• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the quasiperiodic hamiltonian andronov-hopf bifurcation

Pacha Andújar, Juan Ramón 21 October 2002 (has links)
Aquest treball es situa dintre del marc dels sistemes dinàmics hamiltonians de tres graus de llibertat. Allà considerem famílies d'òrbites periòdiques amb una transició estable-complex inestable: sigui L el paràmetre que descriu la família i suposarem que per a valors del paràmetre més petits que un cert valor crític, L', els multiplicadors característics de les òrbites periòdiques corresponents hi són sobre el cercle unitat, quan L=L' aquests col·lisionen per parelles conjugades (òrbita ressonant o crítica) i per L > L', abandonen el cercle unitat cap al pla complex (col·lisió de Krein amb signatura oposada). El canvi d'estabilitat subseqüent es descriu a la literatura com "transició estable a complex inestable". Tanmateix, a partir d'estudis numèrics sobre certes aplicacions simplèctiques (n'esmentarem D. Pfenniger, Astron. Astrophys. 150, 97-111, 1985), és coneguda l'aparició (sota condicions d'incommensurabilitat) de fenòmens de bifurcació quasi-periòdica, en particular, el desplegament de famílies de tors 2-dimensionals. A més aquesta bifurcació s'assembla a la (clàssica) bifurcació d'Andronov-Hopf, en el sentit de què hi sorgeixen objectes linealment estables (tors-2D el·líptics) "al voltant" d'objectes inestables de dimensionalitat més baixa (òrbites periòdiques), i recíprocament, n'apareixen tors inestables (hiperbòlics) "al voltant" d'òrbites periòdiques linealment estables. Nostre objectiu és entendre la dinàmica local en un entorn de l'òrbita periòdica ressonant per tal de provar, analíticament, l'existència dels tors invariants bifurcats segons l'esquema descrit dalt. Això el portem a terme mitjançant l'anàlisi següent: (i) Primer de tot obtenim d'una manera constructiva (això és, donant algorismes) una forma normal ressonant en un entorn de l'òrbita periòdica crítica. Aquesta forma normal la portem fins a qualsevol ordre arbitrari r. Així doncs, mostrem que el hamiltonià inicial es pot posar com la suma de la forma normal (integrable) més una resta no integrable. A partir d'aquí, podem estudiar la dinàmica de la forma normal, prescindint dels altres termes i, amb aquest tractament (formal) del problema, som capaços d'identificar els paràmetres que governen tant l'existència de la bifurcació com la seva tipologia (directa, inversa). Cal, remarcar que el que es fa fins aquí, no és només un procés qualitatiu, ja que a més ens permet derivar parametritzacions molt acurades dels tors no pertorbats. (ii) A continuació, calculem acotacions "òptimes" per a la resta. D'aquesta manera, esperem provar que un bon nombre de tors (en sentit de la mesura) es preserven quan s'afegeix la pertorbació. (iii) Finalment, apliquem mètodes KAM per establir que la majoria (veure comentari dalt) dels tors bifurcats sobreviuen. Aquests mètodes es basen en la construcció d'un esquema de convergència quadràtica capaç de contrarestar l'efecte dels petits divisors que apareixen quan s'aplica teoria de pertorbacions per trobar solucions quasi-periòdiques. En el nostre cas, a més, resulta que alguna de les condicions "típiques" que s'imposen sobre les freqüències (intrínseques i normals) dels tors no pertorbats, no estan ben definides per als tors bifurcats, de manera que ens ha calgut desenvolupar un tractament més específic. keywords: Bifurcation problems, perturbations, normal forms, small divisors, KAM theory. Classificació AMS: 37J20, 37J25, 37J40 / This work is placed into the context of the three-degree of freedom Hamiltonian systems, where we consider families of periodic orbits undergoing transitions stable-complex unstable. More precisely: Let L be the parameter of the family and assuming that, for values of L smaller than some critical value say, L', the characteristic multipliers of the periodic orbits lie on the unit circle, when L=L' they colllide pairwise (critical or resonant periodic orbit) and, for L > L' leave the unit circle towards the complex plane (Krein collision with opposite signature). From numerical studies on some concrete symplectic maps (for instance, D. Pfennniger, Astron. Astrophys. 150, 97-111, 1985) it is known the rising (under certain irrationality conditions), of quasi-periodic bifurcation phenomena, in particular, the appearance of unfolded 2D invariant tori families. Moreover, the bifurcation takes place in a way that resembles the classical Andronov-Hopf one, in the sense that either stable invariant objects (elliptic tori) unfold "around" linear unstable periodic orbits, or conversely, unstable invariant structures (hyperbolic tori) appear "surrounding" stable periodic orbits. Our objective is, thus, to understand the (local) dynamics in a neighbourhood of the critical periodic orbit well enough to prove analytically, the existence of such quasi-periodic solutions together with the bifurcation pattern described above. This is carried out through three steps: (i) First, we derive, in a constructive way (i. e., giving algorithms), a resonant normal form around the critical periodic orbit up to any arbitrary order r. Whence, we show that the initial raw Hamiltonian can be casted --through a symplectic change--, into an integrable part, the normal form itself, plus a (non-integrable) remainder. From here, one can study the dynamics of the normal form, skipping the remainder off. As a result of this (formal) approach, we are able to indentify the parameters governing both, the presence of the bifurcation and its type (direct, inverse). We remark that this is not a merely qualitative process for, in addition, accurate parametrizations of the bifurcated families of invariant tori are derived in this way. (ii) Beyond the formal approach, we compute "optimal" bounds for the remainder of the normal form, so one expects to prove the preservation of a higher (in the measure sense) number of invariant tori --than, indeed, with a less sharp estimates--. (iii) Finally, we apply KAM methods to establish the persistence of (most, in the measure sense) of the bifurcated invariant tori. These methods involve the design of a suitable quadratic convergent scheme, able to overcome the effect of the small divisors appearing in perturbation techniques when one looks for quasi-periodic solutions. In this case though, some of the "typical" conditions that one imposes on the frequencies (intrinsic and normal) of the unperturbed invariant tori do not work, due to the proximity to parabolic tori, so one is bound to sketch specific tricks. keywords: Bifurcation problems, perturbations, normal forms, small divisors, KAM theory AMS classification: 37J20, 37J25, 37J40
2

Estabilitat efectiva i tors invariants de sistemes hamiltonians quasi-integrables

Gutiérrez i Serrés, Pere 02 June 1995 (has links)
La memòria recull contribucions a diversos aspectes del problema de l'estabilitat en sistemes hamiltonians quasi-integrables. Aquests aspectes inclouen resultats d'estabilitat efectiva, que comporten el confinament de trajectòries durant un interval de temps molt gran, i també resultats que estableixen l'existència de tors invariants, entre els quals distingim els tors KAM i tors de dimensió inferior.Considerem un sistema hamiltonià quasi-integrable, amb n graus de llibertat, en el qual la mida de la pertorbació és "Epsilon". Malgrat la possibilitat de difusió en aquest tipus de sistemes, els teoremes de Nekhoroshev i KAM (Kolmogorov-Arnol'd-Moser) són resultats molt valuosos que asseguren certs tipus d'estabilitat. Amb tot, les proves habituals d'aquests teoremes no posen en relleu la profunda relació que existeix entre els diferents tipus d'estabilitat a què donen lloc. Gran part de la memòria és dedicada doncs a donar un enfocament unificat per als dos teoremes.Després d'un capítol d'introducció, al capítol 2 descrivim el mètode seguit per a la prova d'ambdós teoremes, consistent a construir iterativament una transformació canònica que porti el hamiltonià de partida a una forma normal que depengui de menys angles. Per a l'obtenció de la forma normal fem ús del formalisme de les sèries de Lie, que descrivim a la secció 2.1. Aquest és un procediment molt apropiat per a aplicacions pràctiques, perquè permet dur a terme càlculs explícits en exemples concrets, i pot ésser directament implementat en ordinadors. Per tal d'evitar l'efecte causat pels petits divisors, prop de la ressonància associada a un mòdul fixat acceptem que la forma normal pugui dependre de certes combinacions d'angles. De fet només cal considerar ressonàncies fins a un ordre finit apropiat, ja que l'efecte de les ressonàncies d'ordre més alt és exponencialment petit. Basant-nos en el mètode de les sèries de Lie, construïm el procés iteratiu, el qual és finit en la prova del teorema de Nekhoroshev i infinit per al teorema KAM (en aquest darrer cas, sempre prenem el mòdul nul). De fet, descrivim un algorisme lineal i un de quadràtic. Tot i que l'algorisme lineal és d'aparença més senzilla, mostrem que el càlcul explícit de la forma normal podria ésser una mica més ràpid usant l'algorisme quadràtic.A les seccions 2.3 i 2.4 obtenim les versions lineal i quadràtica del lema iteratiu, que ens donen les fites per a un pas concret del procés iteratiu en cadascun dels dos algorismes. Utilitzem una norma per a camps vectorials hamiltonians (introduïda a la secció 2.2), la qual ens permet d'optimitzar les fites respecte les d'altres autors. Duent a terme un nombre adequat de passos, i aplicant reiteradament el lema iteratiu (en qualsevol de les seves dues versions), obtenim a la secció 2.5 el teorema de la forma normal, en el qual la fita de la resta és exponencialment petita. La prova d'aquest resultat esdevé molt simple degut al fet que el lema iteratiu ha estat optimitzat.Al capítol 3 obtenim, a partir del teorema de la forma normal, la prova del teorema de Nekhoroshev en el cas quasiconvex. En primer lloc, donem a les seccions 3.1 i 3.2 fites d'estabilitat vàlides sobre regions no ressonants i regions ressonants, respectivament (per al cas ressonant imposem la condició de quasiconvexitat). A la secció 3.3 recobrim tot l'espai de fases amb una família de conjunts, que reben el nom de blocs, associats a diferents mòduls de ressonàncies. Així obtenim a la secció 3.4 un temps d'estabilitat exponencialment gran en 1/Epsilon. per a totes les trajectòries, completant la prova del teorema de Nekhoroshev amb l'exponent òptim 1/2n.Obtenim també al capítol 3 altres resultats sobre estabilitat efectiva. Hem considerat a la secció 3.1 una pertorbació d'un sistema de n oscil·ladors harmònics amb freqüències satisfent una condició diofàntica. En aquest cas l'exponent de les fites és 1/(Tau + 1), essent Tau l'exponent de la condició diofàntica. A la secció 3.5 veiem que podem millorar les fites de Nekhoroshev si ens restringim a un entorn de la ressonància associada a un mòdul fixat, i obtenim uns exponents d'estabilitat particulars, que depenen de la dimensió del mòdul. A més, apliquem aquestes fites al conegut exemple d'Arnol'd.Al capítol 4 provem la versió isoenergèica de teorema KAM de manera directa sense usar aplicació de Poincaré) i introduïm la noció de tor quasi-invariant. Comencem veient a la secció 4.1 les dificultats que sorgeixen en el cas isoenergètic, i les resolem amb els lemes tècnics que donem a la secció 4.2. El mètode iteratiu que usem per a provar el teorema KAM isoenergètic és paral·lel, en línies generals, al que usa Arnol'd en el cas ordinari. A la secció 4.3 donem fites per a un pas concret del procés a partir del lema iteratiu. A la secció 4.4 completem la prova del teorema KAM isoenergètic, veient que les restes tendeixen ràpidament cap a zero i obtenint tors invariants n-dimensionals (tors KAM), però només sobre un conjunt cantorià que ve donat per freqüències diofàntiques.A més, obtenim a la secció 4.5 un resultat d'estabilitat que constitueix un pont entre els teoremes KAM i de Nekhoroshev. Cal considerar les freqüències que satisfan aproximadament una condició diofàntica, fins una precisió donada r. Aquestes freqüències donen lloc a tors quasi-invariants, noció que expressa que les trajectòries que parteixen d'un d'aquests tors hi romanen a prop durant un temps exponencialment gran en 1/r. Així, la precisió r passa a constituir el paràmetre de pertorbació (per a r = 0 tenim els tors KAM). Obtenim aquest resultat dins del mateix esquema iteratiu usat per al teorema KAM però aturant-lo en el moment adequat, en comptes de dur-lo fins al límit. El resultat és molt proper, des del punt de vista quantitatiu, al teorema KAM. Qualitativament, sacrifiquem l'estabilitat perpètua dels tors KAM però, en canvi, tenim un resultat més significatiu des del punt de vista pràctic, ja que per tal d'associar un tor quasi-invariant a una freqüència donada només cal comprovar la condició diofàntica aproximadament. Aquest resultat és lleugerament diferent dels d'altres autors, que estableixen que els tors KAM són "enganxosos" (prenent com a paràmetre la distància a un tor KAM fixat). El nostre resultat és més útil a la pràctica, car no requerim l'existència prèvia d'un tor KAM.Estudiem a la secció 4.6 l'existència de tors invariants per a un hamiltonià a l'entorn d'un punt fix el·líptic. Sota les condicions adequades, el teorema KAM ens diu que en un entorn de radi r existeix un gran nombre de tors invariants. Fins i tot, si les freqüències del punt el·líptic satisfan una condició diofàntica, llavors la mesura del complementari dels tors invariants és exponencialment petita en 1/r.Al capítol 5 estudiem els tors invariants de dimensió inferior prop de la ressonància associada a un mòdul de dimensió d < n. La localització d'aquests tors, especialment els tors hiperbòlics, és important com a primer pas per a establir l'existència de difusió d'Arnol'd al llarg d'una cadena de transició. En primer lloc, posem el hamiltonià en forma normal respecte el mòdul fixat i la resta és petita. Fent un canvi canònic lineal (secció 5.2), podem suposar que la part en forma normal només depèn de d angles. Menyspreant la resta, fem un estudi de la forma normal, la qual constitueix un sistema intermedi entre el hamiltonià no pertorbat i el hamiltonià pertorbat. A la secció 5.1 donem condicions per tal que la forma normal tingui tors invariants de dimensio n-d, els quals poden ésser el·líptics, hiperbòlics i d'altres categories. Considerem a la secció 5.3 el cas d'una ressonància simple (d=1), en el qual la forma normal és integrable i per tant podem dur a terme un estudi complet de les varietats invariants dels tors hiperbòlics i les connexions homoclíniques que tenen lloc. Remarquem que, si bé l'existència dels tors hiperbòlics per al sistema original ha estat establerta per altres autors, cal esperar que aquests tors es trobin molt a prop dels de la forma normal si aquesta ha estat obtinguda fins un ordre prou alt. Llavors podem obtenir més informació sobre les varietats invariants. / The main results concerning stability in nearly-integrable Hamiltonian systems are revisited: Nekhoroshev theorem (effective stability) and KAM theorem (existence of invariant tori). We prove both theorems using a common method, which allows to stress the close relationship between them.The method consists of bringing our Hamiltonian to normal form using an iterative procedure based on Lie series. We describe two algorithms (linear and quadratic) which can both be directly implemented in computers. To give estimates for the remainder of the normal form along the iterative process, we use a vectorfield norm which allows to optimize the estimates.Iterating these estimates an appropiate (finite) number of steps, we get an exponentially small remainder. Assuming quasiconvexity, we get Nekhoroshev theorem (with the optimal exponent). Further results on effective stability are also obtained.We prove the isoenergetic version of KAM theorem in a direct way (without using a Poincaré map). In this case, in order to make the remainder tend to zero, we consider an infinite iterative process. In this way the majority of trajectories lie in invariant tori, but these tori fill a Cantorian set given by Diophantine frequencies. Moreover, we introduce the notion of nearly-invariant torus by stopping the process at an appropiate step. We associate a nearly-invariant torus to the frequencies satisfying, up to a given precision, a Diophantine condition (the precision becomes the parameter of perturbation). We also prove the existence of a large number of invariant tori near an elliptic fixed point with Diophantine frequencies: we give for the complement of the invariant tori an exponentially small estimate.Finally, we study low dimensional tori near resonances and the invariant manifolds of hyperbolic tori near simple resonances. This constitutes a first step towards finding Arnol'd diffusion in nearly-integrable Hamiltonian systems.
3

The role of hyperbolic invariant objects: From Arnold diffusion to biological clocks

Huguet Casades, Gemma 16 October 2008 (has links)
El marc d'aquesta tesi són els objectes invariants hiperbòlics (tors amb bigotis, cicles límit, NHIM,. . .), que constitueixen, per aquesta tesi, els objectes essencials per a l'estudi de diversos problemes des de la difusió d'Arnold fins als rellotges biològics. Treballem en tres temes diferents des d'un enfocament tant teòric com numèric, amb una especial atenció per a les aplicacions, especialment en neurobiologia:· Existència de difusió d'Arnold per a sistemes Hamiltonians a priori inestables· Algorismes numèrics ràpids per al càlcul de tors invariants i els "bigotis" associats, per a sistemes Hamiltonians utilitzant el mètode de la parametrització.· Càlcul d'isòcrones i corbes de resposta de fase (PRC) en sistemes neurobiològics usant el mètode de la parametrització.En la primera part de la tesi, hem considerat el cas d'un sistema Hamiltonià a priori inestable amb 2+1/2 graus de llibertat sotmès a una pertorbació de tipus general. "A priori inestable" significa que el sistema no pertorbat presenta un punt d'equilibri hiperbòlic amb una òrbita homoclínica associada. El resultat principal d'aquesta part de la tesi és que per a un conjunt genèric de pertorbacions prou regulars, el sistema presenta el fenòmen de la difusió d'Arnold, és a dir, existeixen trajectòries la variable acció de les quals experimenta un canvi d'ordre 1. La demostració es basa en un estudi detallat de les zones ressonants i els objectes invariants generats en elles, i ofereix una descripció completa de la geografia de les ressonàncies generades per una pertorbació genèrica.En la segona part d'aquest memòria, desenvolupem mètodes numèrics eficients que requereixen poca memòria i operacions per al càlcul de tors invariants i els "bigotis" associats en sistemes Hamiltonians (aplicacions simplèctiques i camps vectorials Hamiltonians).En particular, això inclou els objectes invariants involucrats en el mecanisme de la difusió d'Arnold, estudiat en el capítol anterior. Els algorismes es basen en el mètode de la parametrització i segueixen de prop demostracions recents del teorema KAM que no usen variables acció-angle. Donem detalls de la implementació numèrica que hem dut a terme i mostrem alguns exemples.En la darrera part de la tesi relacionem problemes de temps en sistemes biològics amb algunes eines conegudes de sistemes dinàmics. En particular, usem el mètode de la parametrització i les simetries de Lie per a calcular numèricament les isòcrones i les corbes de resposta de fase (PRC) associades a oscil·ladors i ho apliquem a diversos models biològics ben coneguts. A més a més, aconseguim estendre el càlcul de PRCs en un entorn de l'oscil·lador. Les PRCs són útils per a l'estudi de la sincronització d'oscil·ladors acoblats i una eina bàsica en biologia experimental (ritmes circadians, acoblament sinàptic i elèctric de neurones,. . . ).
4

Analytic and numerical tools for the study of quasi-periodic motions in hamiltonian systems.

Luque Jimenez, Alejandro 12 January 2010 (has links)
És un fet ben conegut que les solucions quasi-periòdiques juguen un paper rellevant a l'hora d'entendre la dinàmica de problemes amb formulació hamiltoniana, els quals apareixen en una gran quantitat d'aplicacions en astrodinàmica, dinàmica molecular, física de d'acceleradors/plasmes o mecànica celest.De forma imprecisa i imcomplerta, hom pot dir que la teoria KAM recull una serie de tècniques i metodologies per estudiar solucions quasi-periòdiques (és a dir, funcions dependents d'un conjunt de freqüències) d'equacions diferencials típicament amb formulació hamiltoniana. Tot i que la teoria KAM és ben coneguda (veure [1]), els mètodes clàssics presenten inconvenients i dificultats a l'hora d'aplicar els resultats abstractes a exemples o models concrets. Nogensmenys, a [2] es va desenvolupar un nou mètode, sense usar transformacions ni coordenades acció-angle, amb el que es poden superar molts dels inconvenients de les tècniques clàssiques. Aquest mètode fou introduit per a tors de dimensió màxima i, en la actualitat, hom considera de gran interés la seva extensió a altres contextos, com ara l'estudi de tors "sense torsió' a [4] o l'estudi de tors de dimensió inferior normalment hiperbòlics a [3]. Un dels objectius d'aquesta tesi doctoral ha estat adaptar aquests mètodes per demostrar l'existència de tors de dimensió inferior normalment el·liptics i reductibles. Les dificultats tècniques que calen superar deriven de les ressonàncies que tenen lloc entre les freqüències internes del tor i les frequències d'oscil·lació de les "direccions normals', que cal caracteritzar (mitjançant reductibilitat) per tal d'obtenir les propietats geomètriques que es fan servir en la demostració.Per altra banda, a l'hora d'estudiar un tor invariant amb dinàmica quasi-periòdica, hom pot obtenir molta informació coneixent el seu vector de freqüències. És per això que el càlcul numèric d'aquests objectes ha esdevingut un tema de molt interés durant els darrers anys i ha portat al desenvolupament de diversos mètodes. Recentment s'ha desenvolupat a [5] un mètode molt eficient per calcular nombres de rotació per aplicacions del cercle. Hom pot identificar aquest problema amb el càlcul de la freqüència d'un tor unidimensional escrit en unes bones coordenades. Bona part de la recerca realitzada en la meva tesi doctoral continua la linea de treball encetada a [5]. Concretament, donada una família paramètrica de difeomorfismes del cercle, aquesta metodología s'ha adaptat en per a calcular derivades del nombre de rotació respecte de paràmetres. Mitjançant aquesta informació hom pot implementar esquemes tipus Newton per calcular corbes invariants. Com s'ha remarcat abans, hom pot aplicar aquestes tècniques a l'estudi de corbes invariants sempre que es pugui construir una aplicació del cercle amb la mateixa dinàmica. A tal efecte, hem desenvolupat un mètode sòlidament justificat que permet evitar la dificultat pràctica de buscar unes bones coordenades pel tor, extenent així els mètodes a contextes més generals com ara aplicacions "sense torsió" o senyals quasi-periodiques.[1] R. de la Llave. A tutorial on KAM theory. In Smooth ergodic theory and its applications, volume 69 of Proc. Sympos. Pure Math., pages 175-292. Amer. Math. Soc., 2001.[2] R. de la Llave, A. Gonzàlez, À. Jorba, and J. Villanueva. KAM theory without action-angle variables. Nonlinearity, 18(2):855-895, 2005.[3] E. Fontich, R. de la Llave, and Y. Sire. Construction of invariant whiskered tori by a parametrization method. Part I: Maps and flows in finite dimensions. J. Differential Equations, 246:3136-3213, 2009.[4] R. de la Llave , A. González and A Haro. Non-twist KAM theory. In preparation.[5] T.M. Seara and J. Villanueva. On the numerical computation of Diophantine rotation numbers of analytic circle maps. Phys. D, 217(2):107-120, 2006. / It is well-known that quasi-periodic solutions play a relevant role in order to understand the dynamics of problems with Hamiltonian formulation, which appear in a wide set of applications in Astrodynamics, Molecular Dynamics, Beam/Plasma Physics or Celestial Mechanics.Roughly speaking, we can say that KAM theory gathers a collection of techniques and methodologies to study quasi-periodic solutions (that is, functions depending on a set of frequencies) of differential equations typically with Hamiltonian formulation. Although KAM theory is well-known (see [1]), classical methods present shorcomings and difficulties in order to apply the abstract results to concret examples or models. Nevertheless, in [2] a new method was developed, without using action-angle variables, which allows us avoid most of the shortcomings of classical methods. This method was introduced for tori of maximal dimension and there is a current interest in extending it to other contexts, such us the study of non-twist tori in [4] or normally hyperbolic tori in [3]. One of the goals of this thesis has been to adapt this method to deal with elliptic lower dimensional tori. Theadditional technical difficulties are related to resonances between the basic frequencies of the tori and the oscillations in the "normal directions", which are characterized by means of reducibility in order to obtain the geometric properties that we require in the proof.Furthermore, in order to study quasi-periodic invariant tori, valuable information is obtained from the frequency vector that characterizes the motion. Part of the work in this thesis has been to develop efficient numerical methods for the study of one dimensional quasi-periodic motions in a wide set of contexts. Our methodology is an extension of a recently developed approach to compute rotation numbers of circle maps (see [5]) based on suitable averages of iterates of the map. On the one hand, the ideas of [5] have been adapted to compute derivatives of the rotation number for parametric families of circle diffeomorphisms, thus obtaining powerful tools (for example, we can implement Newton-like methods) for the study of Arnold Tongues and invariant curves for twist maps, if we can build a circle map using suitable coordinates. On the other hand, we have developed a solidly justified method that allows us to avoid the practical difficulty of looking for these coordinates, thus extending the methods to more general contexts such as non-twist maps or quasi-periodic signals.[1] R. de la Llave. A tutorial on KAM theory. In Smooth ergodic theory and its applications, volume 69 of Proc. Sympos. Pure Math., pages 175-292. Amer. Math. Soc., 2001.[2] R. de la Llave, A. Gonzàlez, À. Jorba, and J. Villanueva. KAM theory without action-angle variables. Nonlinearity, 18(2):855-895, 2005.[3] E. Fontich, R. de la Llave, and Y. Sire. Construction of invariant whiskered tori by a parametrization method. Part I: Maps and flows in finite dimensions. J. Differential Equations, 246:3136-3213, 2009.[4] R. de la Llave , A. González and A Haro. Non-twist KAM theory. In preparation.[5] T.M. Seara and J. Villanueva. On the numerical computation of Diophantine rotation numbers of analytic circle maps. Phys. D, 217(2):107-120, 2006.

Page generated in 0.0287 seconds