• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 15
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 64
  • 64
  • 64
  • 19
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Design of Thermal Barrier Coating Systems

Curry, Nicholas January 2014 (has links)
Thermal barrier coatings (TBC’s) are used to provide both thermal insulation and oxidation protection to high temperature components within gas turbines. The development of turbines for power generation and aviation has led to designs where the operation conditions exceed the upper limits of most conventional engineering materials. As a result there has been a drive to improve thermal barrier coatings to allow the turbine to operate at higher temperatures for longer. The focus of this thesis has been to design thermal barrier coatings with lower conductivity and longer lifetime than those coatings used in industry today. The work has been divided between the development of new generation air plasma spray (APS) TBC coatings for industrial gas turbines and the development of suspension plasma spray (SPS) TBC systems. The route taken to achieve these goals with APS TBC’s has been twofold. Firstly an alternative stabiliser has been chosen for the zirconium oxide system in the form of dysprosia. Secondly, control of the powder morphology and spray parameters has been used to generate coating microstructures with favourable levels of porosity. In terms of development of SPS TBC systems, these coatings are relatively new with many of the critical coating parameters not yet known. The focus of the work has therefore been to characterise their lifetime and thermal properties when produced in a complete TBC system. Results demonstrate that dysprosia as an alternative stabiliser gives a reduction in thermal conductivity. While small at room temperature and in the as produced state; the influence becomes more pronounced at high temperatures and with longer thermal exposure time. The trade-off for this lowered thermal conductivity may be in the loss of high temperature stability. Overall, the greatest sustained influence on thermal conductivity has been from creating coatings with high levelsof porosity. In relation to lifetime, double the thermo-cyclic fatigue (TCF) life relative to the industrial standard was achieved using a coating with engineered porosity. Introducing a polymer to the spray powder helps to generate large globular pores within the coating together with a large number of delaminations. Such a structure was shown to be highly resistant to TCF testing. SPS TBC’s were shown to have much greater performance relative to their APS counterparts in thermal shock life, TCF life and thermal conductivity. Columnar SPS coatings are a prospective alternative for strain tolerant coatings in gas turbine engines.
42

Experimental investigation of film cooling and thermal barrier coatings on a gas turbine vane with conjugate heat transfer effects

Kistenmacher, David Alan 19 November 2013 (has links)
In the United States, natural gas turbine generators account for approximately 7% of the total primary energy consumed. A one percent increase in gas turbine efficiency could result in savings of approximately 30 million dollars for operators and, subsequently, electricity end-users. The efficiency of a gas turbine engine is tied directly to the temperature at which the products of combustion enter the first stage, high-pressure turbine. The maximum operating temperature of the turbine components’ materials is the major limiting factor in increasing the turbine inlet temperature. In fact, current turbine inlet temperatures regularly exceed the melting temperature of the turbine vanes through advanced vane cooling techniques. These cooling techniques include vane surface film cooling, internal vane cooling, and the addition of a thermal barrier coating (TBC) to the exterior of the turbine vane. Typically, the performance of vane cooling techniques is evaluated using the adiabatic film effectiveness. However, the adiabatic film effectiveness, by definition, does not consider conjugate heat transfer effects. In order to evaluate the performance of internal vane cooling and a TBC it is necessary to consider conjugate heat transfer effects. The goal of this study was to provide insight into the conjugate heat transfer behavior of actual turbine vanes and various vane cooling techniques through experimental and analytical modeling in the pursuit of higher turbine inlet temperatures resulting in higher overall turbine efficiencies. The primary focus of this study was to experimentally characterize the combined effects of a TBC and film cooling. Vane model experiments were performed using a 10x scaled first stage inlet guide vane model that was designed using the Matched Biot Method to properly scale both the geometrical and thermal properties of an actual turbine vane. Two different TBC thicknesses were evaluated in this study. Along with the TBCs, six different film cooling configurations were evaluated which included pressure side round holes with a showerhead, round holes only, craters, a novel trench design called the modified trench, an ideal trench, and a realistic trench that takes manufacturing abilities into account. These film cooling geometries were created within the TBC layer. Each of the vane configurations was evaluated by monitoring a variety of temperatures, including the temperature of the exterior vane wall and the exterior surface of the TBC. This study found that the presence of a TBC decreased the sensitivity of the thermal barrier coating and vane wall interface temperature to changes in film coolant flow rates and changes in film cooling geometry. Therefore, research into improved film cooling geometries may not be valuable when a TBC is incorporated. This study also developed an analytical model which was used to predict the performance of the TBCs as a design tool. The analytical prediction model provided reasonable agreement with experimental data when using baseline data from an experiment with another TBC. However, the analytical prediction model performed poorly when predicting a TBC’s performance using baseline data collected from an experiment without a TBC. / text
43

Barrières thermiques par projection plasma de suspensions : développement et caractérisation de microstructures à faible conductivité thermique / Thermal barrier coatings performed by suspension plasma spraying : Development and characterization of low thermal conductivity microstructures

Bernard, Benjamin 18 October 2016 (has links)
L’augmentation des températures de fonctionnement des turboréacteurs est un axe de développement privilégié dans l’industrie aéronautique. Une solution est l’amélioration des systèmes barrières thermiques. Ce travail de thèse s’intéresse au procédé de projection plasma de suspensions (SPS) qui permet d’envisager une amélioration significative des performances pour les prochaines générations de barrières thermiques, comparé au procédé d’évaporation sous faisceau d’électrons (EB-PVD). Le procédé SPS a en effet démontré une capacité à générer des microstructures colonnaires qui présentent un intérêt pour l’accommodation des contraintes thermo-mécaniques. Une étude microstructurale a conduit à l’identification des paramètres influant sur les variations de morphologies des revêtements (taille de colonnes, distribution de taille, compacité). Deux nuances optimisées en zircone yttriée (YSZ), nommées colonnaire et colonnaire compacte, ont été caractérisées de façon approfondie afin de déterminer les bénéfices du procédé SPS. Ces nuances se caractérisent par une conductivité thermique inférieure à 1 W.m-1.K-1, sur une plage de température allant de 25 à 1100 °C, soit des valeurs avantageuses par rapport à celles des revêtements EB-PVD (1,3 – 1,5 W.m-1.K-1). La durée de vie des dépôts SPS, estimée par cyclage thermique, est au moins équivalente à un dépôt YSZ réalisé par EB-PVD et cyclé en même temps. Le résultat le plus élevé obtenu, supérieur à 2000 cycles, est particulièrement prometteur. La capacité de fonctionnalisation du procédé SPS a par ailleurs permis la réalisation de systèmes multifonctionnels comprenant un dépôt colonnaire YSZ et un dépôt homogène Gd2Zr2O7 en surface. Cette architecture bicouche a pour objectif de pallier les infiltrations chimiques de type CMAS (CaO–MgO–Al2O3–SiO2) qui constituent un frein pour l’augmentation de la température de fonctionnement. Le caractère anti-CMAS du matériau Gd2Zr2O7 mis en forme par SPS a été évalué jusqu’à 1300 °C. / The increase of operating temperature of gas turbine engines is an issue of interest for the aeronautic industry. A solution is the enhancement of thermal insulation properties of thermal barrier coatings (TBCs). The present work is related to suspension plasma spraying process (SPS) that allows to consider significant improvements for the next generation of TBC systems, compared to the currently used process, namely electron beam physical vapor deposition (EB-PVD). Indeed, SPS process can produce columnar microstructures able to provide high thermo-mechanical compliance. A microstructural study led to identify parameters which impacted the coating morphology (column size, distribution, and compaction). Two optimized yttria-stabilized zirconia (YSZ) microstructures were carefully characterized to highlight SPS process advantages. Low thermal conductivities (< 1 W.m-1.K-1) were obtained within a large temperature range (25 °C – 1100 °C), compared to EB-PVD YSZ coatings (1,3 – 1,5 W.m-1.K-1). Thermal lifetime was estimated thanks to thermal cyclic fatigue tests. A similar level of thermal lifetime was reached with SPS coatings compared to EB-PVD one. Some SPS columnar coatings even showed more than 2000 cycles to failure. The ability of SPS to perform multifunctional systems, including a YSZ columnar structure with a homogeneous Gd2Zr2O7 coating on the top, was investigated. This architecture must provide a chemical protection to CMAS (CaO–MgO–Al2O3–SiO2) aggressions. These contaminants would impede the increase of temperature in next generation of gas turbine engines. The anti-CMAS behavior was assessed for SPS Gd2Zr2O7 coatings until 1300 °C.
44

Fonctionnalisation de barrières thermiques aéronautiques YSZ issues de la voie sol-gel : mesure de température et diagnostic de l'endommagement par fluorescence / Functionalisation of thermal barrier coatings synthesized by a sol-gel route : temperature measurement and damage monitoring by fluorescence methods

Copin, Etienne 10 December 2015 (has links)
L'objectif de la thèse est de développer des systèmes de Barrières Thermiques (BT) « capteurs » base zircone yttriée (ZrO2 + 9.8mol% Y2O3, YSZ) déposés par voie sol-gel selon un procédé de trempage-retrait. Ceux-ci sont dédiés à la mesure de la température par des méthodes de thermométrie par fluorescence et au suivi de l'endommagement dans l'épaisseur des revêtements. Les méthodes proposées sont basées sur le suivi de l'évolution, notamment avec la température, des propriétés de photoluminescence de marqueurs fluorescents lanthanides Ln3+, tels que l'europium Eu3+, le dysprosium Dy3+, l'erbium Er3+, le samarium Sm3+ ou encore le thulium Tm3+. Ceux-ci sont directement incorporés dans la structure de la zircone, semi-transparente dans le domaine d'émission visible de ces marqueurs. Un banc de mesure des propriétés de fluorescence (spectres, intensités et temps de vie) a spécifiquement été développé dans ce but. La caractérisation des différents couples YSZ:Ln3+ sous forme de poudres synthétisées par voie sol-gel a permis d'optimiser les compositions de manière à maximiser l'intensité du signal de fluorescence tout en préservant les propriétés microstructurales requises pour une BT. Les dépôts sol-gel réalisés par trempage-retrait permettent la fabrication de prototypes de BT multicouches fonctionnalisées intégrant jusqu'à trois couches fluorescentes de longueurs d'onde d'émission distinctes. De tels systèmes architecturés permettent de sonder optiquement la totalité de l'épaisseur de zircone déposée pour de futures applications visant à évaluer les gradients thermiques siégeant dans le volume des revêtements. Des BT fonctionnalisées contenant des défauts de délamination pré-calibrés à l'interface métal/céramique ont été également utilisées pour comparer l'intérêt d'une méthode de fluorescence accrue par réflectance et d'une méthode de thermographie infrarouge pour le suivi et l'évaluation des processus d'endommagement précurseurs de l'écaillage. Enfin, le potentiel qu'offrent les poudres de zircone YSZ:Ln3+ dopées en tant que marqueurs fluorescents de l'histoire thermique, alternatifs aux peintures thermiques utilisées industriellement, a aussi été analysé. / The aim of this work is to develop and study yttria stabilised zirconia (ZrO2 + 9.8at% Y2O3, YSZ) based thermal barrier coating (TBC) « sensor » systems deposited by a dip coating sol-gel process, and dedicated to temperature measurement and to the monitoring of damaging occuring within the thickness of the coatings, using fluorescence thermometry methods. These methods are based on the monitoring of the fluorescence properties of photoluminescent activators from the trivalent lanthanide ions group (Ln3+), such as samarium Sm3+, europium Eu3+, dysprosium Dy3+, erbium Er3+ and thulium Tm3+. These activators are directly incorporated into the zirconia YSZ host matrix lattice, which is semi-transparent at their emission wavelengths mainly falling in the visible range. An experimental set up was especially developped for the application of these methods. The characterisation of the different YSZ:Ln3+ powders synthesized by a sol-gel process allowed to optimise the compositions, and thus maximize the fluorescence signal intensity while avoidind any alteration of the zirconia crystal structure required from for a TBC material. The sol-gel dip coating process allowed to deposit functionalised multilayer TBC prototypes integrating up to three fluorescent layers with distinct emission wavelengths distributed throughout the thickness. Such coating architectures allow, with the fluorescence thermometry methods identified, to optically probe the coating across the whole thickness for future applications aiming to determine the thermal gradient in TBCs. Functionalised TBCs containing pre-calibrated delamination defects at the metal/ceramic interface were also used to compare the interest of the reflectance enhanced fluorescence method and an IR thermography method for early monitoring of TBC spallation. At last, the potential offered by YSZ:Ln3+ powders as thermal history sensors alternative to temperature sensitive paints was also investigated.
45

Simulation numérique de l’écaillage des barrières thermiques avec couplage thermo-mécanique / Coupled thermomechanical simulation of the failure of thermal barrier coatings of turbine blades

Rakotomalala, Noémie 15 May 2014 (has links)
L'objectif de ce travail de thèse est de mettre en place une simulation thermo-mécanique couplée d'une aube revêtue permettant de modéliser l'écaillage de la barrière-thermique qui survient dans les conditions de service de l'aube. La barrière thermique est un revêtement isolant déposé à la surface du substrat monocristallin base Nickel AM1 constitutif de l'aube préalablement recouverte d'une sous-couche. Le mode de dégradation dominant dans ces systèmes est la création de fissures qui résultent de l'accroissement des ondulations hors-plan d'une couche intermédiaire d'oxyde formée en service entre la céramique et la sous-couche. En vue de modéliser ce phénomène d'écaillage, un ensemble d'outils numériques permettant de réaliser un calcul 3D par éléments finis thermo-mécanique couplé de l'aube revêtue est développé au sein du code de calcul par éléments finis Z-set. L'insertion d'éléments de zone cohésive mécanique et thermique au niveau de l'interface barrière-thermique/substrat permet de tenir compte simultanément des changements dans le processus de transert de charge et des variations du flux de chaleur causés par l'amorçage et la propagation d'une fissure interfaciale. L'élément fini d'interface mixte de Lorentz qui repose sur un Lagrangien augmenté, est mis en oeuvre. Afin de tenir compte des propriétés structurelles du revêtement, la modélisation de la barrière thermique est réalisée au moyen d'éléments de coque thermo-mécaniques reposant sur l'approche dite “Continuum Based”. Ces éléments sont développés puis validés dans le cadre de la thèse. La méthode utilisée pour réalier le couplage thermo-mécanique est l'algorithme partitioné CSS (Conventional Serial Staggered) sous-cyclé à pas de couplage fixe dont on montre les limitations dans le cas d'une simulation impliquant la propagation d'une fissure. L'introduction de pas de couplage adaptatifs contrôlés au moyen d'une variable interne du problème mécanique a permis de contourner ces limitations. L'ensemble des briques numériques est validé sur des cas tests de complexité croissante. Des cas d'applications effectués sur des géométries tubulaires à gradient thermique de paroi sont réalisés afin de tester le modèle couplé sur des structures et des chargements proches des conditions de service de l'aube. Enfin, des calculs thermo-mécaniques couplés sur aube revêtue sont présentés. / The purpose of this thesis is to perform a coupled thermomechanical simulation of the failure of thermal barrier coatings for turbine blades under service conditions. The thermal barrier coating is an insulating component applied to the single crystal Nickel-based superalloy AM1 substrate which is covered with a bond coat beforehand. The main degradation mode of those systems is due to the initiation and propagation of cracks caused by the out-of-plane undulation growth of an oxide layer formed in service. A set of numerical tools is implemented into the Finite Element code Z-set in order to perform a 3D thermomechanically coupled simulation of the failure of thermal barrier coatings for turbine blades. Inserting thermomechanical cohesive zone elements at the interface between the coating and the substrate makes it possible to account for the changes in the load transfer and the variations in the heat flux as a consequence of interface degradations. The mixed finite interface element of Lorentz based on an Augmented Lagrangian is used. The thermal barrier coating is modelled by means of thermomechanical shell elements implemented using the Continuum-Based approach to take advantage of the structural properties of the coating layer. Moreover, the partitionned CSS (Conventional Serial Staggered) algorithm used to couple thermal and mechanical problems is assessed. The limitations of sub-cycling with constant coupling time-step are shown through a simulation with crack propagation. The introduction of adaptative time-stepping allows to circumvent that issue. The numerical tools are assessed on test cases with increasing complexity. Numerical simulations on cylindrical tube with a thermal through-thickness gradient are performed with realistic loading sequences. Finally, thermomechanical simulations on turbine blades covered with thermal barrier coating are shown.
46

La voie sol-gel pour la mise en oeuvre de barrières thermiques aéronautiques : optimisation du procédé et étude de leur comportement mécanique / Sol-gel route for manufacturing thermal barrier coatings : process optimization and mechanical behaviour

Blas, Fabien 14 April 2016 (has links)
Les principaux objectifs de ces travaux de thèse sont d'une part d'optimiser le protocole d'élaboration des barrières thermiques (BT) issues de la voie sol-gel et d'autre part de caractériser l'adhérence de ces barrières thermiques mais aussi de proposer des pistes en vue d'augmenter la durée de vie de celles-ci. Tout d'abord, une première étude a porté sur le choix et la validation d'un nouvel agent dispersant pour optimiser la formulation du sol chargé permettant la mise en forme des barrières thermiques. Ainsi, ce changement de dispersant a généré une microstructure conduisant à une augmentation significative de la durée de vie du système en oxydation cyclique mais a aussi permis de simplifier le protocole d'élaboration puisque l'étape de colmatage, jusqu'alors nécessaire, a été supprimée. L'étude paramétrique de la microstructure surfacique des barrières thermiques a montré que le réseau de microfissures formé initialement restait stable en fonction du vieillissement avec la création d'un sous-réseau microfissuré. Pour comprendre les mécanismes d'endommagement des barrières thermiques sol-gel et les confronter à ceux des barrières thermiques industrielles EB-PVD, la méthode d'indentation interfaciale a été retenue pour sonder l'interface revêtement/substrat. Ainsi des valeurs de ténacités apparentes ont pu être déterminées afin de comparer les adhérences des BTSG et des BTEB-PVD. A partir de ces résultats, des modèles phénoménologiques d'endommagement ont été imaginés. Pour les BTEB-PVD, l'initiation et la propagation de fissures restent localisées à l'interface barrière thermique/sous-couche de liaison, d'un coté ou de l'autre de l'oxyde de croissance selon les conditions, alors que pour les BTSG, l'endommagement est induit par la libération d'énergie élastique stockée dans le système qui augmente en fonction du vieillissement. / The main objectives of this PhD are first to improve and optimise the elaboration protocol of thermal barrier coatings (TBC) manufactured by the sol-gel route and then to characterise their adhesion and investigate the possibility to enhance their lifetime. A preliminary study is focused on the selection and validation of a new dispersing agent to optimise the composite sol formulation before shaping TBC. Indeed, the new dispersant induced a microstructure allowing to significantly increase the cyclic oxidation lifetime of the system but also to simplify the elaboration process as the reinforcement step was suppressed. The parametric study of TBC surface microstructure proved that the initial micro-cracks network remained stable during ageing including the formation of a crack sub-network. To understand the damage mechanisms of sol-gel TBC and to compare them to those corresponding to industrial EB-PVD TBC, the method of interfacial indentation was developed to investigate the subtrate/top-coat interface. The apparent toughness values were determined to compare both BTSG and BTEB-PVD adhesions. From these results, phenomenological models for damage mechanisms were proposed. For BTEB-PVD, crack initiation and propagation are located at the top-coat/bond-coat interface, either on one side or the other side of the thermally grown oxide (TGO) depending of the conditions. For BTSG, the damage is a consequence of the release of the elastic strain energy stored in the system, increasing with the ageing temperature.
47

Etude de la projection plasma sous très faible pression - torches et procédé de dépôt / Study of thermal spray for plasma torch under cery low pressure

Zhu, Lin 06 December 2011 (has links)
Au cours de la dernière décennie, la technologie de projection à la torche à plasmasous très faible pression (VLPPS) (inférieure à 10 mbar) a attiré l’attention denombreux chercheurs car ce procédé permet d’envisager la possibilité de réaliser desdépôts de structure voisine de celle des dépôts en phase vapeur avec une cinétiqueproche de celle de la projection thermique classique. Cette technologie vise donc àévaporer totalement ou partiellement des poudres afin de déposer des revêtementsdenses avec une structure colonnaire ou mixte.Le travail effectué dans cette étude à consisté à étudier et à développer des moyenspour assurer la fusion et l’évaporation de matériaux céramiques en vue d’élaborer desrevêtements de haute qualité et à caractériser les propriétés de ces revêtements.Dans une première approche des dépôts denses et homogènes de zircone stabilisée àl’yttrine (YSZ) ont été obtenus sur un substrat « inox » en utilisant des torches àplasma « classiques » de type F100 et F4 sous très faible pression (1 mbar) en utilisantde façon originale un principe d’injection axiale via l’alimentation en gazplasmagènes. Un spectromètre d’émission optique a été utilisé pour analyser lespropriétés du jet de plasma et notamment apprécier le taux d’évaporation du matériau.La composition et la microstructure des dépôts ont été caractérisées par diffraction desrayons X et microscopie électronique à balayage. Les résultats ont montré que lapoudre YSZ a été partiellement évaporée et que les dépôts obtenus disposent d’unemicrostructure hybride composée de « splats » formés par des particules fondues etune « matrice » (en faible quantité) résultant de la condensation de vapeurs provenantde l’évaporation des particules surchauffées.Afin de tenter d’augmenter le taux de vaporisation, l’anode de la torche F100 a étéallongée et un dispositif d’arc transféré complémentaire a été réalisé afin d’éleverl’énergie du jet de plasma et de favoriser l’échange thermique. Les effets de cedispositif sur les propriétés du jet de plasma ont été évalués par spectrométried’émission optique et calcul de la température électronique. Des dépôts de YSZ etd’alumine (Al2O3) ont été élaborés à la pression de 1 mbar. Les dépôts de YSZ ontaffiché une microstructure hybride similaire à celle obtenue précédemment alors quepour les dépôts d’alumine, seul un dépôt lamellaire « classique » a été observé. Lacapacité d’évaporation est donc restée limitée. La microstructure, les propriétésmécaniques et les propriétés de résistance aux chocs thermiques des dépôts de YSZont été étudiées plus en détail et comparées avec celle de dépôts réalisés dans desconditions plus classiques. Une tenue améliorée en termes de résistance aux cyclagesthermiques a notamment été observée.Afin de répondre aux attentes en matière de niveau de densité de puissance du jet lelaboratoire s’est équipé d’une une nouvelle torche à plasma tri-cathode expérimentaleélaborée par la société AMT. Cette torche a été modélisée et testée dans un premiertemps en conditions atmosphériques, révélant une limitation importante du rendementde projection. A partir de ces premiers résultats expérimentaux une nouvellegéométrie de buse a été proposée afin d’améliorer le rendement de projection. Il aalors été constaté que le rendement de la projection avait été considérablementaugmenté par cette modification et que la microstructure du dépôt était également plusfavorable. Ce travail devra maintenant se poursuivre par l’intégration de cette torche dans l’enceinte sous pression réduite. / During the last decade, very low pressure plasma spraying (VLPPS) technology(below 10 mbar) attracted attention because it could allow to produce coatings with astructure similar to that of vapor deposited materials (PVD) with kinetics close to thatof thermal spray. This technology aims to fully or partially evaporate the feedstockmaterials in order to build rapidly dense, thin, and columnar coatings.The work during this thesis preparation was thus devoted to the study anddevelopment of tools and techniques allowing fusion and evaporation of ceramicmaterials in order to obtain high quality deposits with new performance and then tocharacterize the properties of those deposits. In a first approach dense and homogeneous yttria-stabilized zirconia (YSZ) coatingswere deposited successfully on a stainless steel substrate using “classical” plasmaspray torches such as F100 and F4 under very low pressure (1 mbar) by means ofusing an original way of introducing the feedstock material in the core of the plasmajet via the plasma gas port. Optical emission spectroscopy was used to analyze theproperties of the plasma jet and especially to observe the feedstock materialevaporation rate. The phase composition and the microstructure of the coatings werecharacterized by X-ray diffraction and scanning electron microscopy. Results showedthat the YSZ powder was partially evaporated and that the coatings possessed aduplex microstructure which was composed of splats formed by the impingement ofmelted particles and a little amount of a matrix formed by the condensation of thevapor emitted by overheated particles.In order to try and increase the evaporation rate, a home-made transferred arc nozzlewas made and mounted on a F100 plasma torch in order to enhance the energy levelof the plasma jet and then to increase thermal exchanges. The effects of thetransferred arc nozzle on the plasma jet properties were evaluated by optical emissionspectroscopy and electron temperature calculation. YSZ and alumina (Al2O3) coatingsWere elaborated using such a nozzle below 1 mbar. It was found that the YSZ coatingsdisplayed a duplex microstructure similar to that obtained in the previous experiments.However, no vapor condensation could be observed in the case of the Al2O3 coatingsindicating that the evaporation capacity of the system remained limited.The microstructure, the mechanical properties and the thermal shock resistance of theYSZ coatings were studied in more details and compared to that of deposits madeusing classical thermal spray routes. An enhanced resistance to thermal shock couldthus be observed for the coatings with a duplex structure.In order to find a solution for a substantial increase in the energy density of theplasma jet, the laboratory commissioned a novel experimental tri-cathode plasmatorch made to the AMT Company. This new torch was modeled and first testedunder atmospheric conditions, which revealed a poor spray yield. Following thosefirst experimental results, a modified nozzle was designed. As a result, the sprayefficiency was considerably increased and the coating fabricated by the tri-cathodetorch displayed a better microstructure. Now this work has to be pursued with theintegration of this torch in the low pressure spray tank.
48

Modeling Behaviour of Damaged Turbine Blades for Engine Health Diagnostics and Prognostics

Van Dyke, Jason 12 October 2011 (has links)
The reliability of modern gas turbine engines is largely due to careful damage tolerant design a method of structural design based on the assumption that flaws (cracks) exist in any structure and will continue to grow with usage. With proper monitoring, largely in the form of periodic inspections at conservative intervals reliability and safety is maintained. These methods while reliable can lead to the early retirement of some components and unforeseen failure if design assumptions fail to reflect reality. With improvements to sensor and computing technology there is a growing interest in a system that could continuously monitor the health of structural aircraft as well as forecast future damage accumulation in real-time. Through the use of two-dimensional and three-dimensional numerical modeling the initial goals and findings for this continued work include: (a) establishing measurable parameters directly linked to the health of the blade and (b) the feasibility of detecting accumulated damage to the structural material and thermal barrier coating as well as the onset of damage causing structural failure.
49

Development of Cold Gas Dynamic Spray Nozzle and Comparison of Oxidation Performance of Bond Coats for Aerospace Thermal Barrier Coatings at Temperatures of 1000°C and 1100°C

Roy, Jean-Michel L. 08 February 2012 (has links)
The purpose of this research work was to develop a nozzle capable of depositing dense CoNiCrAlY coatings via cold gas dynamic spray (CGDS) as well as compare the oxidation performance of bond coats manufactured by CGDS, high-velocity oxy-fuel (HVOF) and air plasma spray (APS) at temperatures of 1000°C and 1100°C. The work was divided in two sections, the design and manufacturing of a CGDS nozzle with an optimal profile for the deposition of CoNiCrAlY powders and the comparison of the oxidation performance of CoNiCrAlY bond coats. Throughout this work, it was shown that the quality of coatings deposited via CGDS can be increased by the use of a nozzle of optimal profile and that early formation of protective α-Al2O3 due to an oxidation temperature of 1100°C as opposed to 1000°C is beneficial to the overall oxidation performance of CoNiCrAlY coatings.
50

Modeling Behaviour of Damaged Turbine Blades for Engine Health Diagnostics and Prognostics

Van Dyke, Jason 12 October 2011 (has links)
The reliability of modern gas turbine engines is largely due to careful damage tolerant design a method of structural design based on the assumption that flaws (cracks) exist in any structure and will continue to grow with usage. With proper monitoring, largely in the form of periodic inspections at conservative intervals reliability and safety is maintained. These methods while reliable can lead to the early retirement of some components and unforeseen failure if design assumptions fail to reflect reality. With improvements to sensor and computing technology there is a growing interest in a system that could continuously monitor the health of structural aircraft as well as forecast future damage accumulation in real-time. Through the use of two-dimensional and three-dimensional numerical modeling the initial goals and findings for this continued work include: (a) establishing measurable parameters directly linked to the health of the blade and (b) the feasibility of detecting accumulated damage to the structural material and thermal barrier coating as well as the onset of damage causing structural failure.

Page generated in 0.1165 seconds