• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 43
  • 14
  • 10
  • 10
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 219
  • 59
  • 55
  • 34
  • 33
  • 32
  • 31
  • 29
  • 25
  • 22
  • 17
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Domain by domain analysis of the RNA binding properties of LysRS

Robinson, Christian L. 06 December 2010 (has links)
No description available.
32

Role of phenylalanyl-tRNA synthetase in translation quality control

Ling, Jiqiang 05 September 2008 (has links)
No description available.
33

Identification and Characterization of the Enzymes Involved in Biosynthesis of FAD and Tetrahydromethanopterin in Methanocaldococcus jannaschii

Mashhadi, Zahra 09 September 2010 (has links)
Methanogens belong to the archaeal domain, are anaerobes and produce methane from CO2 or other simple carbon compounds. Methanogenesis is a key process of the global carbon cycle and methanogens produce about 75-85% of all methane emissions. Besides the universally occurring coenzymes that are needed in normal metabolic pathways, such as biotin, coenzyme A, thiamine, FAD, PLP, etc.; methanogens need six additional coenzymes that are involved in the methane production pathway: methanofuran, tetrahydromethanopterin, coenzyme F₄₂₀, coenzyme M, coenzyme B, and coenzyme F₄₃₀. Although now it is known that some non-methanogenic archaea and bacteria have several of these coenzymes, they are named methanogenic coenzymes since these six coenzymes were first isolated and identified from methanogens. We are using Methanocaldococcus jannaschii as a model organism of methanogens to understand and investigate pathways of coenzymes biosynthesis. Our laboratory is involved in establishing the chemical functions of hypothetical proteins that function in targeted biochemical pathways leading to coenzyme production within the euryarchaeon M. jannaschii and identifying their corresponding genes. While there are many coenzymes present in this organism, my focus is on the biosynthetic pathways of tetrahydromethanopterin and FAD. 7,8-Dihydro-D-neopterin 2',3'-cyclic phosphate (H₂N-cP) is the first intermediate in the biosynthesis of the pterin portion of tetrahydromethanopterin (H₄MPT), a C₁ carrier coenzyme. This intermediate is produced from GTP by MptA (MJ0775 gene product), a new class of GTP cyclohydrolase I. An Fe(II)-dependent cyclic phosphodiesterase (MptB, MJ0837 gene product) hydrolyzes the cyclic phosphate of H₂N-cP to a mixture of 7,8-dihydro-D-neopterin 2'-monophosphate and 7,8-dihydro-D-neopterin 3'-monophosphate. MptB requires Fe²⁺ for activity, the same as observed for MptA. Thus the first two enzymes involved in H4MPT biosynthesis in the Archaea are Fe²⁺ dependent. In the FAD biosynthetic pathway, the conversion of riboflavin first into FMN and then to FAD is catalyzed by a bifunctional enzyme (RibF) that first acts as a kinase converting riboflavin to FMN in the presence of ATP and then acts as a nucleotidyl transferase using a second ATP to convert the FMN to FAD. Identification of the archaeal CTP-dependent riboflavin kinase, RibK (MJ0056 gene product) led us to identify a archaeal monofunctional FAD synthetase, RibL (MJ1179 gene product). RibL is the only air-sensitive FAD synthetase identified. / Ph. D.
34

Síntese da sacarose no amadurecimento da banana. Envolvimento da sacarose sintetase e sacarose fosfato sintetase / Sucrose synthesis during banana ripening: sucrose synthetase and sucrose phosphate synthetase involviment

Cordenunsi, Beatriz Rosana 20 April 1989 (has links)
A sacarose sintetase pode ser extraída de bananas pré-climatéricas cisteína (0,02M), em tampão tris-HCl pH 8,0 (0,05M), contendo EDTA (O,OlM), PVP (1%) e bissulfito de sódio (0,02M) na proporção de 1:4 (massa de banana/volume desolução f extratora). O seu isolamento pode ser efetuado por precipitação com sulfato de amônio, cromatografia por peneira molecular seguida de troca iônica ou, alternativ~ente, por cromatografia apenas em troca iônica. Obtém-se assim preparações com atividade específica entre 0,42 e 6,11 e grau de purificação de 5 a 18 vezes. A enzima purificada tem elevada afinidade por UDPG (Km = 0,67), UDP (Km = O, 17) , frutose (Km = 0,31) e reduzida afinidade para a sacarose (Km = 22,7). A enzima está presente durante a fase de desenvolvimento do fruto até o período préclimatérico, quando sua atividade sintética e hidrolítica tende a desaparecer a medida que aumenta o tempo decorrido após a colheita. Contrariamente, a sacarose fosfato sintetase não é detectada nas fases iniciais de desenvolvimento do fruto, mas tem sua atividade aumentada durante o amadurecimento, concomitantemente ao desaparecimento do amido. A sacarose fosfato sintetase e não a sacarose sintetase pode estar envolvida na transformação amido-sacarose durante o amadurecimento. / Banana sucrose synthetase can be purified almost to homogeneity by extraction with tris-HCl pH 8.0 (0.05M) buffer containing cystein (0.02M), EDTA (O.OlM), PVP (1%) and NaHS03 (O.O2M), ammonium sulfate precipitation, followed by cromatography on DEAE-cellulose (or alteratively on Sepharose-6B followed by DEAE-cellulose). The purified enzyme activities has high affinity for UDPG (Km = 0.67), UDP (Km = 0.17), fructose (Km = 0.31) and low affinity for sucrose (Km = 22.7). The sucrose synthetase is present during all stages of fruit development until the climateric when its activity tends to disappear, as the time after harvesting decurs contrarily the activity of sucrose phosphate synthetase is not detected in the initial stages of development but its activity increases during ripening following starch desappearance. Sucrose phosphate synthetase instead of sucrose synthetase may be involved in starch-sucrose conversion in post-harvest bananas.
35

Síntese da sacarose no amadurecimento da banana. Envolvimento da sacarose sintetase e sacarose fosfato sintetase / Sucrose synthesis during banana ripening: sucrose synthetase and sucrose phosphate synthetase involviment

Beatriz Rosana Cordenunsi 20 April 1989 (has links)
A sacarose sintetase pode ser extraída de bananas pré-climatéricas cisteína (0,02M), em tampão tris-HCl pH 8,0 (0,05M), contendo EDTA (O,OlM), PVP (1%) e bissulfito de sódio (0,02M) na proporção de 1:4 (massa de banana/volume desolução f extratora). O seu isolamento pode ser efetuado por precipitação com sulfato de amônio, cromatografia por peneira molecular seguida de troca iônica ou, alternativ~ente, por cromatografia apenas em troca iônica. Obtém-se assim preparações com atividade específica entre 0,42 e 6,11 e grau de purificação de 5 a 18 vezes. A enzima purificada tem elevada afinidade por UDPG (Km = 0,67), UDP (Km = O, 17) , frutose (Km = 0,31) e reduzida afinidade para a sacarose (Km = 22,7). A enzima está presente durante a fase de desenvolvimento do fruto até o período préclimatérico, quando sua atividade sintética e hidrolítica tende a desaparecer a medida que aumenta o tempo decorrido após a colheita. Contrariamente, a sacarose fosfato sintetase não é detectada nas fases iniciais de desenvolvimento do fruto, mas tem sua atividade aumentada durante o amadurecimento, concomitantemente ao desaparecimento do amido. A sacarose fosfato sintetase e não a sacarose sintetase pode estar envolvida na transformação amido-sacarose durante o amadurecimento. / Banana sucrose synthetase can be purified almost to homogeneity by extraction with tris-HCl pH 8.0 (0.05M) buffer containing cystein (0.02M), EDTA (O.OlM), PVP (1%) and NaHS03 (O.O2M), ammonium sulfate precipitation, followed by cromatography on DEAE-cellulose (or alteratively on Sepharose-6B followed by DEAE-cellulose). The purified enzyme activities has high affinity for UDPG (Km = 0.67), UDP (Km = 0.17), fructose (Km = 0.31) and low affinity for sucrose (Km = 22.7). The sucrose synthetase is present during all stages of fruit development until the climateric when its activity tends to disappear, as the time after harvesting decurs contrarily the activity of sucrose phosphate synthetase is not detected in the initial stages of development but its activity increases during ripening following starch desappearance. Sucrose phosphate synthetase instead of sucrose synthetase may be involved in starch-sucrose conversion in post-harvest bananas.
36

The Role in Translation of Editing and Multi-Synthetase Complex Formation by Aminoacyl-tRNA Synthetases

Raina, Medha Vijay 25 September 2014 (has links)
No description available.
37

Differential inhibition of adenylylated and deadenylylated Mycobacteriun tuberculosis glutamine synthetase by ATP scaffold-based inhibitors

Theron, Anjo 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Please refer to full text for abstract / AFRIKAANSE OPSOMMING: Sien volteks vir opsomming
38

EFFECT OF ESTRADIOL SUPPLEMENTATION ON BLOOD ESTRADIOL AND METABOLITE LEVELS, AND HEPATIC PROTEIN EXPRESSION, IN GROWING, MATURE, AND SENESCENT BEEF CATTLE

Miles, Edwena D. 01 January 2013 (has links)
Estradiol (Compudose®, COM) implants are extensively used in beef cattle production systems to alter body composition and feed efficiency. Little information exists about the physiological mechanisms affected by COM treatment in growing, mature, and senescent female cattle. Moreover, no reports describe the level of blood estradiol resulting from COM treatment. The effect of COM on levels of plasma estradiol and blood metabolites and proteins, and relative content of glutamine synthetase (GS) and other amino acid nitrogen-metabolizing enzymes in liver tissue, was studied using three experimental models relevant to cow-calf production regimens: senescent cows (Trial 1), young mature (young) versus senescent (old) cows (Trial 2), and growing heifers (Trial 3). In Trial 1, plasma estradiol concentrations were 222 % more after 14 and 28 d in COM-implanted than sham implanted (Control) cows. COM treatment did not affect measured blood metabolites and enzymes, but increased hepatic GS protein expression by 350% after 14 d and 200% after 28 d of implantation. In contrast, protein expression of alanine transaminase, aspartate transaminase, glutamate dehydrogenase, and two glutamate transporters was not affected by COM. In Trial 2, plasma estradiol concentrations of COM implanted young and old cows were 48% higher than Control groups, whereas blood metabolites were not affected. COM implantation did not affect GS protein expression in young cows, but tended to increase GS expression in the old cows by 283% after 14 d and 41% after 28 d. GS mRNA content was increased about 38% in both young and old COM-treated cows. Hepatic content of beta-catenin and G protein-coupled receptor 30 (GPR30) content was not affected by COM treatment, indicating that estradiol-mediated GS expression was not regulated by beta-catenin- or GPR30-controlled pathways. In Trial 3, plasma estradiol levels in COM-treated heifers were 70% higher in COM heifers, concomitant with increased levels of total bilirubin and creatine kinase, and decreased creatinine. Correlation analysis of plasma estradiol levels and blood constituents only identified a positive correlation between plasma estradiol and potassium. Collectively, these data describe positive estradiol-mediated effects on hepatic metabolism and blood parameters in female cattle.
39

Estudo celular, bioquímico e biofísico da enzima selenofosfato sintetase de Naegleria gruberi / Biochemical, biophysical and cellular studies of selenophosphate synthetase from Naegleria gruberi

Bellini, Natalia Karla 16 July 2015 (has links)
O microrganismo alvo deste estudo pertence ao gênero Naegleria, que compreende amebas de vida livre amplamente distribuídas ao redor do mundo. Estas possuem estratégias de adaptação em condições de temperatura e pH que envolvem a diferenciação das células para as formas flagelada e cística. A via de biossíntese e incorporação do aminoácido selenocisteína (Sec, U) em N. gruberi foi descrita e, devido à incorporação co-traducional deste aminoácido em resposta a um códon UGA em fase de leitura, possui diversos fatores específicos que tornam a via alvo de estudos moleculares. Dentre os genes identificados, destaca-se o de selenofosfato sintetase (SPS), uma proteína funcionalmente dimérica envolvida na catálise da conversão de seleneto e adenosina 5´-trifosfato (ATP) em selenofosfato, essencial à síntese de Sec. Diferindo das SPSs homólogas, em N. gruberi a proteína (NgSPS2) é codificada em fusão N-terminal com uma metiltransferase e totaliza 737 aminoácidos. Esta descoberta motivou os objetivos da pesquisa baseada na investigação celular de NgSPS2 nativa nas três diferentes formas de vida de N. gruberi através de ensaios imunoenzimáticos, e a caracterização bioquímica e biofísica da proteína recombinante. A análise dos resultados obtidos por Western blot indicaram que NgSPS2, in vivo, apresenta os dois domínios metiltransferase e SPS separados após a tradução para uma cultura amebóide e, após alcançar a diferenciação de cada uma das formas isoladamente, este resultado se confirmou também para cistos e flagelados. A investigação de N. gruberi em cultura indica o aumento na atividade da via de síntese de selenoproteínas na presença de selênio conferindo resistência às condições de estresse oxidativo. A caracterização bioquímica do domínio C-terminal de NgSPS2, por cromatografia de exclusão molecular analítica e eletroforese não desnaturante, revelou predominância de dímeros em solução, coerente com SPSs homólogas. Os testes de cristalização não resultaram na obtenção de cristais, porém a proteólise limitada permitiu selecionar tripsina como potencial para a clivagem do N terminal do N terminal flexível. A conservação dos resíduos de aminoácidos funcionais em NgSPS2.CTD e seu comportamento em solução confirmam a obrigatoriedade da união de cada monômero e, por isso o domínio metiltransferase adicional pode ser desfavorável à montagem do dímero e in vivo a fusão é desfeita após a tradução. / The target microorganism of the present study belongs to the Naegleria genus. This genus includes free life amoebas widely distributed around the world that, in order to survive in bad temperature and pH environments, developed an adaptive strategy consisting of cells differentiation to flagellate and cystic form. The biosynthesis and incorporation of selenocysteine amino acid (Sec, U) in N. gruberi has been described and, because of the co-translational incorporation of this amino acid in response to a UGA codon during the reading step, this process has several specific factors which make it a target for molecular studies. Among the identified genes, we can highlight the one which encodes the selenophosphate synthetase that is involved in the catalytic conversion of selenite and adenosine triphosphate into selenium phosphate, a necessary step to the Sec synthesis that uses selenide and ATP to produce selenophosphate. SPS from N.gruberi is encoded with an methyltransferase N-terminal fused with the typical SPS C-terminal domain, an open read frame that contains 2211 nucleotides encoding 737 amino acids. This discovery has motivated the initial aims of this project, based on the cellular investigation of SPS2, native on the three different form lifes of N. gruberi, through immunoenzymatic assays, besides a study with the recombinant protein to clarify the biochemistry and biophysics features of NgSPS2. The results indicated that the protein do not keep both domains fused after the translation process, suggesting that they need to be separated to perform their biological function. The investigation of the N. gruberi culture revealed that the cells become less sensitive to stress agent in the presence of selenium, which seems to be correlated with the increasing activity of the selenoprotein synthesis. The biochemistry characterization of the NgSPS2 C-terminal domain, using size exclusion chromatography and electrophoresis under non-denaturing conditions revealed the predominance of dimers in solution according with the typical homologous SPS oligomeric state. The crystallization tests have not resulted in crystal growth; however, the limited proteolysis may be an alternative to optimize the crystallization process. These studies may enlarge the knowledge about the biosynthesis of Sec. in N. gruberi.
40

Estudos estruturais e funcionais da Selenofosfato Sintetase de Trypanosoma brucei e Leishmania major / Structural and functional studies of Selenophosphate Synthetase from Trypanosoma brucei and Leishmania major

Faim, Lívia Maria 24 April 2014 (has links)
A síntese e incorporação de Selenocisteína em selenoproteínas ocorre co tradicionalmente direcionado pelo códon de terminação UGA. Uma maquinaria única de enzimas e fatores proteicos é necessária para síntese de selenocisteína e decodificação do códon UGA de terminação da tradução para inserção de selenocisteína. Dentre as enzimas envolvidas, está a Selenonofosfato sintetase (SPS2), responsável por catalisar a ativação de seleneto com adenosina 5 trifosfato (ATP) para gerar selenofosfato, o doador de selênio reativo que é substrato da próxima enzima da via para formação de selenocisteína. Estudos recentes identificaram a presença da via de biossíntese de selenocisteína em parasitas kinetoplastidas e subsequentemente a proteína SPS2 de Trypanosoma brucei e Leishmania major foram caracterizadas. Entretanto, trabalhos estruturais e funcionais das enzimas permaneceram não reportados. Dessa forma, este trabalho teve seu foco estabelecido na realização de estudos estruturais e funcionais da SPS2 de T. brucei e L. major. Para caracterização da proteína em solução foram empregadas as técnicas de cromatografia de exclusão de tamanho, eletroforese em gel nativo, espalhamento dinâmico de luz (DLS), espalhamento de Raios X a baixo ângulo (SAXS) e ultracentrifugação analítica (AUC). Os resultados obtidos revelaram uma mistura de dímeros e tetrâmeros em solução para ambas SPS2 com predominância de dímeros. Muitas estratégias de cristalização e melhorias na difração foram utilizadas para obtenção de cristais proteicos apropriados para determinação da estrutura cristalográfica das SPS2. Cristais de SPS2 de T. brucei inteira e SPS2 de L. major com N-terminal truncado foram obtidos. Porém, somente a estrutura cristalográfica da proteína SPS2 de Leishmania major com o N-terminal truncado a 1,9 Å de resolução foi determinada. Estudos comparativos entre esta estrutura e outras selenofosfato sintetases mostrou a mesma organização estrutural entre elas. Experimento de complementação funcional das SPS2 truncadas e mutadas pontualmente revelou três resíduos localizados no N-terminal como fundamentais para atividade da SPS2 (Leu33, Thr34; Tyr36 e Leu37, Thr38; Tyr40 para SPS2 de T. brucei e L.major, respectivamente). Análise mutacional baseada nas estruturas cristalográficas indicou que estes resíduos podem estar envolvidos no mecanismo de entrega do selenofosfato para a próxima enzima da via, a Selenocisteína sintase. Isto poderia evitar a difusão de compostos reativos de selênio, resultando em uma eficiência na síntese de selenocisteína. Os resultados aqui apresentados forneceram informações importantes e novas perspectivas a respeito do mecanismo de catalise da enzima selenofosfato sintetase na via de síntese de selenocisteína. / The synthesis and incorporation of selenocysteine in selenoproteins occurs cotranslationally directed by the UGA stop codon. An unique machine of enzymes and protein factors are required for selenocysteine synthesis and decoding of UGA translation termination codon for the insertion of selenocysteine. Among the enzymes involved, Selenonofosfato synthetase (SPS2) is the responsible for catalyzing the activation of selenite with adenosine 5\' - triphosphate (ATP) to generate selenophosphate, the reactive selenium donor, which is substrate of the next pathway enzyme to formation of selenocysteine. Recent studies have identified the presence of selenocysteine biosynthesis in parasites Kinetoplastidas and subsequently, the SPS2 protein of Trypanosoma brucei and Leishmania major have been characterized, however, structural and functional studies of enzymes remain not reported. Thus, this present work report biochemical and biophysical studies of SPS2. To characterize the protein in solution, there were employed the techniques of size exclusion chromatography, native gel electrophoresis, dynamic light scattering (DLS), Small angle X-ray scattering angle (SAXS) and analytical ultracentrifugation (AUC). The results revealed a mixture of dimmers and tetramers in solution for SPS2 with predominance of dimers. Many strategies and improvements in crystallization and diffraction were used to obtain suitable SPS2 crystals for determination of the crystallography structure. T. brucei SPS2 crystals and L. major SPS2 crystals with truncated N-terminal were obtained. However, only the structure of SPS2 protein from L. major with truncated N-terminal to 1.9 Å of resolution was solved. Comparative studies of this structure with other selenophosphate synthases revealed the same structural organization. Functional complementation experiments of truncated and mutated SPS2 revealed three residues located in the SPS2 N- terminal as essential for the activity of the enzyme (Leu33 , Thr34 and Tyr36 to T. brucei SPS2; Leu37 , Thr38 and Tyr40 to L. major SPS2) . Mutational analysis based on the crystal structures indicated that these residues may be involved in the mechanism of selenophosphate delivery to the pathway enzyme next, the selenocysteine synthase. This found could prevent the diffusion of reactive selenium, resulting in selenocysteine synthesis efficient. The results presented here provided important information and new insights about the of selenophosphate synthetase catalysis mechanism in the selenocysteine synthesis pathway.

Page generated in 0.0443 seconds