• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 98
  • 43
  • 14
  • 10
  • 10
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 222
  • 59
  • 57
  • 36
  • 33
  • 32
  • 31
  • 29
  • 26
  • 22
  • 17
  • 16
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Rôle des glutamine synthétases cytosoliques et des asparagine synthétases dans le métabolisme azoté chez Arabidopsis thaliana et Brassica napus / Role of cytosolic glutamine synthetases and asparagine synthetases in nitrogen metabolism of Arabidopsis thaliana and Brassica napus

Moison, Michaël 18 December 2014 (has links)
Le colza d’hiver (Brassica napus) est cultivé pour l’huile contenue dans ses graines ainsi que pour les tourteaux qui sont une source de protéines pour l’alimentation animale. La culture de colza demande de forts apports d’azote et cette espèce est caractérisée par sa faible efficacité d’utilisation de l’azote. Une forte proportion de l’azote absorbé est restituée au sol lors de la chute précoce des feuilles au stade végétatif. L’amélioration de la remobilisation de l’azote est donc de première importance pour améliorer le rendement de cette culture tout en satisfaisant le besoin de réduction des intrants. La glutamine et l’asparagine jouent un rôle important dans le transport de l’azote au sein de la plante, notamment au cours de la sénescence foliaire. Les deux familles multigéniques des glutamine synthétases cytosoliques (GLN1) et des asparagine synthétases (ASN) assurent leur synthèse. Ce travail de thèse s’est intéressé à ces enzymes chez deux Brassicacées : le colza et Arabidopsis thaliana. Dans un premier temps, l’expression des gènes GLN1 a été étudiée chez Arabidopsis par une combinaison d’approches de biologie moléculaire, cellulaire et de cytologie. Les spécificités d’expression de chacun des cinq gènes d’Arabidopsis ont été mises en évidence. L’identification des gènes BnaGLN1 chez Brassica napus a permis une analyse de leur expression en fonction de l’âge des feuilles et de la disponibilité en azote. Les profils d’expression observés chez le colza se sont révélés similaires à ceux des gènes homologues d’Arabidopsis, amenant l’hypothèse d’une conservation des fonctions chez les deux espèces. Le rôle des gènes GLN1 d’Arabidopsis dans la remobilisation de l’azote vers les graines a été étudié grâce à un marquage ¹⁵N effectué sur des mutants simples. Le rôle des gènes GLN1 dans la remobilisation de l’azote des tissus végétatifs vers les tissus reproducteurs a été mis en évidence sans toutefois cibler spécifiquement une isoforme. L’étude de la famille ASN chez Arabidopsis a permis de mettre en évidence des profils d’expression spécifiques en fonction des organes, de l’âge des tissus et de la disponibilité en azote pour chacun des trois gènes. Le marquage ¹⁵N a également révélé une implication des gènes ASN1 et ASN2 dans la remobilisation de l’azote de la rosette vers les tissus reproducteurs. Les travaux présentés dans ce manuscrit sont une base pour de futures approches translationnelles vers le colza. / Winter oilseed rape (Brassica napus) is grown for its oil-rich seeds and for proteins, used in animal feed cake. It requires high nitrogen inputs due to the low efficiency of nitrogen utilization that characterizes this species. A large proportion of absorbed nitrogen is indeed returned to the soil when leaves fall. Improving nitrogen remobilization to promote seed filling is then required to improve yield and limit fertilizer use. Asparagine and glutamine are important amino acids for phloem translocation. This thesis focuses on the two multigenic families in charge of asparagine and glutamine synthesis: cytosolic glutamine synthetase (GLN1) and asparagine synthetase (ASN). Studies were performed on the two Brassicaceae, rapeseed and Arabidopsis thaliana. The GLN1 gene expressions were investigated in Arabidopsis by a combination of molecular biology and cytology. The five GLN1 genes are differentially expressed in Arabidopsis depending on ageing and nitrogen availability. The identified BnaGLN1 genes in Brassica napus also showed age and nitrogen dependent expressions. Interestingly, expression profiles were similar between homologous genes in Arabidopsis and rapeseed, suggesting that homologous genes share similar function in the two species. The role of Arabidopsis GLN1 genes for nitrogen remobilization to the seeds was monitored using ¹⁵N tracing experiments on individual mutants. The GLN1 genes play a role in the remobilization of nitrogen from the rosette leaves to the reproductive organs. However, their effect is weak and non-specific of one GS1 isoform. ASN genes also presented specific expression profiles depending on organs, age and nitrogen availability. The ¹⁵N tracing revealed that ASN1 and ASN2 are both involved in nitrogen remobilization from the rosette to the seeds. Our studies provide a basis for future translational approaches to improve oilseed rape.
72

Characterizing the role of the bifunctional glutamyl-prolyl-tRNA synthetase in humandiseases

Jin, Danni January 2021 (has links)
No description available.
73

Deciphering Structure-Function Relationships in a Two-Subunit-Type GMP Synthetase by Solution NMR Spectroscopy

Ali, Rustam January 2013 (has links) (PDF)
The guanosine monophosphate synthetase (GMPS) is a class I glutamine amidotransferase, involved in the de-novo purine nucleotide biosynthesis. The enzyme catalyzes the biochemical transformation of xantosine (XMP) into guanosine monophosphate (GMP) in presence of ATP, Mg2+ and glutamine. All GMPSs consist of two catalytic sites 1) for GATase activity 2) for the ATPPase activity. The two catalytic sites may be housed in the same polypeptide (two-domain-type) or in separate polypeptides (two-subunit-type). Most of the studies have been performed on two-domain-type GMPSs, while only one study has been reported from two-subunit-type GMPS (Maruoka et al. 2009). The two-subunit-type GMPS presents an example where the component reactions of a single enzymatic reaction are carried out by two distinct subunits. In order to get better understanding of structural aspects and mechanistic principle that governs the GMPS activity in two-subunit-type GMPSs, we initiated the study by taking GMPS of Methanocaldococcus jannaschii as a model system. The GMPS of M. jannaschii (Mj) is a two-subunit-type protein. The GATase subunit catalyzes the hydrolysis of glutamine to produce glutamate and ammonia. The ATPPase subunit catalyses the amination of XMP to produce GMP using the ammonia generated in GATase subunit. Since the two component reactions are catalysed by two separate subunits and are coupled in the way that product of one reaction (ammonia) acts as a nucleophile in the second reaction. The cross-talk between these two subunits in order to maximise the efficiency of overall GMPS warrants investigation. The GATase activity is tightly regulated by the interaction with ATPPase domain/subunit, in all GMPS except in the case of P. falciparum. This interaction is facilitated by substrate binding to the ATPPase domain/subunit. Though, the conditions for the interaction between two subunits is known in a two-subunit-type GMP synthetase from P. horikoshii, the structural basis of substrate dependent interaction is not known. As a first step to understand the structural basis of interaction between the Mj GATase and Mj ATPPase subunits, we have determined the structure of Mj GATase (21 kDa) subunit using high resolution, multinuclear, multidimensional NMR spectroscopy. Sequence specific resonance assignments were obtained through analysis of various 2D and 3D hetero-nuclear multidimensional NMR experiments. NMR based distance restraints were obtained from assignment of correlations observed in NOE based experiments. Data were acquired on isotopically enriched samples of Mj GATase. The structure of Mj GATase (2lxn) was solved by using cyana-3.0 using NMR based restraints as input for the structure calculation. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.35±0.06 Å for backbone atoms and 0.8±0.06 Å for all heavy atoms. Attempts were also made to obtain assignments for the 69.6 kDa dimeric ATPPase subunit. Partial assignments have been obtained for this subunit. The GATase subunit is catalytically inactive. So far, there has been only one published report on a two-subunit-type GMPS from P. horikashii. The study has shown that the catalytic activity of GATase is regulated by the GATase-ATPPase interaction which is facilitated by the substrate binding to the ATPPase subunit. For the first time, we have provided the structural basis of interaction between GATase-ATPPase (112 kDa) in a two-subunit-type GMPS. Observed line width changes were used to identify residues in GATase residues that are involved in the Mj GATase-ATPPase interaction. Our data provides a possible explanation for conformational changes observed in the Mj GATase subunit upon GATase-ATPPase interaction that lead to GATase activation. Ammonia is generated in GATase subunit and is very reactive and labile. Thus, the faithful transportation of ammonia from GATase to ATPPase subunit is very crucial for optimal GMPS activity. Till date, a PDB query for GMPS retrieves only one structure which belongs to two-subunit-type GMPS, where authors have determined the structures of GATase and ATPPase subunits separately. However, the structure of holo-GMPS is not determined yet. Using interface information from experimental data and HADDOCK, we have constructed a model for the holo-GMPS from M. jannaschii. A possible ammonia channel has been deduced using the programs MOLE 2.0 and CAVER 2.0. This ammonia channel has a length of 46 Å, which is well within the range of the lengths calculated for similar channels in other glutamine amidotransferase. It had been suggested earlier that in addition to the magnesium required for charge stabilization of ATP, additional binding sites were present on GMPS. The effect of excess Mg2+ requirement on the GMPS activity has been studied in two-domain-type GMPS. However, the interaction between GATase and Mg2+ has been not investigated in any GMPS. This prompted us to investigate the effect of MgCl2 on Mj GATase subunit. For the first time, using chemical shift perturbation, we have established interaction between Mj GATase and Mg2+. The dissociation constant (Kd) of the Mj GATase-Mg2+ interaction was determined. The Kd value was found to be 1 mM, which indicates a very weak interaction. The substrate of the GATase subunit is glutamine. The condition of the hydrolysis of the glutamine is known in GMPS. However, the binding of the glutamine and associated conformational changes in GATase have been not studied in GMPS. Furthermore, till date there is no structure available for the glutamine bound GMPS/GATase. Using isotope edited one dimensional and two-dimensional NMR spectroscopy; we have shown that the Mj GATase catalytic residues are not in a compatible conformation to bind with glutamine. Thus, a conformational change in Mj GATase subunit is a pre-requisite condition for the binding of glutamine. These conformational changes are brought by the Mj GATase-ATPPase interaction.
74

Expanding The Horizon Of Mycobacterial Stress Response : Discovery Of A Second (P)PPGPP Synthetase In Mycobacterium Smegmatis

Murdeshwar, Maya S 09 1900 (has links) (PDF)
The stringent response is a highly conserved physiological response mounted by bacteria under stress (Ojha and Chatterji, 2001; Magnusson et al., 2005; Srivatsan and Wang, 2007; Potrykus and Cashel, 2008). Until recently, the only known players in this pathway were the (p)ppGpp synthesizing and hydrolyzing long RSH enzymes (Mittenhuber, 2001; Atkinson et al., 2011) - RelA and SpoT in Gram negative bacteria and the bifunctional Rel in Gram positive bacteria including mycobacteria. The existence of Short Alarmone Synthetases (SAS) (Lemos et al., 2007, Nanamiya et al., 2008; Das et al., 2009; Atkinson et al., 2011) and Short Alarmone Hydrolases (SAH) (Sun et al., 2010, Atkinson et al., 2011), small proteins possessing a single functional (p)ppGpp synthetase or hydrolase domain respectively, is a recent discovery that has modified this paradigm. Around the same time that the presence of the SAS proteins was reported, we chanced upon such small (p)ppGpp synthetases in the genus Mycobacterium. The stringent response in the soil saprophyte Mycobacterium smegmatis was first reported by Ojha and co-workers (Ojha et al., 2000), and the bifunctional RSH, RelMsm, responsible for mounting the stringent response in this bacterium, has been characterized in detail (Jain et al., 2006 and 2007). RelMsm was the only known RSH enzyme present in M. smegmatis, and consequently, a strain of M. smegmatis deleted for the relMsm gene (ΔrelMsm) (Mathew et al., 2004), was expected to show a null phenotype for (p)ppGpp production. In this body of work, we report the surprising observation that the M. smegmatis ΔrelMsm strain is capable of synthesizing (p)ppGpp in vivo. This unexpected turn of events led us to the discovery of a second (p)ppGpp synthetase in this bacterium. The novel protein was found to possess two functional domains – an RNase HII domain at the amino-terminus, and a (p)ppGpp synthetase or RSD domain at the carboxy-terminus. We have therefore named this protein ‘MS_RHII-RSD’, indicating the two activities present and identifying the organism from which it is isolated. Orthologs of this novel SAS protein occur in other species of mycobacteria, both pathogenic and non-pathogenic. In this study, we report the cloning, purification and in-depth functional characterization of MS_RHII-RSD, and speculate on its in vivo role in M. smegmatis. Chapter 1 reviews the available literature in the field of stringent response research and lays the background to this study. A historical perspective is provided, starting with the discovery of the stringent response in bacteria in the early 1960s, highlighting the development in this area till date. The roles played by the long and short RSH enzymes, ‘Magic Spot’ (p)ppGpp, the RNA polymerase enzyme complex, and a few other RNA and proteins are described, briefly outlining the inferences drawn from recent global gene expression and proteomics studies. The chapter concludes with a description of the motivation behind, and the scope of the present study. Chapter 2 discusses the in vivo and in silico identification of MS_RHII-RSD in M. smegmatis. Experiments performed for the genotypic and phenotypic revalidation of M. smegmatis ΔrelMsm strain are described. Detailed bioinformatics analyses are provided for the in silico characterization of MS_RHII-RSD in terms of its domain architecture, in vivo localization, and protein structure prediction. A comprehensive list of the mycobacterial orthologs of MS_RHII-RSD from a few representative species of infectious and non-infectious mycobacteria is included. Chapter 3 summarizes the materials and methods used in the cloning, purification, and the biophysical and biochemical characterization of full length MS_RHII-RSD and its two domain variants – RHII and RSD, respectively. A detailed description of the purification protocols highlighting the specific modifications and changes made is given. Peptide mass fingerprinting to confirm protein identity, as well as preliminary mass spectrometric, chromatographic, and circular dichroism-based characterization of the proteins under study is also provided. Chapter 4 deals in detail with the in vivo and in vitro functional characterization of the RNase HII and (p)ppGpp synthesis activities of full length MS_RHII-RSD and its two domain variants - RHII and RSD, respectively. The RNase HII activity is characterized in vivo on the basis of a complementation assay in an E. coli strain deleted for the RNase H genes; while in vitro characterization is done by performing a FRET-based assay to monitor the degradation of a RNA•DNA hybrid substrate in vitro. The (p)ppGpp synthesis activity is characterized in terms of the substrate specificity, magnesium ion utilization, and a detailed analysis of the kinetic parameters involved. A comparison of the (p)ppGpp synthesis activity of MS_RHII-RSD vis-à-vis that of the classical RSH protein, RelMsm, is also provided. Inferences drawn from (p)ppGpp hydrolysis assays and the in vivo expression profile of MS_RHII-RSD in M. smegmatis wild type and ΔrelMsm strains are discussed. Based on the results of these functional assays, a model is proposed suggesting the probable in vivo role played by MS_RHII-RSD in M. smegmatis. Chapter 5 describes the attempts at generating MS_RHII-RSD overexpression and knockout strains in M. smegmatis, using pJAM2-based mycobacterial expression system, and mycobacteriophage-based specialized transduction strategy, respectively. The detailed methodology and the principle behind the techniques used are explained. The results obtained so far, and the future work and strain characterization to be carried out in this respect are discussed. Chapter 6 takes a slightly different route and summarizes the work carried out in characterizing the glycopeptidolipids (GPLs) from M. smegmatis biofilm cultures. A general introduction about the mycobacterial cell wall components, with special emphasis on GPLs, is provided. The detailed protocols for chemical composition and chromatographic analyses are mentioned, and the future scope of this work is discussed. Appendix-1 briefly revisits the preliminary studies performed to determine the pppGpp binding site on M. smegmatis RNA polymerase using a mass spectrometry-based approach. Appendices-2, 3, 4 and 5 give a comprehensive list of the bacterial strains; PCR primers; antibiotics, buffers and media used; and the plasmid and phasmid maps, respectively.
75

Fettsäuretransport in die peroxisomale Matrix von <i>Arabidopsis thaliana</i> / Fatty acid transport into the peroxisomal matrix of <i>Arabidopsis thaliana</i>

Struß, Annett 03 May 2007 (has links)
No description available.
76

ARNt "manchots" : structure, fonctionnalité et évolution / Structure, function and evolution of armless mitochondrial tRNAs

Jühling, Tina 14 December 2016 (has links)
Les ARNt sont des molécules adaptatrices reliant l'information génétique de l’ARN messagers à la séquence d'acides aminés primaire des protéines. Les ARNt ont une structure typique, appelée "feuille de trèfle". Certains ARNt mitochondriaux montrent une forte dérivation de cette structure. Un cas extrême peut être observé dans les mitochondries du nématode R. culicivorax. Cette étude vise la caractérisation fonctionnelle de ces ARNt «bizarres» et de définir leurs propriétés structurales et leur fonctionnalité avec des protéines partenaires telles que les CCAses et les aminoacyl-ARNt synthetases. Ce travail révèle que les ARNt sans bras forment une structure secondaire en forme d'épingle à cheveux et que leurs structures 3D présentent une grande flexibilité intrinsèque. Les tests initiaux n’ont pas démontré l'activité d'aminoacylation. Cependant, les ARNt sans bras représentent des molécules fonctionnelles pour le CCAse, indiquant des adaptations de l’enzyme aux ARNt sans bras. / TRNAs are adapter molecules linking the genetic information of messenger RNAs with the primary amino acid sequence of proteins. tRNAs have a typical cloverleaf-like secondary structure. Some mitochondrial tRNAs show a high derivation from this canonical tRNA structure. An extreme case of structural truncations can be observed in mitochondria of the nematode R. culicivorax. This study aims the functional characterization of such “bizarre” tRNAs in defining their structural properties and their functionality with interacting partner proteins such as CCA-adding enzymes and aminoacyl-tRNA synthetases. This work reveals that armless tRNAs form a hairpin-shaped secondary structure. 3D structures exhibit a high intrinsic flexibility. Initial tests could not demonstrate aminoacylation activity. However, armless tRNAs represent functional molecules for CCA-incorporation, indicating adaptations of CCA-adding enzymes to armless tRNAs.
77

Functional analysis of the GlnK1 protein of Methanosarcina mazei strain Gö1: Aspects of nitrogen regulation / Funktionelle Analyse des GlnK1 Proteins aus Methanosarcina mazei Stamm Gö1: Aspekte der Stickstoffregulation

Ehlers, Claudia 02 November 2004 (has links)
PII-Proteine, zu denen GlnB und GlnK zählen, sind ubiquitär verbreitete kleine Regulatorproteine, die den internen Stickstoffzustand der Zelle sensieren und weiterleiten und hierdurch maßgeblich an der Regulation des Stickstoffmetabolismus beteiligt sind.Ziel dieser Arbeit war es, das GlnK1-Protein aus dem methanogenen Archeaon Methanosarcina mazei Stamm Gö1 umfassend zu charakterisieren und seine potentielle Rolle in der Regulation des Stickstoffmetabolismus aufzuklären. Das M. mazei GlnK1-Protein weist den typischen Tyrosin51-Rest auf, der in Bakterien stickstoffabhängig posttranslationell modifiziert wird. Sowohl in vitro als auch in vivo Experimente haben jedoch gezeigt, dass GlnK1 in M. mazei nicht stickstoffabhängig modifiziert wird. Weitere strukturelle Unterschiede zu bakteriellen PII-Proteinen haben Experimente zur Bildung von Heterotrimeren aufgezeigt. Trotz dieser deutlichen Unterschiede haben Komplementationsversuche ergeben, dass das archaeelle GlnK-Protein in der Lage ist, E. coli GlnK funktionell zu komplementieren. Dieses läßt darauf schließen, dass das GlnK1-Protein in M. mazei auch in der Regulation des Stickstoffmetabolismus involviert ist. Um dieses zu bestätigen, wurde eine chromosomale M. mazei glnK1-Mutante generiert. Hierfür war es erforderlich, zunächst ein funktionelles System zur Transformation von M. mazei Gö1 zu entwickeln. Es gelang, (i) durch Selektion einer potentiellen spontanen Zellwandmutante von M. mazei, die eine stark verbesserte Plattierungseffizienz aufwies, sowie (ii) durch mehrere Modifizierungen des von W. Metcalf (Urbana) entwickelten Liposomen-vermittelten Transformationsprotokolls für Methanosarcina-Stämme M. mazei Gö1 genetisch zugänglich zu machen. Wachstumsanalysen des konstruierten M. mazei glnK1-Mutantenstamms zeigten einen partiell reduzierten Wachstumsphänotyp unter stickstofflimitierenden Bedingungen. Quantitative Reverse Transkriptions-PCR Analysen ausgewählter Gene ergaben allerdings, dass das GlnK1 keinen Einfluss auf die Transkription stickstoffregulierter Gene ausübt.Sowohl biochemische Experimente mit gereinigtem Enzym als auch in vivo Versuche zeigten jedoch, dass das GlnK1-Protein mit der Glutamin-Synthetase (GlnA) interagiert und hierdurch deren Enzymaktivität inhibiert. Ein aktivierender Effekt auf die GlnA Enzymaktivität wurde hingegen bei Anwesenheit von 2-Oxoglutarat beobachtet, welches den internen Stickstoffstatus wiederspiegelt. Aus der Gesamtheit der Ergebnisse läßt sich folgendes hypothetisches Regulationsmodel ableiten: Unter Stickstofflimitierung wird 2-Oxoglutarat akkumuliert, welches die Glutamine-Synthetase Aktivität stark stimuliert; bei einem Übergang zu Stickstoffüberschuss wird die Glutamine-Synthetase sowohl durch einen reduzierten 2-Oxoglutarat-Spiegel als auch durch direkte Protein-Interaktion mit GlnK1 inaktiviert. Letzteres dient der Feinregulation und ermöglicht schnell auf eine veränderte Stickstoffversorgung reagieren zu können.
78

Die Beeinflussung der Succinatproduktion durch die veränderte Aktivität der Succinyl-CoA Synthetase und der Pyruvat-Carboxylase in Yarrowia lipolytica

Kretzschmar, Anne 16 September 2010 (has links)
Succinat und ihre Derivate werden in vielfältiger Weise in den Bereichen Tenside, Lebensmittel, Pharmazeutika und Polymere angewendet. Aufgrund der derzeit kostenintensiven petrochemischen Synthese ist die aerobe nicht-konventionelle Hefe Yarrowia (Y.) lipolytica für die biotechnologische Succinatsynthese von großem Interesse. In der vorliegenden Arbeit wurde das Potential dieser Hefe für eine industrielle Succinatproduktion unter Betrachtung des Einflusses der enzymatischen Aktivitäten von Succinyl-CoA Synthetase und Pyruvat-Carboxylase auf die Succinatsynthese untersucht. Es wurde eine Steigerung der Succinatausbeute um 40 % durch die Erhöhung der Pyruvat-Carboxylase Aktivität um den Faktor 7-8 gemeinsam mit der Deletion des Gens der β Untereinheit der Succinyl-CoA Synthetase im genetisch veränderten Y. lipolytica Stamm H222-AK10 (mcPYC Δscs2) erzielt. Unter Verwendung von Glycerol als C-Quelle wurde eine Erhöhung der Succinatbildung der Transformande H222 AK10 im Vergleich zum Wildtyp von 5,1 ± 0,7 g/l auf 8,7 ± 1,6 g/l nachgewiesen. Die Raum-Zeit-Ausbeute dieses Hefestammes verdoppelte sich von 11,9 ± 1,3 mg/l*h auf 21,9 ± 2,5 mg/l*h. Eine Erhöhung der Sekretion organischer Säuren gelang hingegen nicht durch den alleinigen Verlust der Succinyl-CoA Synthetase Aktivität in den Stämmen H222-AK4 (scs1::URA3), H222-AK8 (scs2:.URA3) und H222-AK9 (scs1::URA3 Δscs2) oder durch die alleinige Aktivitätserhöhung der Pyruvat-Carboxylase in H222-AK1 (mcPYC). Des Weiteren wurde ein Y. lipolytica Stamm erzeugt, der durch die Überexpression der für die Succinyl-CoA Synthetase kodierenden Gene SCS1 und SCS2 charakterisiert ist. Die Transformande H222 AK2 (mcSCS1 mcSCS2) bildete unter den gleichen Kultivierungsbedingungen durchschnittlich 2 g/l weniger Succinat als der Wildtyp (5,1 ± 0,7 g/l). Auch die zusätzliche Erhöhung der Pyruvat-Carboxylase Aktivität um den Faktor 4 in der Transformande H222 AK3 (mcPYC mcSCS1 mcSCS2) konnte den negativen Effekt der erhöhten Gen-Dosen von SCS1 und SCS2 auf die Succinatsynthese nicht aufheben. Dementsprechend wurden für H222-AK3 eine Succinatausbeute von 3,1 ± 0,3 g/l bestimmt.:Inhaltsverzeichnis Abbildungsverzeichnis VI Tabellenverzeichnis IX Abkürzungsverzeichnis XI 1. Einleitung 1 1.1. Bernsteinsäure, Succinat 1 1.2. Succinat als Zwischenprodukt des Tricarbonsäurezyklus 3 1.2.1. Die Enzyme des TCC in Saccharomyces cerevisiae 5 1.2.2. Succinatbildung im TCC durch die Succinyl-CoA Synthetase 6 1.2.3. Pyruvat-Carboxylase 7 1.3. Succinat als Endprodukt des Glyoxylatzyklus 9 1.4. Biotechnologische Herstellung von Succinat 10 1.4.1. Succinatproduktion mit Actinobacillus succinogenes und Anaerobiospirillum succiniproducens 11 1.4.2. Succinatproduktion mit Corynebacterium glutamicum 12 1.4.3. Succinatproduktion mit Escherichia coli 12 1.4.4. Yarrowia lipolytica als potentieller Succinatproduzent 15 1.5. Yarrowia lipolytica 15 1.6. Zielstellung 18 2. Material und Methoden 20 2.1. Geräte 20 2.2. Chemikalien, Biochemikalien und Nukleinsäuren 21 2.2.1. Feinchemikalien 21 2.2.2. Enzyme 22 2.2.3. Verbrauchsmaterialien und Kitsysteme 23 2.3. Verwendete Plasmide 23 2.4. Konstruierte Plasmide 24 2.5. Oligonukleotide 25 2.6. Mikroorganismen 26 2.6.1. Escherichia coli 26 2.6.2. Yarrowia lipolytica 27 2.7. Kultivierung 27 2.7.1. Kultivierung von Escherichia coli 27 2.7.2. Kultivierung von Yarrowia lipolytica 28 2.8. Gentechnische Methoden 29 2.8.1. Genomische DNA-Isolierung 29 2.8.2. Agarose-Gelelektrophorese 29 2.8.3. Polymerase Kettenreaktion 30 2.8.4. Verdau der DNA mit Restriktionsendonukleasen 31 2.8.5. DNA-Aufreinigung 31 2.8.6. Plasmidisolierung aus Escherichia coli 31 2.8.7. Dephosphorylierung 31 2.8.8. Ligation 32 2.8.9. Transformation elektrokompetenter Escherichia coli Zellen 32 2.9. Plasmidkonstruktion 33 2.9.1. Konstruktion der Expressionskassette für die Überexpression des Pyruvat-Carboxylase kodierenden Gens 33 2.9.2. Konstruktion der Expressionskassetten für die Überexpression der Gene der α- und β-Untereinheit der Succinyl-CoA Synthetase 34 2.9.3. Konstruktion der Deletionskassette des für die α-Untereinheit der Succinyl-CoA Synthetase kodierenden Gens 35 2.9.4. Konstruktion der Deletionskassette des für die β-Untereinheit der Succinyl CoA Synthetase kodierenden Gens 36 2.9.5. Sequenzierung konstruierter Plasmide 36 2.10. Transformation von Yarrowia lipolytica Zellen 37 2.10.1. Transformation von Yarrowia lipolytica mittels der LiAc-Methode 37 2.10.1.1. Herstellung chemisch kompetenter Yarrowia lipolytica Zellen 37 2.10.1.2. Transformation chemisch kompetenter Hefezellen 37 2.10.2. Herstellung elektrokompetenter Yarrowia lipolytica Zellen 38 2.10.3. Elektrotransformation von Yarrowia lipolytica 38 2.11. Southern Blot 39 2.11.1. Transfer der DNA auf eine Nylonmembran 39 2.11.2. Sondenherstellung 39 2.11.3. Immunologische Detektion 40 2.11.4. Strippen der Southern Blot Membran 40 2.12. Biochemische Methoden 41 2.12.1. Ernte und Aufschluss der Hefezellen 41 2.12.2. Aktivitätsbestimmung der Citrat-Synthase 41 2.12.3. Aktivitätsbestimmung der Aconitase 41 2.12.4. Aktivitätsbestimmung der NADP-abhängige Isocitrat-Dehydrogenase 42 2.12.5. Aktivitätsbestimmung der NAD-abhängige Isocitrat-Dehydrogenase 42 2.12.6. Aktivitätsbestimmung der α-Ketoglutarat-Dehydrogenase 43 2.12.7. Aktivitätsbestimmung der Succinyl-CoA Synthetase 43 2.12.8. Enzymatische Mitochondrienpräparation 46 2.12.9. Aktivitätsbestimmung der Succinat-Dehydrogenase 47 2.12.10. Aktivitätsbestimmung der Fumarase 47 2.12.11. Aktivitätsbestimmung der Malat-Dehydrogenase 48 2.12.12. Aktivitätsbestimmung der Isocitrat-Lyase 48 2.12.13. Aktivitätsbestimmung der Pyruvat-Carboxylase 48 2.12.14. Proteinbestimmung 49 2.13. Mikroskopische Bestimmung der Zellmorphologie 49 2.14. Kultivierung 49 2.14.1. Bestimmung der optischen Dichte 50 2.14.2. Animpfen der Hauptkultur 50 2.14.3. Succinatproduktionsmedium 50 2.14.4. Kultivierung unter Thiaminlimitation 51 2.14.5. Kultivierung unter Stickstofflimitation 52 2.14.6. Bestimmung organischer Säuren mittels Ionenchromatographie 52 2.15. Bioinformatik 53 3. Ergebnisse 54 3.1. Überexpression des Pyruvat-Carboxylase kodierenden Gens 54 3.2. Überexpression der Succinyl-CoA Synthetase kodierenden Gene 58 3.2.1. Bestimmung der Succinyl-CoA Synthetase Enzymaktivität 61 3.2.2. Bestimmung der spezifischen Aktivität weiterer Enzyme 61 3.3. Überexpression der für die Pyruvat-Carboxylase und Succinyl-CoA Synthetase kodierenden Gene 63 3.3.1. Bestimmung der spezifischen Aktivitäten der Enzyme des TCC und der PYC sowie der ICL 66 3.4. Deletion der Succinyl-CoA Synthetase Gene 68 3.4.1. Bestimmung der Succinyl-CoA Synthetase Enzymaktivität 72 3.4.2. Bestimmung weiterer spezifischer Enzymaktivitäten 73 3.5. Überexpression des Gens der Pyruvat-Carboxylase gemeinsam mit der Deletion des Gens für die β Untereinheit der Succinyl-CoA Synthetase 74 3.5.1. Bestimmung der spezifischen Aktivitäten von Enzymen des TCC, sowie der PYC und ICL 76 3.6. Morphologische Veränderungen der Transformanden 78 3.7. Produktion organischer Säuren im Succinatproduktionsmedium 80 3.9.1 Bestimmung der PYC-, ICL- und SDH-Aktivitäten während der Kultivierung im Succinatproduktionsmedium 87 3.8. α-Ketoglutarat-, Pyruvat- und Fumaratproduktion unter Thiaminlimitation 90 3.9. Citrat- und Isocitratproduktion unter Stickstofflimitation 96 4. Diskussion 100 4.1. Auswahl einer geeigneten C-Quelle für die Succinatproduktion 101 4.2. Reduktion der Succinatproduktion von Yarrowia lipolytica 102 4.3. Genetische Veränderungen, für die kein Einfluss auf die Succinatproduktion von Yarrowia lipolytica nachgewiesen wurde 106 4.3.1. Überexpression des Pyruvat-Carboxylase kodierenden Gens 107 4.3.2. Deletion der Succinyl-CoA Synthetase Gene 108 4.4. Erhöhung der Succinatproduktion von Yarrowia lipolytica 112 4.5. Auswirkungen auf die Produktion anderer organischer Säuren 119 4.5.1. α-Ketoglutarat-, Pyruvat- und Fumaratproduktion unter Thiaminlimitation 119 4.5.2. Citrat- und Isocitratproduktion unter Stickstofflimitation 121 4.6. Morphologische Veränderungen 122 4.6.1. Koloniemorphologie 122 4.6.2. Zellmorphologie 124 Literaturverzeichnis 126
79

STUDIES OF THE PYRROLYSYL-TRNA SYNTHETASE

Jiang, Ruisheng 23 July 2013 (has links)
No description available.
80

Untersuchungen zu Funktion und Struktur der Cyanophycin-Synthetase von Anabaena variabilis ATCC 29413

Berg, Holger 11 July 2003 (has links)
Diese Arbeit befasst sich mit dem bisher noch nicht untersuchten Mechanismus der Cyanophycinbiosynthese. Hierzu wurden verschiedene kurze Cyanophycinmoleküle chemisch synthetisiert, die als definierte Primer in in vitro Experimenten verwendet wurden. Die Verwendung dieser Primer ermöglichte erstmals die Richtung der Verlängerung des Cyanophycinmoleküls aufzuklären. Die durchgeführten Experimente zeigten, dass der Einbau der konstituierenden Aminosäuren sukzessiv vom Carboxyterminus aus erfolgt. Weiterhin wurde gezeigt, dass auch die nicht proteinogenen Aminosäuren Ornithin und Citrullin vom Enzym eingebaut werden. Mittels ortsgerichteter Mutagenese wurde zudem eine Zuordnung unterschiedlicher Abschnitte der Cyanophycin-Synthetase zu den verschiedenen vom Enzym katalysierten Teilreaktionen versucht. Mutationen im N-terminalen Bereich der Cyanophycin-Synthetase aus Anabaena variabilis ATCC 29413 führten dazu, dass Aspartat nicht mehr in Cyanophycin eingebaut wurde, eine Mutation im C-terminalen Bereich bewirkte, dass Arginin nicht mehr mit Cyanophycin verknüpft werden konnte. Als Reaktionsmechanismus wird für die Bindung beider Aminosäuren jeweils eine Phosphorylierung des C-terminalen Aspartatrestes von Cyanophycin als Acylphosphat vorgeschlagen, wobei die Phosphorylierung der beta-Carboxylgruppe mittels gamma-[³²P]-ATP nachgewiesen werden konnte, die Phosphorylierung der alpha-Carboxylgruppe jedoch nicht. Durch Vergleiche mit Enzymen ähnlicher Aminosäuresequenz und bekannter Raumstruktur wird eine mögliche Begründung für diese unterschiedlichen Befunde gegeben. / This work is occupied with the till now uninvestigated mechanism of the biosynthesis of cyanophycin. Therefore different short cyanophycin molecules were synthesized chemically, which were employed as defined primers for in vitro experiments. The usage of these primers made it possible to clear up the direction of the elongation of the cyanophycin molecule. Experiments showed that the incorporation of the constituent amino acids happens successively starting from the carboxy-terminus. Further it was shown that the nonproteinogenic amino-acids ornithine and citrulline are incorporated by the enzyme. Using site-directed mutagenesis an assignment between segments of the cyanophycin synthetase to different parts of the reactions catalyzed by the enzyme was carried out. Mutations in the N-terminal part of cyanophycin synthetase of Anabaena variabilis ATCC 29413 lead to the finding, that aspartate was not incorporated into cyanophycin anymore. A mutation in the C-terminal part resulted in the disability of the enzyme to incorporate arginine into cyanophycin. As reaction mechanism for the attachment of both of the amino acids a phosphorylation of the C-terminal aspartate as an acylphosphate was proposed. The phosphorylation of the beta-carboxylic-group could be shown by using gamma-[³²P]-ATP, the phosphorylation of the alpha-carboxylic group could not be shown. By comparison with enzymes that share a similar amino acid sequence and have a solved crystal structure a possible explanation for this finding is given.

Page generated in 0.0391 seconds