• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 466
  • 124
  • 70
  • 34
  • 24
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 14
  • 12
  • 11
  • Tagged with
  • 908
  • 875
  • 195
  • 112
  • 100
  • 95
  • 76
  • 75
  • 71
  • 71
  • 70
  • 69
  • 65
  • 58
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
561

Investigations into extracellular nucleotide-based signaling mechanisms in plants

Jeter, Collene Renee, 1968- 01 August 2011 (has links)
Not available / text
562

The Influence of Genetic and Environmental Factors on the Phenology and Life-Cycle Expression of Arabidopsis thaliana

Burghardt, Liana T. January 2015 (has links)
<p>This dissertation examines the processes that generate phenotypic variation in life cycles in seasonal environments. Collectively, a life cycle describes the stages an organism passes through during a generation. The timing, or phenology, of these transitions is often influenced by both environmental and allelic variation. Using the model organism Arabidopsis thaliana and both empirical and modeling approaches, I examine how correlations between life-cycle transitions, environment-dependent allelic effects, and epistasis generate patterns of life-cycle variation both within and between generations. In my first chapter, I use experiments to determine that many combinations of genetic, environmental, and developmental factors can create similar germination phenotypes, that maternal effects can influence phenotypes more than genetic differences, and that cross-generational effects can reduce variation in germination timing despite variation in flowering and dispersal time. In my second chapter, I use a modeling approach to consider the entire life cycle. I find that environmental variation is a major driver of phenotypic variation, and that considering the known geographic distribution of allelic variation across the range improves the match of model predictions to phenotypes expressed in natural populations. Specifically, variation in dormancy generated in the previous generation is predicted to cause life-cycle differences within a location, and the geographic distribution of allelic variation in dormancy interacts with local climatic environments to canalize an annual life history across the range. Finally, I test if allelic and environmental variation that affects early life stages can influence the environment experienced during reproduction. This environment determines both the time available for reproduction and the environment experienced during senescence. By implementing simple survival rules for flowering plants in the model, I show that time available for a plant to reproduce depends on earlier phenological traits and varies widely from year to year, location to location, and genotype to genotype. If reproductive trade-offs that underlie the evolution of senescence are environmentally sensitive, these results suggest that genetic variation in earlier life-stage transitions might shape senescence rates and whether they are environmentally responsive. In sum, my dissertation demonstrates the importance of pleiotropy, environment-dependent allelic expression, and epistasis in defining life-cycle variation, and proposes a novel way of predicting these relationships and complex life cycles under seasonal conditions.</p> / Dissertation
563

The light-harvesting antenna of higher plant photosystem I

Ganeteg, Ulrika January 2004 (has links)
During photosynthesis, two multi-protein complexes, photosystems (PS) I and II work in tandem to convert the light-energy absorbed by the light-harvesting antennae into chemical energy, which is subsequently used to assimilate atmospheric carbon dioxide into organic carbon compounds. This is the main nutritional basis for life on Earth. The photosynthetic antenna of higher plants comprises at least ten different pigment-binding proteins (LHC), which play important roles in photosynthesis. Chlorophyll and carotenoid molecules associated with the LHC proteins are organised into an array, which can be modulated, thereby optimising light-harvesting processes and protection against oxidative damage under conditions of excessive light absorption. All ten LHC proteins have been conserved through eons of evolution, suggesting that there are strong evolutionary pressures to retain all ten proteins, and hence that each protein has a unique function. The light-harvesting antenna of higher plant PSI consists of at least four proteins, Lhca1-4, collectively called LHCI. By constructing transgenic Arabidopsis thaliana plants in which each Lhca gene has been individually repressed or knocked-out, a collection of plants with different Lhca protein contents was obtained. The objective was to use these plants to study the structure, function and regulation of the Lhca proteins in vivo. The major findings of this work are as follows. Removing single Lhca proteins influenced the stability of the other Lhca proteins, showing that there is a high degree of inter-dependency between the polypeptides in LHCI, and hence that a full set of Lhca proteins is important for maintaining the structural integrity of LHCI. This has provided insight into the organisation of LHCI by revealing clues about the relative positions of each Lhca protein in the antenna complex. The physiological consequences of removing individual Lhca proteins were dependent on the degree of antenna depletion. Plants with relatively small antenna changes could compensate, to some extent, for the loss of LHCI, while larger depletions had profound effects on whole plant resulting in growth reductions. The fitness of each Lhca plant was assessed by measuring their seed production in the harsh conditions in the field. We found that all Lhca-deficient plants produced fewer seeds under some conditions, with seed-production compared to wild type varying between 10-80% depending on the extent of LHCI reduction. Therefore, we conclude that each Lhca protein is important for plant fitness, and hence for the survival of the species. PSI is characterised by a pool of pigments absorbing light in the red end of the solar visible spectrum, thought to be especially important for plants in dense vegetation systems where the incident light is enriched in wavelengths higher than 690 nm. A majority of these pigments are situated on LHCI and, based on in-vitro studies, were thought to be mainly associated with Lhca4. Using our plants, we have established that red pigments are indeed present on all Lhca proteins and that these pigments become even more red upon association with PSI.
564

The significance of feedback de-excitation

Külheim, Carsten January 2005 (has links)
During photosynthesis sunlight is absorbed by photosynthetic pigments and converted into organic compounds, such as carbohydrates. Photosynthesis needs to be highly regulated, since both too much and too little light are harmful to plant. If too little light is absorbed, a plant cannot store enough energy, which will have effects on growth and fitness of the plant. With too much light absorbed, a dangerous side reaction of photosynthesis, the production of reactive oxygen species can happen. These reactive oxygen species can damage the proteins in the chloroplast and the lipids of the chloroplast. To avoid the production of reactive oxygen species, plants have evolved many mechanisms, which act on different time-scales and different levels of organization. As a first measure, when the absorbed light is exceeding the capacity for its utilization, is to switch the light-harvesting antenna from efficient light harvesting to energy dissipation. This process is called feedback de-excitation (FDE). The protein PsbS is essential for this process as well as a functioning xanthophylls cycle with the enzyme violaxanthin de-epoxidase (VDE). I have investigated the effects of plants with changes in their ability to dissipate excess excitation energy in the model plants species Arabidopsis thaliana. Three genotypes with either increased or decreased capacity for FDE were used during my experiments. The first genotype over-expresses the PsbS gene, having approximately two-fold increased amounts of PsbS and FDE. The second is a PsbS deletion mutant with no PsbS protein and no FDE. The third genotype cannot perform the conversion of violaxanthin to zeaxanthin, because the enzyme VDE is missing. This mutant has some FDE left. Arabidopsis thaliana is an annual plant, which flowers only once in its lifetime. Therefore, when counting the seeds produced an estimation of fitness can be made from the amount of seeds produced. This was done during my experiments and shown that FDE is a trait and that plants with increased FDE have a higher fitness and vice versa. This was also the case for a collection of plants lacking a single protein from the light harvesting antenna. All of these genotypes had a fitness reduction, proving that their function is not redundant. In an attempt to explain why the fitness is reduced in plants with altered FDE, photosynthetic measurements, as well as a determination of the transcriptome and the metabolome was performed. Plants lacking FDE had higher levels of photoinhibition, leading both to lower rates of photosynthesis and to higher repair cost. This could in part explain the reduction in fitness. These plants also had major changes in their transcriptome and their metabolome. Primary metabolism was most effected, for example carbohydrate and amino acid metabolism. But there were also changes in secondary metabolism such as an up regulation of the biosynthesis of anthocyanins.
565

Régulateurs transcriptionnels des gènes AtMAX et AtBRC1 chez Arabidopsis thaliana

Gagné, Pierre-Olivier 10 1900 (has links) (PDF)
Les régulateurs de croissance et facteurs environnementaux régulent le développement et la croissance des plantes, ce qui affecte la biomasse et le rendement des cultures. Un déterminant important de la biomasse est l'étendue de la ramification, c'est-à-dire l'élongation des branches latérales. Les strigolactones (SL), des régulateurs de croissance dérivés de caroténoïdes et produits de la voie MORE AXILLARY BRANCHING (MAX), sont des régulateurs négatifs du développement des bourgeons axillaires. Les gènes AtMAX1 à AtMAX4 chez Arabidopsis codent pour des protéines impliquées dans la synthèse et la régulation de ces molécules. Parallèlement, une autre protéine, nommée BRANCHED1 (BRC1), est impliquée dans l'arrêt du développement des bourgeons, et il a été suggéré que son action se trouvait en aval de la voie MAX. D'autre part, une étude récente a démontré que l'expression constitutive du gène TRITICUM AESTIVUM VERNALIZATION1 (TaVRN1) du blé chez Arabidopsis affecte la ramification. Ce gène code pour un facteur de transcription à boîte MADS (MADS-box). TaVRN1 se lie à des motifs CArG de la région promotrice de AtMAX4, et provoque une augmentation de l'expression de AtMAX4. TaVRN1 fait partie du clade APETALA1/SQUAMOSA, tout comme les gènes APETALA1 (AtAP1), FRUITFUL (AtFUL) et CAULIFLOWER (AtCAL) chez la plante-modèle Arabidopsis thaliana, toutefois seul le membre AtAP1 de ce clade est surexprimé en présence de TaVRN1. Dans ce travail, nous avons procédé à une analyse détaillée des régions promotrices des gènes AtBRC1, AtMAX2 et AtMAX4, ainsi que du gène codant pour le MADS-box AtAP1. Cette analyse nous a permis d'identifier de nombreux éléments de régulation situés dans la région proximale des promoteurs (800 pb), dont des motifs CArG et CArG consensus chez AtBRC1 et AtMAX4 auxquels nous avons porté une attention particulière. Des analyses de gels de retardement effectuées avec des sondes contenant ces CArG et avec les protéines recombinantes AtAP1, AtFUL, et TaVRN1 (comme contrôle) indiquent qu'AtAP1 et TaVRN1 ont la capacité de se lier aux différents motifs CArG et CArG consensus des gènes AtAP1, AtBRC1 et AtMAX4. Ceci suggère qu'AtAP1 est un orthologue de TaVRN1 chez Arabidopsis. Nos résultats suggèrent aussi qu'AtAP1 est un FT MADS ayant la capacité de s'autoréguler et de moduler l'expression des gènes AtMAX4 et AtBRC1. Ces gènes étant impliqués dans le développement des branches latérales, ceci suggère que la dominance apicale est un phénomène qui dépend de facteurs de régulation MADS et plus spécifiquement d'AtAP1. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Arabidopsis thaliana, APETALA1, bourgeons axillaires, BRANCHED1, branches latérales, croissance, développement, dominance apicale, MADS, MAX, motif CArG
566

Isolation and characterization of SOS5 in a novel screen for plasma membrane to cell wall adhesion genes in Arabidopsis thaliana

McFarlane, Heather Elizabeth, 1983- January 2008 (has links)
Although dynamic interactions between plant cells and their environment require adhesion between the cell wall (CW) and the plasma membrane (PM), few plant adhesion molecules have been identified. Therefore, the seed coat mucilage secretory cells (MSCs) of Arabidopsis thaliana (which undergo developmentally regulated changes in adhesion) were developed into a novel model system to study PM-CW adhesion. Twenty-seven candidate genes were identified using data from publicly available and seed-specific microarrays. Mutant plants for these genes were screened for defects in adhesion via plasmolysis, and for changes in MSC morphology that may result from defective adhesion (Chapter 1). Two fasciclin-like arabinogalactan proteins were isolated in this screen. One of these, SOS5, was characterized in detail (Chapter 2). sos5 mutants are sensitive to hyperosmotic conditions and show defects in PM-CW adhesion and MSC mucilage structure. Interestingly, these phenotypes may be attributed to defects in adhesion or to defects in cell wall deposition.
567

Testing the Cruciferin Deficient Mutant, ssp-1, of Arabidopsis thaliana, as a Vehicle for Overexpression of Foreign Proteins

Lin, Yimei 25 August 2011 (has links)
ssp-1 is a seed storage protein mutant which is deficient in one of the major seed storage proteins in Arabidopsis thaliana, the 12S cruciferins. To determine if this mutant can drive a higher level expression of a transgene than that found in wild type, the mutant was transformed with the phytohemagglutinin (PHA) gene and single copy PHA homozygotes were identified. These PHA transformants were crossed to wild type so that each PHA gene would be in the same copy number and chromosomal context in a wild type background. Immunoblotting was employed to compare the PHA levels of the single copy transformants in both genetic backgrounds. PHA levels ranged from 4.52% to 7.7% of the total protein in transformants. Two of the transformants showed 30.33% and 44.18% more PHA than that of their backcross. Therefore, a mutant such as ssp-1 may provide a means for overexpression of foreign proteins.
568

Effet de la température sur le développement chez Arabidopsis thaliana

Antoun, Marlène 04 1900 (has links) (PDF)
En réponse aux conditions environnementales sous- et supra-optimales, les plantes manifestent des variations au niveau de leur croissance et de leur développement. Ces conditions non-optimales de croissance peuvent toutefois affecter la biomasse et le rendement des cultures. La température est l'un des facteurs environnementaux qui affectent le plus la croissance. Dans ce travail, nous avons effectué une analyse détaillée sur le développement (nombre et longueur des branches de la rosette et caulinaires, fleurs et bourgeons) de la plante modèle Arabidopsis thaliana sous différents conditions non-optimales de température et à différents stades de développement (Végétatif ou Reproductif). Les plantes témoins ont été cultivées à la température optimale de 22°C. Les résultats ont montré que des températures inférieures (12, 17°C) ou supérieures (27, 32°C) affectent le branchement et la floraison. L'allongement des entrenœuds et des branches caulinaires primaires est réduit à des températures plus basses et augmenté à des températures supérieures. Des résultats semblables ont été obtenus chez les plantes avant ou après l'initiation du développement de l'inflorescence principale. Nos données indiquent que les plantes qui sont passées au stade reproductif avant le traitement sont légèrement moins affectées par les variations de température que les plantes qui sont au stade végétatif. Nos résultats suggèrent aussi que les plantes doivent atteindre une taille maximale (longueur des entrenœuds) avant de former des méristèmes floraux, et que cette taille maximale dépend de la température de croissance. Les plantes à 17°C montrent un branchement légèrement inférieur alors que celles à 27°C montrent un branchement supérieur. Ceci suggère que la dominance apicale est un phénomène qui dépend de la température. Ce travail présente à notre connaissance la première étude élaborée de l'effet de la température sur le développement des inflorescences chez Arabidopsis. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Arabidopsis thaliana, branches, bourgeons axillaires, croissance, développement, entre-nœuds, stade reproductif, stade végétatif, température
569

LL-diaminopimelate aminotransferase: the mechanism of substrate recognition and specificity

Watanabe, Nobuhiko Unknown Date
No description available.
570

A study of genetic diversity and genome organization of Brassica napus using EST (expressed sequence tags) of Arabidopsis and SSR (simple sequence repeat) markers of B. napus /

Pollock, Stephanie. January 2001 (has links)
Arabidopsis expressed sequence tags (ESTs) and microsatellites of Brassica napus have been developed and used as PCR-based markers for both mapping and genetic diversity studies in B. napus . Out of 300 random Arabidopsis ESTs screened, 43 markers were mapped onto a genetic map of B. napus and then used in a diversity study involving 48 B. napus cultivars. A second set of EST markers were developed from chromosome 1 of Arabidopsis and used in genetic mapping studies of B. napus. From 192 primer pairs developed, 50 markers were added onto the B. napus reference map. Microsatellite markers were developed using a "GA" enriched genomic library from B. napus. From 152 designed primer pairs, 23 markers were added onto the B. napus reference map. Microsatellite markers were also used in genetic diversity studies of B. napus, where, from the 152 primer pairs, 40 revealed polymorphism between the 48 B. napus cultivars.

Page generated in 0.0635 seconds