• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 10
  • 7
  • 6
  • 5
  • 4
  • 2
  • 1
  • Tagged with
  • 90
  • 28
  • 24
  • 23
  • 18
  • 18
  • 18
  • 18
  • 15
  • 15
  • 15
  • 14
  • 13
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Bezdrátový lokalizační modul s nízko-příkonovým firmware na bázi RTOS / Wireless Localization Module with Low-Power Firmware Based on RTOS

Lipka, Radim January 2020 (has links)
This thesis focuses on the design and implementation of the wireless localization module, using UWB technology with emphases on low-power firmwre based on RTOS. Wireless localization is based on TDoA algorithm.  The resulting HW module is designed as a four layer PCB, based on MCU crf52832 (ARM Cortex M4) and UWB module DevaWave DW1000. Firmware is implemented using FreeRTOS with emphasis on low power consumption. For hardware implementation, Eagle CAD was used. Firmware is implemented in C and Assembly programming languages.
62

A distributed, mobile positioning systemfor wireless, handheld devices

Christiansson, Fredrik January 2000 (has links)
This thesis investigates the possibilities of implementing a location awareness mechanism for the so-called lesswire localNavigator. The author claims that it is possible to implement such a mechanism within the given prerequisites and constraints, even though with today’s technology it may not be economically feasible. Due to the lesswire’s constraints: high accuracy (67%), high-resolution (12 m2) and no hardware modification allowed to the mobile device, the suggested scheme uses Time Difference Of Arrival technology (TDOA). The main advantage of TDOA, as stated in this thesis, is the fact that it is almost totally independent of the preferred wireless technology of the mobile device. TDOA technology therefore, can be applied to a wide range of wireless networks (primarily TDMA, CDMA, FDMA – based). A disadvantage of this scheme is the fact that the network infrastructure needs to be extremely well synchronized - which in turn implies higher costs. Depending on how the synchronization problem is solved, the proposed system may well be economically feasible in the near future.
63

Indoor positioning system using ultrasound combined with multilateration

Eiselt, Jonas, Mahmoud, Danial January 2018 (has links)
Under det senaste decenniet har inomhuspositionering fått en ökad popularitet och stått i fokus för forskning och utveckling, eftersom det ger praktiska möjligheter till att spåra och navigera objekt och människor i inomhusmiljöer. Det finns ingen global lösning för inomhuspositionering baserat på en enstaka teknologi såsom det gör för utomhuspositionering med sin satellitbaserade globala positioneringssystem. Många inomhusteknologier står inför många utmaningar såsom låg positioneringsnoggrannhet samt dyr och stor hårdvara. Den här uppsatsen beskriver hur en simpel och kostnadseffektiv lösning, som addresserar problemen med noggrannheten och hårdvarukostnaden, genom en iterativ forskningsmetod, utvecklades. Vår lösning är ett ultraljudsbaserat passivt sändare-mottagare system som kombinerar multilateration som positioneringsteknik och tidsskillnad av ankomst (TDOA) som mätprincip för att beräkna en 3D-position inuti en 4x2x2 m testyta med en övergripande noggrannhet på 16 cm inom ett 95% konfidensintervall. Vi registrerade noggranna TDOA-värden med en komparatorkrets som fungerade som en amplitud-trigger. Det här tillvägagångssättet var mycket enklare än vad andra relaterade arbeten använde sig av, vilket var sampling för att bearbeta inkommande signaler från sändarna. / During the past decade, indoor positioning has gained more popularity and has become a focus of research and development as it provides practical possibilities to track and navigate objects and people in indoor environments. There is no overall solution for indoor positioning based on a single technology like the solution for outdoor positioning with its satellite-based global positioning system. Many indoor positioning technologies today face many challenges such as low positioning accuracy, expensive and large hardware. This thesis describes how a simple and cost-effective solution, that addresses the problem of accuracy and space cost with regards to hardware being used, was developed through an iterative research methodology. Our solution is an ultrasound-based passive receiver-transmitter system that combines multilateration as a positioning technique and time difference of arrival (TDOA) as a measuring principle. This combination is used to calculate a 3D position within a 4x2x2 m test area with an overall accuracy of 16 cm within a 95% confidence interval. We registered accurate TDOA values with a comparator circuit that acts as an amplitude trigger. This approach was much more simple than that of other related works which used sampling to process incoming signals from the transmitters.
64

Ultra-wideband Concurrent Transmissions for Ranging and Localization

Corbalan Pelegrin, Pablo 14 May 2020 (has links)
Global navigation satellite systems (GNSS) have radically changed business, industry, and society, shaping the way we transport, navigate, and generally live every day. After all these years, however, GNSS location information remains only valuable outdoors, leaving indoor environments where people dwell most of the time without proper localization support. Many technologies and systems have approached this problem including optical, inertial, ultrasonic, and radio-frequency (RF), to name a few; yet the problem remains. In this thesis, inspired by the indisputable success of GNSS and the re-emergence of ultra-wideband (UWB) radios to the forefront of technology, we aim to change the state of affairs in RF localization by proposing novel clean-slate UWB ranging and localization schemes based on concurrent transmissions. These are generally considered harmful for communication but become a rich source of localization information when combined with knowledge of the channel impulse response (CIR). Our first novel contribution lies in the concept of concurrent ranging, which allows mobile nodes to simultaneously measure the distance to multiple devices—hereafter, called responders—removing the need for the wasteful long packet exchanges traditionally used for ranging and localization. Different from conventional schemes, which spread responder transmissions over time, we force responders to transmit concurrently and let their signals “fuse” in the wireless channel; the resulting impulse response, as measured by commercial UWB radios, contains all the necessary timing information to extract the desired distance to all responders. This first contribution, however, also serves us to realize the many challenges ahead to unlock the real power of concurrent transmissions for localization. We address these challenges along the way, starting with Chorus, our second contribution. Chorus exploits an anchor infrastructure that transmits packets concurrently. Mobile nodes listen for these transmissions and measure from the CIR the time difference of arrival (TDoA) of the concurrent signals, privately computing their own position at a high rate using hyperbolic localization. This reverse TDoA scheme, although simple in concept, is extremely powerful in that it enables passive self-localization of infinitely many targets at once, a feature largely missing in the RF literature. In Chorus, we address the difficult challenges to reliably detect and identify the signal from the different responders. Yet, the limited transmission precision of commercial UWB transceivers constrains the many benefits of Chorus. In this context, we i) contribute a model to ascertain the impact of the transmission uncertainty on concurrent transmissions, and ii) address the issue with a compensation mechanism that fine-tunes the local oscillator frequency of responders while they prepare to transmit, allowing us to simultaneously tackle the impact of clock drift on distance estimation. We demonstrate in our evaluation that with this compensation mechanism we can schedule transmissions with < 1 ns error, removing the need to share timestamps to precisely measure distance. We rebuild concurrent ranging around this mechanism, obtaining decimeter-level ranging and localization at a fraction of the cost of conventional schemes. These results turn concurrent ranging into an immediately applicable technique that new systems can now exploit, benefiting from a different set of trade-offs hitherto unavailable. Further, the TX compensation mechanism can be directly applied to Chorus, similarly making fast and accurate passive self-localization a tangible reality. We continue our endeavor with a systematic characterization of the conditions under which UWB concurrent transmissions succeed to provide reliable ranging and communication across different complex channels. The results we put forth empower developers to fully exploit concurrent transmissions in their designs, potentially inspiring a new wave of ranging, and also communication, primitives that can bring to UWB the same striking benefits found in low-power narrowband radios. The thesis is completed by looking at other challenges preventing the wide adoption of UWB localization systems, namely, large-scale operation, energy efficiency, and the complexity to install anchor deployments. We tackle these aspects in the last part of the thesis with three additional contributions. First, we propose Talla, a TDoA system that provides seamless large-scale localization for many tags across cells of time-synchronized anchors. Secondly, we fuse UWB ranging with odometry information and build an uncertainty model that only triggers new UWB estimates if and when needed, reducing consumption and channel utilization while satisfying the application-specific demands in terms of accuracy. And thirdly, we build state-of-the-art mechanisms to automatically compute the positions of all anchors deployed across large areas based on ranging information, facilitating anchor network deployment for the many UWB-based real-time location systems (RTLS) to come. Overall, this thesis changes the landscape of UWB localization with a new set of potentially disruptive schemes and systems that exploit the peculiar benefits of concurrent transmissions and that consequently redefine the trade-offs of the technology.
65

Detection and Position Location of Partial Discharges in Transformers Using Fiber Optic Sensors

Song, Lijun 08 December 2004 (has links)
Power transformers are one of the most important components in the electrical energy network. Extending transformer life is very economically valuable due to power outage. Therefore the development of instruments to monitor the transformer condition is of great interest. Detection of partial discharges (PDs) in power transformers is an effective diagnostic because it may reveal and quantify an important aging factor and provide information on the condition of the transformer. However, partial discharge diagnostics are still not effectively used for online monitoring of transformers because of the complexity of PD measurements and difficulties of discriminating of PDs and other noise sources. This thesis presents a further study of detection and location of partial discharges in power transformers based on previous work conducted at the Center for Photonics Technology (CPT) at Virginia Tech. The detection and positioning system consists of multiple extrinsic Fabry-Parot interferometric (EFPI) fiber acoustic sensors which can survive the harsh environment of oil-filled transformers. This thesis work is focused on optimal arrangement of multiple sensors to monitor and locate PD activities in a power transformer. This includes the following aspects. First, the sensor design requirements are discussed in order to successfully detect and accurately position the PD sources. In the following sections, Finite Element Method (FEM) is used to model the EFPI sensor fabricated at CPT. Experiments were conducted to measure the angular dependence of the frequency response of the sensor. It is shown that within the range of ±45º incident angles, the sensitivity varies by 3-5dB. Finally, the thesis demonstrates a PD positioning experiment in a 500 gallon water tank (R à H = 74" à 30" cylinder) using a hyperbolic positioning algorithm and time difference of arrival (TDOA). Finally we demonstrated that 100% of the positioning data is bounded by a 22.7à 4.1à 5.3 mm₃ cube, with a sensing range of 810 mm using the leading edge method with FIR filtering. / Master of Science
66

Partial Discharge Detection and Localization in High Voltage Transformers Using an Optical Acoustic Sensor

Lazarevich, Alison Kay 27 May 2003 (has links)
A partial discharge (PD) is the dissipation of energy caused by the buildup of localized electric field intensity. In high voltage devices such as transformers, this buildup of charge and its release can be symptomatic of problems associated with aging, such as floating components and insulation breakdown. This is why PD detection is used in power systems to monitor the state of health of high voltage transformers. If such problems are not detected and repaired, the strength and frequency of PDs increases and eventually leads to the catastrophic failure of the transformer, which can cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the potential for loss of service. The PD phenomenon is manifested in a variety of physically observable signals including electric and acoustic pulses and is currently detected using a host of exterior measurement techniques. These techniques include electrical lead tapping and piezoelectric transducer (PZT) based acoustic detection. Many modern systems use a combination of these techniques because electrical detection is an older and proven technology and acoustic detection allows for the source to be located when several sensors are mounted to the exterior of the tank. However, if an acoustic sensor could be placed inside the tank, not only would acoustic detection be easier due to the increased signal amplitude and elimination of multipath interference, but positioning could also be performed with more accuracy in a shorter time. This thesis presents a fiber optic acoustic sensing system design that can be used to detect and locate PD sources within a high voltage transformer. The system is based on an optical acoustic (OA) sensor that is capable of surviving the harsh environment of the transformer interior while not compromising the transformer's functionality, which allows for online detection and positioning. This thesis presents the theoretical functionality and experimental validation of a band-limited OA sensor with a usable range of 100-300 kHz, which is consistent with the frequency content of an acoustic pulse caused by a PD event. It also presents a positioning system using the time difference of arrival (TDOA) of the acoustic pulse with respect to four sensors that is capable of reporting the three-dimensional position of a PD to within ±5cm on any axis. / Master of Science
67

Distributed Mobile Robot Localization and Communication System for Special Interventions

Sales Gil, Jorge 28 October 2011 (has links)
This thesis focuses on the development of a distributed mobile robot localization and communication system for special interventions like those carried out by fire-fighters in fire ground search and rescue. The use case scenario is related to the one described for the GUARDIANS EU project, where a swarm formation of mobile robots accompany a fire fighter during a rescue intervention in a warehouse. In this line, localizing the robots and the fire fighter during an indoor intervention with the presence of smoke is one of the more interesting challenges in this scenario. Several localization techniques have been developed using ultrasonic sensors, radio frequency signals and visual information. It has also been studied several communication protocols that can help to improve the efficiency of the system in such scenario and a proposal for designing a cross-layer communication platform that improves the connectivity of the mobile nodes during an intervention and reduces the number of lost data packets.
68

Comparison And Evaluation Of Three Dimensional Passive Source Localization Techniques

Batuman, Emrah 01 June 2010 (has links) (PDF)
Passive source localization is the estimation of the positions of the sources or emitters given the sensor data. In this thesis, some of the well known methods for passive source localization are investigated and compared in a stationary emitter sensor framework. These algorithms are discussed in detail in two and three dimensions for both single and multiple target cases. Passive source localization methods can be divided into two groups as two-step algorithms and single-step algorithms. Angle-of-Arrival (AOA) based Maximum Likelihood (ML) and Least Squares (LS) source localization algorithms, Time- Difference-of-Arrival (TDOA) based ML and LS methods, AOA-TDOA based hybrid ML methods are presented as conventional two step techniques. Direct Position Determination (DPD) method is a well known technique within the single step approaches. In thesis, a number of variants of DPD technique with better computational complexity (the proposed methods do not need eigen-decomposition in the grid search) are presented. These are the Direct Localization (DL) with Multiple Signal Classification (MUSIC), DL with Deterministic ML (DML) and DL with Stochastic ML (SML) methods. The evaluation of these algorithms is done by considering the Cramer Rao Lower Bound (CRLB). Some of the CRLB expressions given in two dimensions in the literature are presented for threedimensions. Extensive simulations are done and the effects of different parameters on the performances of the methods are investigated. It is shown that the performance of the single step algorithms is good even at low SNR. DL with MUSIC algorithm performs as good as the DPD while it has significant savings in computational complexity. AOA, TDOA and hybrid algorithms are compared in different scenarios. It is shown that the improvement achieved by single-step techniques may be acceptable when the system cost and complexity are ignored. The localization algorithms are compared for the multiple target case as well. The effect of sensor deployments on the location performance is investigated.
69

Acoustic Source Localization Using Time Delay Estimation

Tellakula, Ashok Kumar 08 1900 (has links)
The angular location of an acoustic source can be estimated by measuring an acoustic direction of incidence based solely on the noise produced by the source. Methods for determining the direction of incidence based on sound intensity, the phase of cross-spectral functions, and cross-correlation functions are available. In this current work, we implement Dominant Frequency SElection (DFSE) algorithm. Direction of arrival (DOA) estimation usingmicrophone arrays is to use the phase information present in signals from microphones that are spatially separated. DFSE uses the phase difference between the Fourier transformedsignals to estimate the direction ofarrival (DOA)and is implemented using a three-element ’L’ shaped microphone array, linear microphone array, and planar 16-microphone array. This method is based on simply locating the maximum amplitude from each of the Fourier transformed signals and thereby deriving the source location by solving the set of non-linear least squares equations. For any pair of microphones, the surface on whichthe time difference ofarrival (TDOA) is constant is a hyperboloidoftwo sheets. Acoustic source localization algorithms typically exploit this fact by grouping all microphones into pairs, estimating the TDOA of each pair, then finding the point where all associated hyperboloids most nearly intersect. We make use of both closed-form solutions and iterative techniques to solve for the source location.Acoustic source positioned in 2-dimensional plane and 3-dimensional space have been successfully located.
70

Techniques et technologies de localisation avancées pour terminaux mobiles dans les environnements indoor

Evennou, Frédéric 22 January 2007 (has links) (PDF)
Autant le GPS tend à s'imposer pour la localisation à l'extérieur des bâtiments, autant la situation est beaucoup plus ouverte pour la localisation à l'intérieur des bâtiments. De nombreux réseaux WiFi sont déployés dans les bâtiments. Ils diffusent des informations de puissance du signal permettant de remonter à la position d'un mobile. La technique du fingerprinting par puissance WiFi permet de localiser le mobile. Cependant, l'utilisation de cette technique de localisation requière une base de données correspondant à la couverture radio WiFi dans l'environnement.<br />L'utilisation d'une technique de localisation basée sur des mesures temporelles est moins contraignante que le fingerprinting. L'émission d'impulsions radio très brèves confère à la technologie 802.15.4a un fort pouvoir séparateur des multi-trajets. Le phénomène de multi-trajets est la principale contrainte au déploiement d'une technologie de localisation par mesures temporelles. La détection du premier trajet est très importante.<br />Des estimateurs comme le filtre de Kalman ou le filtre particulaire sont nécessaires pour limiter les effets des multi-trajets, des bruits de mesure, etc. Ces filtres peuvent aussi intégrer des informations de cartographie. Bien souvent, l'exploitation d'une seule technologie est insuffisante. La fusion d'informations de localisation est une étape supplémentaire pour améliorer la localisation. Des architectures de fusion robustes permettent de corriger les défauts de chacune des technologies pour conduire à un système plus robuste et plus précis en toutes circonstances.<br />Ce travail présente une approche innovante pour la localisation WiFi avec l'exploitation de cartographie dans l'estimateur tout en gardant une faible complexité suivant la plate-forme de déploiement visée. L'exploration des capacités de la localisation par ULB est proposée dans un second temps, avant d'aborder une réflexion sur les méthodes de fusion multi-capteurs.

Page generated in 0.0448 seconds