• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 12
  • 12
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La torsion de Nijenhuis et quelques applications

Tong, Van Duc 18 December 1967 (has links) (PDF)
.
2

Bifurcations d'ordre supérieur, cycles limites et intégrabilité

Gentes, Mathieu 14 November 2009 (has links) (PDF)
La recherche de cycles limites pour des sytèmes polynômiaux du plan est historiquement motivée par le 16e problème de Hilbert. Les résultats obtenus dans cette thèse concernent des systèmes différentiels quadratiques intégrables perturbés pour lesquels on met en oeuvre une adaptation d'un algorithme théorique proposé par Jean-Pierre Françoise permettant le calcul des dérivées successives de l'application de premier retour, encore appelées fonctions de Melnikov. Le premier exemple étudié est de type Liénard et présente un centre en l'origine. Le calcul par deux méthodes différentes de la première fonction de Melnikov assure l'existence d'un cycle limite pour le système perturbé. Dans certains cas, on calcule les fonctions de Melnikov d'ordre supérieur et on donne des conditions pour lesquelles le système reste à centre. Le second exemple est issu d'une équation d'Abel remarquée par Liouville, dont l'étude des singularités à l'infini fait apparaître une singularité non hyperbolique avec domaine elliptique. On perturbe quadratiquement une forme normale quadratique présentant cette singularité. Le calcul des trois premières fonctions de Melnikov assure l'existence de perturbations faisant apparaître deux cycles limites. D'autre part, on est en mesure de donner certains cas intégrables ainsi que la nature algébrique des fonctions de Melnikov d'ordre supérieur. Dans le troisième exemple, on étudie une famille de systèmes présentant soit une singularité avec deux secteurs elliptiques, soit un centre et une singularité avec un domaine elliptique. On espère trouver une perturbation quadratique générant quatre cycles limites imbriqués deux à deux. L'étude des fonctions de Melnikov jusqu'à l'ordre deux ne révèle cependant que l'existence de perturbations pour lesquelles on a deux cycles autour de l'un des centres et un seul autour de l'autre.
3

Échantillonner les solutions de systèmes différentiels / Sampling the solutions of differential systems

Chan Shio, Christian Paul 11 December 2014 (has links)
Ce travail se propose d'étudier deux problèmes complémentaires concernant des systèmes différentiels à coefficients aléatoires étudiés au moyen de simulations de Monte Carlo. Le premier problème consiste à calculer la loi à un instant t* de la solution d'une équation différentielle à coefficients aléatoires. Comme on ne peut pas, en général, exprimer cette loi de probabilité au moyen d'une fonction connue, il est nécessaire d'avoir recours à une approche par simulation pour se faire une idée de cette loi. Mais cette approche ne peut pas toujours être utilisée à cause du phénomène d'explosion des solutions en temps fini. Ce problème peut être surmonté grâce à une compactification de l'ensemble des solutions. Une approximation de la loi au moyen d'un développement de chaos polynomial fournit un outil d'étude alternatif. La deuxième partie considère le problème d'estimer les coefficients d'un système différentiel quand une trajectoire du système est connue en un petit nombre d'instants. On utilise pour cela une méthode de Monté Carlo très simple, la méthode de rejet, qui ne fournit pas directement une estimation ponctuelle des coefficients mais plutôt un ensemble de valeurs compatibles avec les données. L'examen des propriétés de cette méthode permet de comprendre non seulement comment choisir les différents paramètres de la méthode mais aussi d'introduire quelques options plus efficaces. Celles-ci incluent une nouvelle méthode, que nous appelons la méthode de rejet séquentiel, ainsi que deux méthodes classiques, la méthode de Monte-Carlo par chaînes de Markov et la méthode de Monte-Carlo séquentielle dont nous examinons les performances sur différents exemples. / This work addresses two complementary problems when studying differential systems with random coefficients using a simulation approach. In the first part, we look at the problem of computing the law of the solution at time t* of a differential equation with random coefficients. It is shown that even in simplest cases, one will usually obtain a random variable where the pdf cannot be computed explicitly, and for which we need to rely on Monte Carlo simulation. As this simulation may not always be possible due to the explosion of the solution, several workarounds are presented. This includes displaying the histogram on a compact manifold using two charts and approximating the distribution using a polynomial chaos expansion. The second part considers the problem of estimating the coefficients in a system of differential equations when a trajectory of the system is known at a set of times. To do this, we use a simple Monte Carlo sampling method, known as the rejection sampling algorithm. Unlike deterministic methods, it does not provide a point estimate of the coefficients directly, but rather a collection of values that “fits” the known data well. An examination of the properties of the method allows us not only to better understand how to choose the different parameters when implementing the method, but also to introduce more efficient methods. This includes a new approach which we call sequential rejection sampling and methods based on the Markov Chain Monte Carlo and Sequential Monte Carlo algorithms. Several examples are presented to illustrate the performance of all these methods.
4

Contributions à l'analyse qualitative symbolique effective des systèmes dynamiques; l'application aux réseaux de réactions biochimiques

Ürgüplü, Asli 13 January 2010 (has links) (PDF)
Le but de mes travaux de recherche est de rendre, autant que possible, algorithmique l'étude des modèles composés par des équations différentielles paramétriques. Je me concentre aux algorithmes basés sur les symétries de Lie étendues pour les modèles de taille moyenne (environ vingt variables). Je présente deux méthodes de simplification exacte : la réduction du nombre des variables d'un modèle et sa reparamétrisation pour distinguer le rôle de ses paramètres. Les systèmes simplifiés sont équivalents aux systèmes originaux par des relations implicites ou explicites (suivant la méthode choisie). Ces algorithmes, grâce aux stratégies de calcul utilisées et aux restrictions sur les objets étudiés, ont une complexité temporelle polynomiale en la taille de l'entrée. Ils sont implémentés dans les paquetages MABSys et ExpandedLiePointSymmetry. Les modèles simplifiés issus de ces algorithmes facilitent diverses études comme l'analyse qualitative symbolique ou numérique. J'illustre mes travaux sur une famille de réseaux génétiques avec un seul gène autorégulé en faisant une analyse symbolique complète. Mon exemple principal appartient au domaine des réseaux de régulation génétique mais l'application des méthodes que je présente n'est pas limitée à la biologie intracellulaire.
5

Lois de conservation et plongements isométriques généralisés

Kahouadji, Nabil 22 October 2009 (has links) (PDF)
Ce travail de thèse se situe dans le domaine de la géométrie différentielle et a pour objectif l'étude du problème du plongement isométrique généralisé de fibrés vectoriels, dont la résolution permet, entre autres, de montrer l'existence d'analogues des lois de conservation en l'absence de symétries pour des équations aux dérivées partielles. Pour résoudre ce problème, nous le traduisons en termes d'un système différentiel extérieur, et l'existence ou non de variétés intégrales permet non seulement d'affirmer l'existence du plongement isométrique généralisé mais aussi de préciser la dimension de l'espace d'arrivé. En utilisant donc la théorie de Cartan-Kähler, nous résolvons le problème du plongement isométrique généralisé dans le cas des lois de conservations, i.e., lorsque la forme différentielle fermée covariante à valeurs dans le fibré est de degré un de moins que la dimension de la variété. Un corollaire de ce résultat est l'existence de lois de conservations pour le tenseur énergie-impulsion. Nous donnons aussi une réponse positive pour le plongement de 1-formes différentielles et pour le cas d'une 2-forme différentielle anti-auto-duale sur une variété de dimension 4 à valeurs dans un fibré de rang 3 muni d'une métrique et d'une connexion.
6

Contribution à l'étude des opérateurs dans des espaces de suites et applications à l'optimisation et aux systèmes différentiels

Fares, Ali 23 June 2009 (has links) (PDF)
Dans cette thèse on s'intéresse aux matrices infinies considérées comme des opérateurs linéaires dans des espaces de suites. On est ainsi conduit à l'étude des matrices de transformations et à la résolution de systèmes linéaires infinis ayant une infinité dénombrable d'équations et une infinité dénombrable d'inconnues. On donne des applications à la résolution de systèmes différentiels infinis où interviennent des matrices infinies remarquables. Ensuite, on s'intéresse à la résolution d'équations d'espaces de suites (EES) qui sont déterminées par une identité dont chaque terme est une somme ou un produit d'espaces de suites de type s_a et s _{\phi(x)} où \phi est une application de U^+ dans lui même et x est la suite inconnue. La résolution de telles équations consiste à déterminer l'ensemble de toutes les suites x qui satisfont l'équation. Puis, on étudie le spectre de l'opérateur de différence d'ordre un \Delta dans de nouveaux espaces de suites et on considère enfin des applications directes de la théorie des matrices infinies à des problèmes d'optimisation où on présente des résultats donnés par B. de Malafosse et A. Yassine pour déterminer le nombre de chemins comportant N arcs et reliant deux points quelconques dans le plan à l'aide d'une matrice booléenne infinie de Toeplitz.
7

Contribution à l'étude de la réduction formelle des systèmes différentiels méromorphes linéaires

Abbas, Hassane 01 September 1993 (has links) (PDF)
Cette thèse est consacrée au calcul des solutions formelles d'un système différentiel linéaire méromorphe dans un voisinage de l'origine de c de la forme y(z)=a(z)y(z). Il est bien connu qu'une matrice fondamentale de solutions s'écrit formellement sous forme h(z)=f(z)g(z), ou f(z) est une série formelle en racine de z et g(z) est une matrice de fonctions élémentaires qui constituent des exponentiels polynomiaux en racine de z#1, puissance complexe de z##1, et puissance entière positive de log z. H. L. Turrittin et w. Wasow ont propose une methode algorithmique pour calculer h(z). Cette methode coute chére en calcul. Devant ce fait, nous proposons une nouvelle approche algorithmique pour trouver h(z). Cette approche a l'avantage d'utiliser des transformations simples et moins couteuses en calcul. De plus, notre approche permet de calculer le plus grand degré des polynômes exponentiels qui se trouvent dans la matrice g(z). En pratique, les systèmes a deux dimensions sont importants. Dans ce cas, nous proposons une methode programmable, inspirée de l'approche générale précédente pour calculer les solutions au voisinage d'une singularité
8

Utilisation de la méthode d'équivalence de Cartan dans la construction d'un solveur d'équations différentielles

Dridi, Raouf 20 July 2007 (has links) (PDF)
L'implantation actuelle des solveurs d'équations différentielles combine les deux méthodes de classification et de réduction d'ordre. La méthode de classification consiste à tester si l'équation à résoudre figure, modulo un renommage des variables, dans une liste d'équations que l'on sait résoudre. La méthode de réduction d'ordre, basée sur l'analyse des symétries de Lie, est réservée aux équations qui ne font pas partie de cette liste.<br /><br />En pratique, plusieurs difficultés apparaissent. Tout d'abord, le calcul des quadratures ainsi que l'intégration des systèmes d'EDP (même linéaires) n'est pas chose facile. De ce fait, il arrive souvent que le solveur se contente de retourner en sortie des résultats partiels, en particulier lorsque la dimension du (pseudo)groupe de symétries de l'équation à résoudre est petite. Enfonçons le clou : lorsque cette dimension est nulle, les solveurs, tel qu'il sont conçus actuellement, sont incapables d'intégrer ou même de réduire l'ordre de l'équation.<br /><br />Cette thèse s'inscrit donc dans l'effort d'amélioration des solveurs actuels. Nous allons présenter et montrer la faisabilité d'une architecture, totalement nouvelle, pour la conception d'un solveur d'équations différentielles basé sur la méthode d'équivalence de Cartan. Notre solveur utilise les invariants différentiels produits par la méthode de Cartan pour détecter l'existence d'une équation différentielle de la liste de Kamke, équivalente à l'équation que l'on veut résoudre et calculer le changement de variables qui réalise cette équivalence.<br /><br />Ceci dit, le calcul du changement de variables est une question qui peut être délicate. En général, il est solution d'un système d'EDP. Nous montrons que lorsque le pseudo-groupe des transformations autorisées est choisi tel que le pseudo-groupe de symétries de l'équation cible est discret, intuitivement, le changement de variables s'obtient sans intégrer d'équations différentielles uniquement en résolvant des équations algébriques.
9

Formal reduction of differential systems : Singularly-perturbed linear differential systems and completely integrable Pfaffian systems with normal crossings / Réduction Formelle des systèmes différentiels linéaires singuliers : Systèmes différentiels linéaires singulièrement perturbés et systèmes de Pfaff complètement intégrables à croisements normaux

Maddah, Sumayya Suzy 25 September 2015 (has links)
Dans cette thèse, nous nous sommes intéressés à l'analyse locale de systèmes différentiels linéaires singulièrement perturbés et de systèmes de Pfaff complètement intégrables et multivariés à croisements normaux. De tels systèmes ont une vaste littérature et se retrouvent dans de nombreuses applications. Cependant, leur résolution symbolique est toujours à l'étude. Nos approches reposent sur l'état de l'art de la réduction formelle des systèmes linéaires singuliers d'équations différentielles ordinaires univariées (ODS). Dans le cas des systèmes différentiels linéaires singulièrement perturbés, les complications surviennent essentiellement à cause du phénomène des points tournants. Nous généralisons les notions et les algorithmes introduits pour le traitement des ODS afin de construire des solutions formelles. Les algorithmes sous-jacents sont également autonomes (par exemple la réduction de rang, la classification de la singularité, le calcul de l'indice de restriction). Dans le cas des systèmes de Pfaff, les complications proviennent de l'interdépendance des multiples sous-systèmes et de leur nature multivariée. Néanmoins, nous montrons que les invariants formels de ces systèmes peuvent être récupérés à partir d'un ODS associé, ce qui limite donc le calcul à des corps univariés. De plus, nous donnons un algorithme de réduction de rang et nous discutons des obstacles rencontrés. Outre ces deux systèmes, nous parlons des singularités apparentes des systèmes différentiels univariés dont les coefficients sont des fonctions rationnelles et du problème des valeurs propres perturbées. Les techniques développées au sein de cette thèse facilitent les généralisations d'autres algorithmes disponibles pour les systèmes différentiels univariés aux cas des systèmes bivariés ou multivariés, et aussi aux systèmes d''equations fonctionnelles. / In this thesis, we are interested in the local analysis of singularly-perturbed linear differential systems and completely integrable Pfaffian systems in several variables. Such systems have a vast literature and arise profoundly in applications. However, their symbolic resolution is still open to investigation. Our approaches rely on the state of art of formal reduction of singular linear systems of ordinary differential equations (ODS) over univariate fields. In the case of singularly-perturbed linear differential systems, the complications arise mainly from the phenomenon of turning points. We extend notions introduced for the treatment of ODS to such systems and generalize corresponding algorithms to construct formal solutions in a neighborhood of a singularity. The underlying components of the formal reduction proposed are stand-alone algorithms as well and serve different purposes (e.g. rank reduction, classification of singularities, computing restraining index). In the case of Pfaffian systems, the complications arise from the interdependence of the multiple components which constitute the former and the multivariate nature of the field within which reduction occurs. However, we show that the formal invariants of such systems can be retrieved from an associated ODS, which limits computations to univariate fields. Furthermore, we complement our work with a rank reduction algorithm and discuss the obstacles encountered. The techniques developed herein paves the way for further generalizations of algorithms available for univariate differential systems to bivariate and multivariate ones, for different types of systems of functional equations.
10

Contribution à l’analyse mathématique d’équations aux dérivées partielles structurées en âge et en espace modélisant une dynamique de population cellulaire / Contribution to the mathematical analysis of age and space structured partial differential equations describing a cell population dynamics model

Chekroun, Abdennasser 21 March 2016 (has links)
Cette thèse s'inscrit dans le cadre général de l'étude de la dynamique de populations. Elle porte sur la modélisation et l'analyse mathématique de l'hématopoïèse, le processus de production et de régulation des cellules sanguines. La population de cellules est perçue comme un milieu continu avec une structuration en âge et en espace. Nous avons commencé par analyser des modèles d'équations différentielles et aux différences à retard discret et distribué. Ces modèles à retard permettent de mettre en évidence des comportements particuliers tels que l'existence de solutions périodiques. Ensuite, nous avons pris en compte l'aspect spatial et la diffusion des cellules dans ces modèles, tout en sachant que la structuration en espace, dans le cas de l'hématopoïèse, a été très peu abordée par le passé. Un nouveau modèle a été obtenu du point de vue mathématique. Une étude d'existence d'ondes progressives est effectuée lorsque le domaine est non borné et lorsque le domaine est borné une étude de stabilité des états stationnaires ainsi que de l'existence d'une bifurcation de Hopf est réalisée / This thesis focuses on the study of population dynamics. It is devoted to the mathematical analysis and modeling of hematopoiesis, which is the process leading to the production and regulation of blood cells. The cell's population is seen as a continuous medium structured in age and space. We analyzed models of differential-difference system with discrete- and distributed -delay. These models can exhibit specific behaviors such as the existence of periodic solutions. Then we consider a space structuration and the diffusion of cells in such models, knowing that the space structure has not been widely studied in the case of hematopoiesis. A new model is obtained from the mathematical point of view. We studied the existence of traveling waves when the domain is unbounded. When the domain is bounded, the stability of stationary solutions and the existence of a Hopf bifurcation are obtained

Page generated in 0.0981 seconds