• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 137
  • 119
  • 30
  • 24
  • 18
  • 14
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 636
  • 95
  • 85
  • 79
  • 75
  • 72
  • 66
  • 53
  • 48
  • 47
  • 45
  • 42
  • 41
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Využití umělých neuronových sítí pro řešení úloh kombinatorické optimalizace / Using artificial neural networks to solve problems in combinatorial optimization

Dvořák, Marek January 2014 (has links)
This thesis discusses combinatorial optimization problems, its characteristics and solving methods. Different types of such problems are presented here and I hint at solution using classical heuristical algorithms. In the next part, I focus on artificial neural networks, their description and classification. In the last part, I'm comparing two neural network approaches for solving a travelling salesman problem on several examples.
232

Sinalização do óxido nítrico sobre a regulação do Metabolismo Ácido das Crassuláceas (CAM) em Guzmania monostachia / Crassulacean Acid Metabolism (CAM) regulation by nitric oxide in Guzmania monostachia

Paulo Tamaso Mioto 06 July 2016 (has links)
Guzmania monostachia é uma bromélia-tanque epífita que apresenta uma alta plasticidade fotossintética, sendo capaz de regular positivamente o metabolismo ácido das crassuláceas (CAM) em resposta ao déficit hídrico. Também foi visto para essa espécie que o incremento do CAM se dá de forma diferente ao longo do comprimento da folha, sendo mais intenso na região apical do que na basal. Trabalhos anteriores indicaram que o óxido nítrico (NO) parece estar envolvido na regulação do CAM, mas nada se sabe dos mecanismos pelos quais isso ocorre. Uma vez que parecem não existir receptores específicos de NO, acredita-se que ele seja capaz de se ligar diretamente às proteínas, através de um processo conhecido como nitrosilação. O presente trabalho visou determinar se o NO estaria atuando na regulação do CAM em G. monostachia através da nitrosilação de proteínas relacionadas a esse metabolismo. Para tanto, foram feitos três desenhos experimentais. No primeiro, folhas destacadas de G. monostachia foram mantidas por 7 dias em água (controle) ou em uma solução contendo 30% de PEG (déficit hídrico). Durante esse período, foram monitorados parâmetros indicativos de estresse (porcentagem de água, potencial hídrico, além dos teores de clorofilas, carotenoides e proteínas), CAM (atividade da fosfoenolpiruvato carboxilase - PEPC - e acúmulo noturno de malato e citrato) e emissão de NO. Todas as análises foram feitas nas porções basal e apical das folhas. Ao final dos 7 dias de escassez hídrica, também foram feitas dosagens de nitrosotióis totais e a visualização em gel de proteínas nitrosiladas na porção apical. O segundo experimento visou verificar a modulação da atividade de enzimas pela nitrosilação. Para tanto, extratos proteicos de folhas de G. monostachia foram incubados com glutationa reduzida (GSH) ou S-nitrosoglutationa (GSNO) para, em seguida,verificar diferenças nas atividades das enzimas PEPC, malato desidrogenase (MDH), ascorbato peroxidase (APX), catalase (CAT) e isocitrato desidrogenase dependente de NADP+ (NADP-ICDH). No terceiro experimento foi feita a aplicação do sequestrador de NO 2-(4-carboxifenil)-4,4,5,5-tetrametilimidazolina-1-oxil-3-óxido (cPTIO) ou de NO gasoso em folhas destacadas mantidas em PEG ou água, respectivamente. Os resultados mostraram que o aumento do CAM se dá seis dias após o início do tratamento de déficit hídrico, concomitantemente com o aumento na produção de NO. Esses dois fenômenos ocorreram somente na porção apical da folha. A quantidade de proteínas nitrosiladas, no entanto, diminuiu em resposta ao déficit hídrico nesta porção, indicando que o aumento na emissão de NO pode ser oriundo de uma desnitrosilação de proteínas. De fato, a atividade de três (PEPC, APX e NADP-ICDH) das cinco enzimas analisadas mostraram uma diminuição em resposta ao tratamento com GSNO. Dessa forma, o NO parece não se ligar diretamente às enzimas do CAM para regular sua atividade. Mesmo assim, a aplicação de NO gasoso causou um aumento em todos os parâmetros relacionados ao CAM após 5 dias, sugerindo algum tipo de controle transcricional sobre genes relacionados a esse tipo de fotossíntese / Guzmania monstachia is an epiphytic tank-bromeliad capable of up-regulating CAM under water deficit. Moreover, the increase in CAM is stronger in the apical portion of the leaf, when compared to the base. Nitric oxide (NO) is a signaling molecule involved in the regulation of CAM, but the mechanisms underlying this phenomenon are still largely unknown. NO is capable of interacting with proteins through a process known as nitrosylation. Here, we investigated whether NO could regulate CAM by protein nitrosylation. In order to do so, we performed three experiments. In the first one, detached leaves were maintained for 7 days in water or in a solution containing 30% of poliethylene glycol 6000 (PEG). During this period, the water percentage, water potential, contents of chlorophylls and carotenoids, phosphoenolpyruvate carboxylase (PEPC) activity, nocturnal malate and citrate accumulation, and NO emission were monitored daily in the basal and apical portions of the leaf. At the seventh day of the water shortage, quantification of total nitrosothiols and in-gel visualization of nitrosylated proteins were also performed in the apical portion. The second experiment consisted in incubating proteic extracts of G. monostachia with reducedglutathione (GSH) or S-nitrosoglutathione (GSNO) to assess the impact of nitrosylation in enzymatic activity. The enzymes selected to this step were PEPC, malate dehydrogenase (MDH), ascorbate peroxydase (APX), catalase (CAT) and NADP+-dependent isocitrate dehydrogenase (NADP-ICDH). The third experiment consisted in the application of the NO scavenger 2-(4-carboxifenil)-4,4,5,5-tetrametilimidazolina-1-oxil-3-óxido (cPTIO) or gaseous NO to leaves maintained in water or in PEG 30%, respectively. The results show that there was an increase of both CAM and NO in the leaf apex at the sixth day of water deficit. The level of nitrosylated proteins, however, decreased in this portion, indicating that the emission of NO may be the result of a de-nitrosylation process. In fact, the activity of three (PEPC, APX and NADP-ICDH) out of five enzymes analyzed decreased with nitrosylation. Therefore, NO does not regulate directly the activity of CAM enzymes. Nevertheless, exogenous NO increased all of the assayed CAM parameters after 5 days, indicating transcriptional control of CAM-related genes
233

Designing of One Directional Wave Tank

Ringe, Shivansh January 2020 (has links)
Uppsala University wants to make a wave tank which can be used for experiment and education purpose. The project's aim is to get design parameters required to make a wave tank, design the wave tank, to do analysis on wave parameters taken from results and analysis of material which can be used to construct it.  This project is an extension of the project called Numerical Wave Tank Design in which a literature study on existing wave research facilities was done [1]. The data from this project is used to get the dimensions of the wave tank. A study on hydrodynamics and wave theory is done to understand flow motion and wave generation.   Ansys Fluent is used for Computational Fluid Dynamics (CFD). The software is used to test the wave tank with different wave absorber and observe if a good quality wave with a minimal reflection can be generated in the wave tank of chosen dimensions. Four models were created for testing wave absorber of different shapes. The setup for all the models was kept the same for comparison purposes. Waves generated from CFD were later compared with the theoretical waves obtained from wave theory. The next part was to model the wave tank in Computer-Aided Design (CAD) software, SolidWorks. The stress and strain analysis was done on the walls and support beam of the wave tank to know if the structure can sustain the water when fully filled. After creating static simulation different scenarios were performed on the beam and stand of the wave tank. The design study on these parts was compared to see which case provides a more optimal solution. It was found out that wave absorber having an elevation of 18.4 degrees, i.e., 1:3 slope provides the highest wave height for the given parameter and dimensions of the wave tank. In wave analysis, it was seen that wave height is proportional to the stroke length, water depth is proportional to wave height and time period is inversely proportional to the wave height. Cast stainless steel is used in a wave tank as it is cheap, reliable and robust. It was found out that the support beam 0.015 m thick is enough, although it can be increased to 0.02 m. In the design study of the wave tank stand, it was found out that a leg distance of 0.78 m and a leg width of 0.06 m is sufficient to withstand the weight of the wave tank.
234

Single Amplified Genomes as Source for Novel Extremozymes: Annotation, Expression and Functional Assessment

Grötzinger, Stefan 12 1900 (has links)
Enzymes, as nature’s catalysts, show remarkable abilities that can revolutionize the chemical, biotechnological, bioremediation, agricultural and pharmaceutical industries. However, the narrow range of stability of the majority of described biocatalysts limits their use for many applications. To overcome these restrictions, extremozymes derived from microorganisms thriving under harsh conditions can be used. Extremophiles living in high salinity are especially interesting as they operate at low water activity, which is similar to conditions used in standard chemical applications. Because only about 0.1 % of all microorganisms can be cultured, the traditional way of culture-based enzyme function determination needs to be overcome. The rise of high-throughput next-generation-sequencing technologies allows for deep insight into nature’s variety. Single amplified genomes (SAGs) specifically allow for whole genome assemblies from small sample volumes with low cell yields, as are typical for extreme environments. Although these technologies have been available for years, the expected boost in biotechnology has held off. One of the main reasons is the lack of reliable functional annotation of the genomic data, which is caused by the low amount (0.15 %) of experimentally described genes. Here, we present a novel annotation algorithm, designed to annotate the enzymatic function of genomes from microorganisms with low homologies to described microorganisms. The algorithm was established on SAGs from the extreme environment of selected hypersaline Red Sea brine pools with 4.3 M salinity and temperatures up to 68°C. Additionally, a novel consensus pattern for the identification of γ-carbonic anhydrases was created and applied in the algorithm. To verify the annotation, selected genes were expressed in the hypersaline expression system Halobacterium salinarum. This expression system was established and optimized in a continuously stirred tank reactor, leading to substantially increased cell amounts and protein yields. The resulting gene expression products were assessed for function in vivo and/or in vitro. Our functional evaluation of the tested genes confirmed our annotation algorithm. Our developed strategy offers a general guide for using SAGs as a source of scientific and industrial investigations into “microbial dark matter” and may help to develop new catalysts, applicable for novel reactions in green chemistry.
235

Development of a Dynamic Simulation Model for Equalization Tanks

Fotso, Simo Eugene 06 August 2021 (has links)
The influent to a water and resource recovery facility (WRRF) generally exhibits significant diurnal variations in flow rate and load concentration. This makes determining the operating parameters and subsequently the overall operation of plants difficult, especially in developing countries due to the lack of highly skilled operators. Hence, there is an incentive for the control and operation of WRRFs in developing countries to be improved. Flow equalization tanks were identified as a potential method to attenuate the diurnal variations in flow rate and load concentration into plants. The main aim of this research was to develop a viable dynamic simulation model for the operation of flow equalization tanks, within a plant-wide framework (to allow for the evaluation of design and control strategies). The next aim was to determine the benefits of equalization tanks towards design and optimised operation of future WRRFs via scenario analyses. Finally, the effects of the equalization tank on the performance of various unit processes in a WRRF were to be investigated. The model was developed in three steps; i) the development of the required equations to model equalization tanks, ii) mass balance throughout the model for internal consistency and iii) scenario analyses to determine if the model generated reasonable and scientifically sound outputs. The model was developed using Microsoft Excel Visual Basic (VBA) and WEST®. Two scenarios were considered to assess the equalization tank modelled. Scenario One involved the comparison of the capital cost, unit process sizes and total footprint of a balanced sludge age Modified Ludzack-Ettinger (MLE) system with and without an equalization tank. Scenario Two compared the plant performance of the MLE system designed in Scenario One with and without a flow equalization tank. A dynamic simulation model replicating equalization tanks was successfully developed. From scenario analyses, it was determined that using an MLE system and only considering equalization of flow, there was a reduction in the size of several unit processes by 8-9% (primary settling tank, biological reactors, secondary settling tank, flotation unit, anoxic-aerobic digester), due to the less conservative design values that could be used as the variations of the influent were decreased. Despite this, a 13% overall increase in the footprint of the WRRF was observed due to the addition of the equalization tank. The attenuation of diurnal flow variations also resulted in reduction of various plant parameters by up to 50% (flow, OUR, VSS flux). Finally, there was a 10% improvement in the performance of various unit processes due to the presence of the equalization tank. In conclusion, the inclusion of equalization tanks in WRRFs has significant positive effects. These results were obtained with equalization of flow only. Some other limitations were experienced during the project resulting in the following recommendations: further research will be needed to validate and calibrate the model, As the model was not successfully incorporated in a plant-wide framework, further developments in that direction are required, as well as including the equalization of load in the model.
236

Betonová konstrukce spodní stavby administrativního objektu / Concrete substructure of the administrative building

Neuschl, Marcel January 2019 (has links)
The theme of this diploma thesis is the design and assessment of a part of the underground load-bearing structure of the administrative center according to the source material. Emphasis is placed on the design, taking into account the waterproofness of the construction, the so-called white tank. This is ensured by the correct design of the concrete construction of the foundation slab and walls, taking into account the constructional details of the day and expansion joints, the concrete composition and the construction process.
237

Pevnostní analýza konstrukcí kompaktních hydraulických zařízení / Analysis of structures of compact hydraulic equipment

Sordyl, Martin January 2019 (has links)
The subject of this thesis is realization of short research of current compact hydraulic power unit, realization of FEM analysis with aim to find inappropriately dimensioned parts of structures. Based on this data design optimized solution of structures and create drawings of weldments. This thesis is carried out in cooperation with company Bosch Rexroth, spol.s.r.o.
238

Wide Band-Gap Semiconductor Based Power Converter Reliability and Topology Investigation

Ni, Ze January 2020 (has links)
Wide band-gap semiconductor materials such as silicon carbide (SiC) and gallium nitride (GaN) have been widely investigated these years for their preferred operation at higher switching frequency, higher blocking voltage, higher temperature, with a compacter volume, in comparison with the traditional silicon (Si) devices. SiC MOSFETs have been utilized in photovoltaic systems, wind turbine converters, electric vehicles, solid-state transformers, more electric ships, and airplanes. GaN based transistors have also been adopted in the DC-to-DC converters in data centers, personal computers, AC-to-DC power factor correction converters for the consumer electronic adaptors, and DC-to-AC photovoltaic micro-inverters. The first part of this dissertation is regarding the lifetime modeling and condition monitoring for the SiC MOSFETs. Since SiC-based devices have different failure modes and mechanisms compared with Si counterparts, a comprehensive review will be conducted to develop accurate lifetime prediction, condition monitoring, and lifetime extension strategies. First, a novel comprehensive online updated system-level lifetime modeling approach will be presented. Second, to monitor the SiC MOSFET ageing, the typical degradation indicators of SiC MOSFET gate oxide will be investigated. Third, to measure the junction temperature, the dynamic temperature-sensitive electrical parameters for the medium-voltage SiC devices will be studied. The other part is the topology investigation of these emerging wide band-gap devices. A generalized topology that would leverage the advantages of the wide band-gap devices will be introduced and analyzed in detail. Following it is a new evaluation index for comparing different topologies with the consideration of the semiconductor die information. The topology and its derivatives will be utilized in the subsequent chapters for three applications. First, a 100 kW switched tank converter (STC) will be designed using SiC MOSFETs for transportation power electronic systems. Second, an updated STC topology integrating with the partial-power voltage regulation will be introduced for electric vehicle applications. Third, two novel single-phase resonant multilevel modular boost inverters will be designed based on the voltage-regulated STC. These topologies will be validated through designed prototypes. As a result, the high power density and high efficiency will be realized by combining the well-suited topologies and the advantages of the WBG devices.
239

Doplnění protipovodňových opatření v povodí Salašského potoka / Flood control measures in the Salašský potok basin

Stolářová, Alena January 2013 (has links)
This thesis deals with the addition of flood protection measures in the Salašský potok basin. Working closely related to the previous bachelor thesis on Flood protection in the Salašský potok basin. Detail deal with left tributary Salašky - Modranský potok -which runs through the town Modrá, to be occupied by 6 small cascade of water reservoirs. The work is divided into two parts. The first part describes the actual parameters of the tanks and their assessment of the possible spill-over and is solved their overall transformational effect in the basin. In the second part of the thesis dealt with the tank as a semi tank in response to N-leté water and searched their design parameters.
240

Ochrana obce Račice před extravilánovou vodou / The protection of the village Račice against the extravilan run off

Hyžák, Aleš January 2014 (has links)
This thesis deals with problematic of external area water in river basins and its negative impact on the urban areas. The work is divided into two parts. The first part is describes the possibilities of technical interventions in river basins, which can affect the hydrologic conditions in those basins. First part also describes the possibilities of transformation by particular types of draining facilities. Second part of the thesis consists of an analysis of the situation in the village Račice and proposition of hydrotechnological solution for this village.

Page generated in 0.0505 seconds