• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 19
  • 11
  • 9
  • 3
  • 3
  • 2
  • Tagged with
  • 140
  • 43
  • 30
  • 30
  • 29
  • 26
  • 17
  • 14
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Účinky vybraných přírodních látek na antioxidační systém organismu / Effects of selected natural substances on the antioxidant system of an organism

Hodková, Anna January 2016 (has links)
of study named: Effects of selected natural substances on the antioxidant system of an organism Developed: Mgr. Anna Hodková Department of Pharmacology and Toxikology, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen 2016 The aim of this study was to compare the effects of selected natural substances on the antioxidant defense system under comparable conditions, focusing on influencing the activity of selenoenzymes thioredoxin reductase (TrxR-1) and glutathione peroxidase (GPx-1). Experiments were performed in rats (Wistar, male). Livers, and in some cases kidneys were collected in all experiments. Homogenates were created from the collected organs and subsequently the activity of TrxR-1 and GPx-1, glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD), and reduced glutathione (GSH) and lipid peroxidation (LP) levels were determined. We demonstrated significant effects of selected natural substances on the redox system, including influences of selenoenzymes thioredoxin reductase and glutathione peroxidase. The biggest influence on the activity of selenoenzymes thioredoxin reductase and glutathione peroxidase had hydroxytyrosol (HT) and oleuropein (OLEU). In rat liver tissue there was a significant decrease of the activity of both above mentioned enzymes after...
62

Characterization of a novel soybean candidate glutathione peroxidase/thioredoxin-dependent peroxidase under salt stress

Adams, Ruqaiyah January 2012 (has links)
>Magister Scientiae - MSc / The production of reactive oxygen species (ROS) is prominent in all aerobic metabolisms including plants. For this reason, the redox homeostasis of the production and scavenging of these intermediates is imperative for growth, development and survival during unfavourable conditions. In this study, a putative glutathione peroxidase gene (Glyma17g34110) from Glycine max (soybean) was identified and analyzed. The successful characterisation of Glyma17g34110 provided evidence of it being a glutathione peroxidase using glutathione as its preferred electron donor and substrate. Furthermore, it is known that antioxidant enzymes such as GPX exist in various tissues, performing a diverse set of functions. By a bioinformatic analysis of Glyma17g34110 and its promoter region, it was indicated that Glyma17g34110 could be a putative chloroplast protein that could play an important role in photosynthesis.One of the major factors affecting plant growth and development worldwide is abiotic stresses such as salinity. In the presence of salinity the production of harmful ROS is increased, resulting in detrimental reactions with important biological features (DNA, protein and lipid membranes), leading to cell death. The analysis of Glyma17g34110 under salt stress revealed that it is a salt sensitive gene and thus, the down-regulation of Glyma17g34110 could be due to the lack of known defence and response cis-acting elements present in the promoter region. Furthermore, it was proven in previous studies that the application of exogenous nitric oxide (NO) increases the activity of antioxidant enzymes. In this thesis it was observed that the presence of exogenously applied NO increased the expression of Glyma17g34110 tremendously in all soybean tissues (leaves, roots and nodules) investigated.Studies have found numerous cis-acting elements to be NO responsive, however, none of these elements were found in the promoter region upstream of glyma17g34110. This suggests that novel cis-acting elements could be present in the promoter region of Glyma17g34110.Thus, increasing the expression of Glyma17g34110 during salinity in the presence of NO, as well as the identification of these novel cis-acting elements, could lead to the enhancement of the defence mechanisms against ROS, which could lead to increasing plant tolerance to stress.
63

Účinky vybraných přírodních látek na antioxidační systém organismu / Effects of selected natural substances on the antioxidant system of an organism

Hodková, Anna January 2016 (has links)
of study named: Effects of selected natural substances on the antioxidant system of an organism Developed: Mgr. Anna Hodková Department of Pharmacology and Toxikology, Faculty of Medicine in Pilsen, Charles University in Prague Pilsen 2016 The aim of this study was to compare the effects of selected natural substances on the antioxidant defense system under comparable conditions, focusing on influencing the activity of selenoenzymes thioredoxin reductase (TrxR-1) and glutathione peroxidase (GPx-1). Experiments were performed in rats (Wistar, male). Livers, and in some cases kidneys were collected in all experiments. Homogenates were created from the collected organs and subsequently the activity of TrxR-1 and GPx-1, glutathione reductase (GR), catalase (CAT) and superoxide dismutase (SOD), and reduced glutathione (GSH) and lipid peroxidation (LP) levels were determined. We demonstrated significant effects of selected natural substances on the redox system, including influences of selenoenzymes thioredoxin reductase and glutathione peroxidase. The biggest influence on the activity of selenoenzymes thioredoxin reductase and glutathione peroxidase had hydroxytyrosol (HT) and oleuropein (OLEU). In rat liver tissue there was a significant decrease of the activity of both above mentioned enzymes after...
64

Existe-t-il des thiol-oxydases ou des disulfure-isomérases dans le cytoplasme bactérien ?

Garcin, Edwige 17 December 2012 (has links)
Les thiol-disulfure oxydoréductases sont des protéines qui jouent un rôle majeur dans la cellule. Elles sont impliquées dans l'activité de nombreuses protéines cytoplasmiques, ainsi que dans la maturation et la stabilité des protéines extracytoplasmiques. Les particularités structurales conservées chez les TDORs, comme le repliement thiorédoxine et le motif CxxC, les propriétés physico-chimiques, leur environnement physiologique et leurs substrats sont autant de facteurs qui influencent la capacité de ces protéines à catalyser préférentiellement la réduction, l'oxydation, ou l'isomérisation des ponts disulfures in vivo.Je me suis intéressée aux TDORs atypiques cytoplasmiques pouvant présenter une activité thiol-oxydase ou disulfure-isomérase dans le cytoplasme des bactéries. J'ai caractérisées deux thiorédoxines atypiques, l'une provenant de l'organisme anaérobie Desulfovibrio vulgaris Hildenborough, Dtrx, et l'autre provenant de la bactérie pathogène Pseudomonas aeruginosa PAO1, PsTrx. Dtrx, possédant une séquence consensus thiol-oxydase CPHC, présente des propriétés in vitro en accord avec cette séquence. Nous avons proposé un mécanisme qui peut être appliqué de façon réversible dans le sens de la réduction et de l'oxydation des cystéines des substrats.PsTrx contient une séquence consensus CGHC dans son site actif, qui est généralement conservée chez PDI, protéine eucaryote. Les propriétés physico-chimiques, et la structure tridimensionnelle déterminées pour PsTrx par RMN, présentent des caractéristiques identiques à celles observées pour le domaine catalytique de PDI. / Thiol/disulfide oxidoreductases catalyze important redox reactions in the cell. They are implicated in the reduction of disulfide bonds in cytoplasm, and disulfide bond formation during folding of secreted proteins. All of the members of this family share the thioredoxin fold and an active site with two conserved cysteine residues that specify the biological activity of the protein in the reduction, oxidation or isomerisation of disulfide bond in vivo.In this work, I have studied atypical cytoplasmic TDORs catalyzing the oxidation or isomerisation of disulfide bond in bacteria. I have characterized two atypical thioredoxin proteins, one from the anaerobe Desulfovibrio vulgaris Hildenborough, Dtrx, and one from the pathogenic Pseudomonas aeruginosa PAO1, PsTrx.Dtrx, with the CPHC active site, presents important activities in the thiol-oxidation of proteins. We proposed a reversible mechanism for the disulfide-reduction or thiol-oxidation of substrate proteins.PsTrx presents the CGHC active site shown in the eukaryote PDI protein. Physico-chemical properties and tridimensional structure solved by NMR are the same that those of the catalytical domain of PDI.This work presents the properties of the two atypical thioredoxins, Dtrx and PsTrx. These proteins have similar functional and structural characteristics in vitro, but probably different redox functions in vivo.
65

Folding mechanism of Glutaredoxin 2

Gildenhuys, Samantha 19 May 2008 (has links)
ABSTRACT Equilibrium unfolding, single- and double-jump kinetic studies were conducted to determine the unfolding and refolding pathway of glutaredoxin 2. Structural changes for wild-type glutaredoxin 2 were monitored by far-ultraviolet circular dichroism and intrinsic tryptophan fluorescence for equilibrium unfolding and intrinsic tryptophan fluorescence for single- and double-jump kinetics studies. Glutaredoxin 2 possesses two tryptophan residues in domain 2. In order to monitor changes in domain 1, cysteine 9 at the active site cysteines, situated in domain 1, was labelled with an extrinsic fluorophore, AEDANS, and a mutant was created (Y58W glutaredoxin 2). The AEDANS labelled protein displayed decreased alpha-helical secondary structure and conformational stability. A high degree of cooperativity and similar conformational stability was observed during the two-state transition of the urea-induced equilibrium unfolding of both the wild-type and Y58W glutaredoxin 2 proteins therefore Y58W glutaredoxin 2 could be used to assess structural changes in the local environment of domain 1 during unfolding and refolding. Two phases of unfolding, the fast and slow phase, occurred for both the wild-type and Y58W proteins. The slow phase involves structural rearrangements that expose small amounts of surface area while the fast phase represents gross structural unfolding exposing large amounts of surface area. The isomerization of the Val48-Pro49 peptide bond to the trans conformation occurs during the slow phase and this isomerization is coupled to conformational unfolding of the protein. The structural separation of these phases could be represented by two structural units (unit x and unit y), these units do not represent domain 1 and 2. The units could also result in parallel refolding pathways with the folding of the x unit involving the fast and slow refolding phases and the folding of the y unit of structure is represented by the medium phase of refolding. The fast and slow phases are further separated as the fast phase represents the gross structural folding of glutaredoxin 2 for species with the Val48-Pro49 peptide bond in the native cis conformation. The development of the slow phase after extended unfolding delay periods during double-jump refolding studies, as well as the acceleration of the rate of the phase by the peptidyl prolyl isomerase hFKBP-12 proved that the phase involves a proline peptide bond iv isomerization. This phase represents a slow isomerization coupled with conformational folding similar to the slow unfolding phase. Complex unfolding and refolding kinetics indicated the involvement of kinetic intermediates during (un)folding.
66

Caracterização funcional e estrutural do sistema Tiorredoxina mitocondrial de Saccharomyces cerevisiae / Functional and structural characterization of the mitochondrial thioredoxin system from Saccharomyces cerevisiae

Nakamatsu, Eduardo Hiroshi 14 September 2012 (has links)
NADPH, tiorredoxina e tioredoxina redutase compõem o sistema tiorredoxina, estão envolvidos na redução de ligações específicas de dissulfetos que desempenham um grande número de funções biológicas, tais como: síntese de DNA, defesa contra o estresse oxidativo, apoptose e sinalização redox. Tem sido demonstrado que as interações tioredoxina redutase-tiorredoxina são espécies específicas, sendo assim, investigamos aqui a especificidade dos substratos da tioredoxina redutase 2 mitocondrial (ScTrxR2) de Saccharomyces cerevisiae frente a outras tioredoxinas. ScTrxR2 especificamente reduziu as tiorredoxinas de levedura (tiorredoxina 1 = ScTrx1, tiorredoxina 2 = ScTrx2 e tiorredoxina = ScTrx3), mas não conseguiu reduzir a tiorredoxina de Homo sapiens e a de Escherichia coli. Além disso, ScTrxR2 exibiu eficiência catalítica semelhante para ScTrx3, que está localizado na mitocôndria e ScTrx1 e ScTrx2 que estão localizadas no citosol. Para compreender as características deste fenômeno, resolvemos a estrutura cristalográfica da ScTrxR2 a 1,9 Å de resolução por meio de substituição molecular utilizando as coordenadas de ScTrxR1 (PDB Id = 3ITJ) como modelo (Oliveira et al., 2010). A ScTrxR2 é uma proteína de dois domínios (domínio de ligação do NADPH e domínio de ligação do FAD). As tiorredoxinas redutases de baixo peso molecular podem adotar duas conformações: flavina oxidada (FO) e flavina reduzida (FR), estando esta última envolvida na interação física com as tiorredoxinas. A estrutura cristalográfica da ScTrxR2 obtida por nós está na conformação FO. Posteriormente, modelamos a conformação FR (Flavina reduzida) da ScTrxR2, a partir da estrutura do cristal na conformação FO, e utilizando a estrutura cristalográfica da tiorredoxina redutase de E. coli complexada com a tiorredoxina (PDB 1F6M). Pela análises dessas estruturas, levantamos hipóteses de que alguns resíduos de aminoácidos podem estar envolvidos nas interações espécie-específicas entre tiorredoxina redutase e tiorredoxina. Com isso, geramos mutantes sítio dirigidos das Trx de levedura e da ScTrxR2 e através de ensaios enzimáticos e bioquímicos com estas proteínas mutantes estamos testando as hipóteses levantadas sobre possíveis amino ácidos envolvidos em interações entre tiorredoxina e tiorredoxina redutase / NADPH, thioredoxin and thioredoxin reductase, comprising the thioredoxin system, are involved in the reduction of specific disulfides linkages that play a large number of biological roles, such as: DNA synthesis, defense against oxidative stress, apoptosis and redox signaling. It has been shown that thioredoxin reductase-thioredoxin interactions are species-specific, therefore we have investigated here the substrate specificity of mitochondrial Thioredoxin reductase 2 (ScTrxR2) from Saccharomyces cerevisiae towards other thioredoxins. ScTrxR2 specifically reduced yeast thioredoxins (thioredoxin 1 = ScTrx1, thioredoxin 2 = ScTrx2 and thioredoxin = ScTrx3), but failed to reduce thioredoxin from Homo sapiens and from Escherichia coli. Furthermore, ScTrxR2 displayed similar catalytic efficiency towards ScTrx3, which is located in the mitochondria and ScTrx1 and ScTrx2 that are located in the cytosol. To understand the features of this phenomenon, we have solved the crystallographic structure of ScTrxR2 at 1,9Å resolution through molecular replacement using ScTrxR1 as search model (Oliveira et al., 2010)1. ScTrxR2 is a two-domain protein (NADPH and FAD binding domains). Low molecular weight thioredoxin reductases can adopt two conformations: flavin oxidized (FO) or flavin reduced (FR), the late one physically interacts with thioredoxins. Our ScTrxR2 crystal structure is in the FO conformation. Therefore, we have modeled the ScTrxR2 FR (Flavin reduced) conformation from our FO crystal structure and using the E. coli thioredoxin reductase crystallographic structure complexed with thioredoxin (PDB code 1F6M). Then, we have raised hypothesis that some amino acid residues that may be involved in the thioredoxin reductase-thioredoxin interactions. Next, site-directed mutants of yeast Trxs and ScTrx2 were generated. Through enzymatic and biochemical assays with these mutant proteins we are testing the hypothesis generated by structural analysis
67

Fonctions des thiorédoxines sexuelles et contrôle de l’état rédox des protamines chez la drosophile / Functions of sex thioredoxins and control of protamine redox status in Drosophila

Tirmarche, Samantha 23 June 2016 (has links)
Le spermatozoïde des animaux à reproduction sexuée est une cellule extrêmement spécialisée, dont la chromatine très particulière est le siège de nombreux remodelages tant lors de la gamétogenèse que lors de la formation du zygote. Chez D. melanogaster comme chez les mammifères, lors de la spermiogenèse, les histones qui condensent l'ADN sont remplacées par des petites protéines basiques spécifiques du noyau spermatique : les protamines. Cette architecture est stabilisée par des liaisons disulfures. Lors de la fécondation, ces protéines sont éliminées du noyau paternel, qui réincorporent des histones pour former une chromatine fonctionnelle. Toutefois, les mécanismes régissant la mise en place et l'enlèvement des ponts disulfures et des protamines sont inconnus chez la Drosophile.Au cours de ma thèse, j'ai démontré l'importance de deux thiorédoxines sexuelles pour la reproduction.D'une part, j'ai pu montrer que DHD, qui est une thiorédoxine strictement maternelle, est essentielle à l'éviction des protamines de la chromatine paternelle lors de la fécondation. Sans cette protéine essentielle, la décondensation du noyau mâle n'a pas lieu, les protamines ne sont pas enlevées et le développement zygotique ne peut pas avoir lieu. Cette thiorédoxine est directement responsable de la réduction des liaisons disulfures qui stabilisent la chromatine spermatique.D'autre part, j'ai démontré que TrxT, une thiorédoxine exclusivement testiculaire, est nécessaire au bon déroulement de la spermiogenèse. Sans cette protéine, les spermatides subissent des dommages à l'ADN et sont éliminées.Ce travail met en évidence les rôles essentiels des thiorédoxines sexuelles pour la reproduction / In animal sexual reproduction, spermatozoon is a very specialized cell. Its very peculiar chromatin is remodeled both during spermiogenesis and fertilization. During mammalian and drosophilian spermiogenesis, histones involved in DNA condensation are replaced with sperm specific small nuclear basic proteins : the protamines. This sperm specific architecture is stabilized by disulfide bonds. At fertilization,protamines are removed from the male nucleus and maternally-provided histones are incorporated to form a functional paternal chromatin. However, the mecanisms involved in the incorporation and the removal of protamines of their disulfide bonds are unknown in Drosophila.During my PhD, I demonstrated that two sexual thioredoxins are important for spermiogenesis and fertilization in D. melanogaster. In one hand, I showed that DHD, a female specific thioredoxin, is essential for protamine eviction at fertilization. Without this major protein, male nucleus does not decondense, protamines are not removed from sperm chromatin and zygotic development does not occur. Besides, I demonstrated that DHD is directly responsible for the reduction of the disufide bonds which stabilize sperm chromatin.On the other hand, I showed that TrxT, a testis-specific thioredoxin, is needed for spermiogenesis. Without this protein, DNA damages appear on spermatid nuclei, and those spermatozoon are then eliminated during spermatogenesis.This work highlights that drosophilian sex-specific thioredoxins are essential for sexual reproduction success
68

Selenium In Thioredoxin Reductase: Resistance To Oxidative Inactivation, Oxidation States, And Reversibility Of Chemical Reactions

Barber, Drew 01 January 2018 (has links)
Selenium is a required trace element which was originally discovered by the Swedish chemist Jons Jacob Berzelius in 1817. It was initially believed to be a toxin as it was identified as being the cause of hoof maladies and excessive hair loss in horses that feed upon plants with high selenium content. It wasn’t until 1957 that the potential contributions of selenium to physiology were first demonstrated. Selenium is now known to play a critical role in the maintenance of human health. Interestingly, unlike other trace metals/semi-metals, selenium is directly incorporated into proteins in the form of the amino acid selenocysteine (Sec) in a very complicated and energetically costly fashion. Though rare, being found in only 25 human proteins, Sec proteins are involved in numerous vital biological processes including maintenance of redox homeostasis and anti-oxidant defense. Even though Sec is essential, the reason that Sec replaces its structural analog cysteine (Cys) in only 25 proteins is not widely agreed upon. A previous model suggests that the replacement of Cys with Sec provides enzymes with a type of catalytic advantage. The presence of Cys-containing orthologs of mammalian Sec-enzymes in other eukaryotes argues against this model. A newer model to explain the use of Sec is that the gain of function imparted to an enzyme by replacing Cys with Sec is the ability of Sec to impart chemical reversibility. Building on previous results from our lab demonstrating the ability of Sec to confer proteins with the ability to resist over oxidation we have elucidated the mechanism by which Sec containing thioredoxin reductase (TrxR) resists over oxidation. The ability of Sec-TrxR to resist oxidative inactivation is due to the greater electrophilicity of Sec relative to Cys. This allows for quicker resolution and prevents over oxidation. Based on these findings we also investigate the utility of the alkylating agent dimedone to probe the oxidation state of Sec. Interestingly, it was discovered that dimedone will react with seleneninic acid with the resulting adduct being labile. Additonally it was discovered that dimedone will also react with seleninic acid, resulting in the formation of a dimedone dimer. These results call into question the usefulness of dimedone in deteremining the oxidation state of Sec. Finally, we provide evidence that Sec-TrxR enzymes are able to catalyze single electron reductions. This is most likely due to the formation of a stable Sec radical intermediate. As a whole this project provides support for the theory that Sec was selected for due to its ability to convey chemical reversiablity to proteins.
69

L'étude des mécanismes moléculaires de l'épissage alternatif du gène NXNL1 et celle de l'origine de la signalisation métabolique de RdCVF / Molecular mechanisms of NXNL1 splicing and metabolic signaling at the origin of RdCVF signaling

Ait-Ali, Najate 20 April 2018 (has links)
Le gène nucleoredoxin-like 1 (NXNL1), composé de deux exons et d'un intron, code pour RdCVF lorsque l'intron est retenu et RdCVF-long (RdCVFL), une thiorédoxine active, lorsque qu'il est excisé. RdCVFL est une enzyme protégeant les photorécepteurs du stress oxydatif. RdCVF exprimé et sécrété que par les bâtonnets interagit avec son récepteur basigin 1 (BSG1) à la surface des cônes, stimule l'entrée du glucose. Dans la rétinopathie pigmentaire, les bâtonnets dégénèrent progressivement, RdCVF n'est plus exprimé et les cônes meurent. RdCVF tronqué dans le motif thiorédoxine ne possède pas d'activité thiol-oxydoréductase. Les cônes sont les ancêtres des bâtonnets. NXNL1 codait à l'origine pour RdCVFL, et les cônes des mammifères n'expriment donc plus que cette protéine. Chez l'hydre, apparue il y a 600 millions d'années, NXNL ancestral est exprimé. RdCVFL la protège contre les radicaux libres, RdCVF est exprimé, mais n'interagit pas avec basigin, il manque chez l'hydre un des acteurs de la signalisation métabolique de RdCVF. Il y a 400 millions d'années, chez la lamproie, seuls les bâtonnets expriment RdCVF. Son récepteur BSG1 se lie à RdCVF; les acteurs de la signalisation étaient donc présents chez les vertébrés anciens avec des bâtonnets fonctionnels. Le bénéfice pour la vision par l'addition d'une nouvelle fonction de NXNL1 a joué un rôle durant l'évolution de ce système. Une séquence en 3' du premier exon du gène NXNL1 lie la protéine nucléoline impliquée dans l'épissage et exprimée par les bâtonnets mais pas par les cônes. Cette protéine doit réguler l'épissage alternatif du gène NXNL1. / The nucleoredoxin-like 1 gene (NXNL1), which is composed by two exons and one intron, encodes for RdCVF made from an unspliced mRNA and RdCVF-long (RdCVFL), an active thioredoxin, when the intron is excised. RdCVFL is an enzyme that protects photoreceptors against oxidative stress. RdCVF is only expressed and secreted by the rods and interacts with its receptor basigin 1 (BSG1), expressed by cones and stimulates glucose entry. So in retinitis pigmentosa, characterized by progressive rods degeneration, RdCVF is no longer expressed and cones die. RdCVF corresponds to a truncated thioredoxin-like protein with no thiol-oxidoreductase activity. According to the knowledge of retina evolution, the cones are rods ancestors and NXNL1 originally encode for the RdCVFL, and today, mammalian cones only expresses this protein. In hydra that appeared 600 million years ago, ancestral NXNL gene was found, RdCVFL protects it against free radicals attack and RdCVF already existed. But hydra basigin doesn’t interact with RdCVF, so it lacks one of the metabolic signaling actors of RdCVF in hydra. 400 million years ago, In lamprey only rods produce RdCVF. Lamprey BSG1 binds RdCVF; actors signaling were present in oldest vertebrate that present functional rods. This original alternative splicing system has played a role during evolution by adding a new function of NXNL1 gene leading to a benefit in vision. I identified a sequence in 3’ RNA of exon n°1 of NXNL1 gene that binds the nucleolin protein involved in splicing and expressed by the rods but not by the cones. This protein must regulate the NXNL1 alternative splicing.
70

Thioredoxin and Oxidative Stress

Gregory, Mary Sarah-Jane, n/a January 2004 (has links)
The experiments described in this thesis involve the expression and characterisation of recombinant truncated thioredoxin (tTrx) and the potential involvement that thioredoxin (Trx) has in the cellular responses to oxidative stress. Truncated Trx (80 amino acids) was expressed from a plasmid containing the ORF for tTrx that had been introduced into E.coli BL-21(DE3) cells. The protein was initially extracted using a combination of high concentrations of urea, high pH levels, and multiple sonification steps to remove the tTrx from inclusion bodies formed during expression. This procedure produced a stable solution of tTrx. Purification of tTrx from this protein solution required anion exchange chromatography followed by gel permeation in a HPLC system to obtain fully purified, recombinant tTrx which allowed further characterisation studies to be undertaken. An initial investigation into tTrx was performed to determine some basic physical, biochemical and functional aspects of this hitherto relatively undefined protein. Analysis by sedimentation equilibrium indicated that freshly prepared tTrx forms a single species with a molecular weight of 18.8kDa. This value indicates that recombinant tTrx naturally forms a dimer in solution that was shown to be non-covalent in nature and stable in solution. The capacity of tTrx to reduce protein disulphide bonds was determined using the insulin reduction assay. Results show that tTrx lacks this particular redox ability. The rate of oxidisation at 4 degrees C was analysed using free thiol determination, sedimentation equilibrium and SDS-PAGE patterning. Results indicated a steady rise in the degree of oxidation of tTrx over an eight day period. After six days the oxidated protein consistently displayed the presence of intramolecular disulphide bonds. Covalently-linked disulphide dimers and higher molecular weight oligomers were detectable after eight days oxidation. An investigation of the reducing capacity of the basic Trx system determined that fully oxidised tTrx was unable to act alone as a substrate for thioredoxin reductase (TR). However, when reduced Trx was added to the system, it appeared capable of acting as an electron donor to the oxidised tTrx in order to reduce disulphide groups. Recombinant tTrx was successfully radiolabelled with Trans 35S-methionine/cysteine for use in cell association studies. No evidence was found to indicate the presence of a receptor for tTrx on either MCF-7 or U-937 cells. Findings suggest that a low level of non-specific binding of tTrx to these cell lines rather than a classical ligand-binding mechanism occurs thus suggesting the absence of a cell surface receptor for tTrx. The role that Trx may play in the cellular responses to oxidative stress was also investigated. The chemical oxidants hydrogen peroxide (H2O2) and diamide were used to establish an in vitro model of oxidative stress for the choriocarcinoma cytotrophoblast cell line JEG-3. Cellular function was assessed in terms of membrane integrity, metabolic activity and the ability to synthesis new DNA following exposure to these oxidants. Results indicated that both agents were capable of causing cells to undergo oxidative stress without inducing immediate apoptosis or necrosis. Initially, JEG-3 cells exposed to 38μM or 75μM H2O2 or 100μM diamide were shown to display altered cell metabolism and DNA synthesis without loss to cell viability or membrane integrity. Cells were also shown to be capable of some short-term recovery but later lapsed into a more stressed state. Expression levels of Trx were studied to determine whether this type of chemical stress caused a change in intercellular protein levels. Both cELISA and western blotting results indicated that only cells exposed to 100μM diamide displayed any significant increase in Trx protein levels after 6 or 8hrs exposure to the oxidant. Further studies over a longer time-frame were also performed. These found that when JEG-3 cells were exposed to 18μM H2O2 or 200μM diamide over 12-48hrs, a positive correlation between increasing endogenous Trx protein levels and a decline in cell proliferation was observed. Cytotrophoblast cells, which are responsible for implantation and placentation, are susceptible to oxidative stress in vivo and their anti-oxidant capacity is fundamental to the establishment of pregnancy. The findings obtained during these studies suggest that Trx plays a role in this process.

Page generated in 0.1016 seconds