptic efficacy. However, the biochemical mechanisms by which experimental LTP/LTD protocols lead to corresponding transitions between the two states in realistic models of such networks are still unknown. We present a detailed biochemical model of the calcium/calmodulin-dependent autophosphorylation of CaMKII and the protein signaling cascade governing the dephosphorylation of CaMKII. As previously shown, two stable states of the CaMKII phosphorylation level exist at resting intracellular calcium concentrations. Repetitive high calcium levels switch the system from a weakly- to a highly phosphorylated state (LTP). We show that the reverse transition (LTD) can be mediated by elevated phosphatase activity at intermediate calcium levels. It is shown that the CaMKII kinase-phosphatase system can qualitatively reproduce plasticity results in response to spike-timing dependent plasticity (STDP) and presynaptic stimulation protocols. A reduced model based on the CaMKII system is used to elucidate which parameters control the synaptic plasticity outcomes in response to STDP protocols, and in particular how the plasticity results depend on the differential activation of phosphatase and kinase pathways and the level of noise in the calcium transients. Our results show that the protein network including CaMKII can account for (i) induction - through LTP/LTD-like transitions - and (ii) storage - due to its bistability - of synaptic changes. The model allows to link biochemical properties of the synapse with phenomenological 'learning rules' used by theoreticians in neural network studies.

Page generated in 0.0953 seconds