Spelling suggestions: "subject:"thursday""
1 |
Nearly Euclidean Thurston Maps and the Halfspace TheoremKim, Daniel Min 14 November 2016 (has links)
A Thurston map whose postcritical set consists of exactly four points and for which the local degree at each of its critical points is 2 is called textit{nearly Euclidean}. These maps were specified to parse Thurston's combinatorial characterization of rational functions. We determine an extension of the half-space theorem which provides an open hyperbolic half-space such that the negative reciprocal of any fixed slope value is excluded from the boundary of the half-space. / Master of Science / Thurston proved necessary and sufficient conditions under which a certain class of mappings defined topologically are equivalent, in a precise sense which can be considered less strict than topological conjugacy, to a rational map. The conditions presented in the proof of this theorem are not ones for which computational algorithms are easily admitted in all settings. Nearly Euclidean Thurston maps are a sub-class of the maps to which this theorem is applicable and for which an abundance of information is algorithmically attainable. We extend a theorem in this setting. One main example which speaks to the utility of this extension is in determining when certain rational maps arise as matings of polynomials.
|
2 |
The Inspiration behind Compositions for Clarinetist Frederick ThurstonRazey, Aileen 08 1900 (has links)
Frederick Thurston was a prominent British clarinet performer and teacher in the first half of the 20th century. Due to the brevity of his life and the impact of two world wars, Thurston's legacy is often overlooked among clarinetists in the United States. Thurston's playing inspired 19 composers to write 22 solo and chamber works for him, none of which he personally commissioned. The purpose of this document is to provide a comprehensive biography of Thurston's career as clarinet performer and teacher with a complete bibliography of compositions written for him. With biographical knowledge and access to the few extant recordings of Thurston's playing, clarinetists may gain a fuller understanding of Thurston's ideal clarinet sound and musical ideas. These resources are necessary in order to recognize the qualities about his playing that inspired composers to write for him and to perform these works with the composers' inspiration in mind. Despite the vast list of works written for and dedicated to Thurston, clarinet players in the United States are not familiar with many of these works, and available resources do not include a complete listing. Much of this repertoire remains unexplored and unrecorded yet is suitable for intermediate to advanced level clarinet players.
|
3 |
On the Theorem of Kan-Thurston and Algebraic Rank of CAT(0) groupsKim, Raeyong 28 August 2012 (has links)
No description available.
|
4 |
On Nearly Euclidean Thurston MapsSaenz Maldonado, Edgar Arturo 08 June 2012 (has links)
Nearly Euclidean Thurston maps are simple generalizations of rational Lattes maps. A Thurston map is called nearly Euclidean if its local degree at each critical point is 2 and it has exactly four postcritical points. We investigate when such a map has the property that the associated pullback map on Teichmuller space is constant. We also show that no Thurston map of degree 2 has constant pullback map. / Ph. D.
|
5 |
Action de groupe sur un complexe cubique CAT(0) et revêtements ramifiés / Groups acting on a CAT(0) cube complex and ramified coveringsGiralt, Anne 22 May 2017 (has links)
L'objet de cette thèse est l'étude de revêtements ramifiés V' to V de variétés hyperboliques compactes V cubiques, c'est-à-dire dont le groupe fondamental pi_1(V) opère proprement et cocompactement sur un complexe cubique CAT(0). Notre première approche consiste à construire un complexe cubique localement CAT(0) comme revêtement ramifié du complexe obtenu par cubulation de V. La difficulté est alors de vérifier que ce complexe a le même groupe fondamental que V’. On réalise ce programme dans le cas ou V’ est une « variété de Gromov-Thurston ». Notre seconde approche concerne plus généralement le cas où le lieu de ramification du revêtement V' to V est contenu dans une sous-variété convexe de codimension 1. La préimage de cette variété dans V’ puis dans le revêtement universel X’ de V’ fournit un système naturel de « murs ». La difficulté consiste alors à montrer que ces murs séparent linéairement X’ afin d'utiliser les théorèmes classiques de cubulation. / The goal of this thesis is to study of branched covers V' to V of closed hyperbolic manifolds that can be cubulated, i.e. Whose fundamental group pi_1(V) acts properly and cocompactly on a CAT(0) cube complex. We give sufficient conditions for pi_1(V') to be cubic as well.We tackle this question in two different ways. In a first approach we build a negatively curved cubical complex as a ramified cover of a cubical complex obtained by cubulating V. Then the main issue is to check that the fundamental group of this complexe is isomorphic to the fundamental group of V'. We manage to do so when V' is so called “Gromov-Thurston manifold “. Our second approach deals with the more general case where the branched locus of V' to V is contained in a codimension 1 convex submanifold. The preimage of this submanifold on V' and on the universal cover X' of V' provides a natural system of “walls”. Then the main issue is to show that these walls linearly separate X'. This enables us to use classical cubulation theorems.
|
6 |
[en] LEGENDRIAN KNOTS AND THE MAXIMAL THURSTON-BENNEQUIN NUMBER OF TWO-BRIDGE KNOTS / [pt] NÓS LEGENDREANOS EM R3 E O NÚMERO MÁXIMO E THURSTON-BENNEQUIN PARA NÓS DE 2 PONTESRAQUEL RIBEIRO BARROSO PORTELA 07 March 2008 (has links)
[pt] O propósito deste trabalho é apresentar a teoria dos nós
legendreanos,
que diz respeito a nós tangentes a uma estrutura de
contato, assim como
demonstrar o Teorema do Número Máximo de Thurston-
Bennequin para
nós de 2-pontes em termos do polinômio de Kaumman.
Iniciamos este
trabalho com uma introdução aos nós topológicos.
Apresentamos a teoria
de nós legendreanos, dando ênfase aos nós legendreanos em
R3 tangentes à estrutura de contato canônica neste
espa»co. Apresentamos dois invariantes
clássicos de nós legendreanos: os números de Thurston-
Bennequin e Maslov.
Finalmente, obtemos o número máximo de Thurston-Bennequin,
motivo de
estudos nos dias atuais, para todos os nós legendreanos
topologicamente
isotópicos aos nós de 2-pontes na estrutura de contato
canônica em R3. / [en] The purpose of this work is to present the Theory of the
Legendrian knots,
which refers to knots tangent to a contact structure, and
also to prove the
Theorem of the Maximal Thurston-Bennequin number for 2-
bridge knots in
terms of the Kaumman polynomial.We begin this study with
an introduction
to topological knots. We present the theory of the
Legendrian knots, we
emphasize Legendrian knots in R3, knots tangent to the
standard contact
structure in this space. We present two classical
invariants of Legendrian
knots, the Thurston-Bennequin and Maslov numbers. Finally
we show the
maximal Thurston-Bennequin number for Legendrian two-
bridge knots in
standard contact structure on R3, an active area of
current research.
|
7 |
Géométrie de la longueur extrémale sur les espaces de Teichmüller / Extremal length geometry on Teichmüller spacesAlberge, Vincent 23 March 2016 (has links)
Dans ce travail nous nous intéressons à la géométrie de l’espace de Teichmüller via la longueur extrémale et à sa relation avec d’autres géométries. En effet, via le théorème d’uniformisation de Poincaré, l’espace de Teichmüller d’une surface orientable de type finie est un espace qui “classifie” aussi bien les structures hyperboliques de cette surface que les structures conformes. Suivant la classification utilisée, on obtient deux compactifications différentes de cet espace, qui sont respectivement la compactification de Thurston et la compactification de Gardiner-Masur. La première étant induite par la longueur hyperbolique et la deuxième par la longueur extrémale. Dans une première partie, on considère les compactifications dites “réduites” de Thurston et Gardiner-Masur. On montre qu’il existe une bijection naturelle entre les deux et que le groupe des auto-homéomorphismes du bord réduit de Thurston est canoniquement isomorphe au groupe modulaire étendu de la surface sous-jacente. Dans une deuxième partie, on étudie la convergence de certaines déformations de structures conformes aussi bien sur le bord de Thurston que sur celui de Gardiner-Masur. Ces déformations, appelées déformations horocycliques, sont un analogue des tremblements de terre de structures hyperboliques. Enfin, dans une troisième et dernière partie, on introduit une compactification à la Gardiner-Masur de l’espace de Teichmüller d’une surface à bord. On généralise des résultats obtenus dans le cas sans bord, et on établit quelques différences. / In this thesis we are interested in the extremal length geometry of Teichmüller space and the links with other geometries. In particular, we work on two different compactifications of Teichmüller space, namely, the Thurston compactification and the Gardiner-Masur compactification. In the first part, we consider the so-called reduced compactifications of Thurston and Gardiner-Masur. We show that there exists a canonical bijection between them and that the group of self-homeomorphisms of the reduced Thurston boundary is canonicaly isomorphic (except for a few cases) to the extended mapping class group of the corresponding surface. In the second part, we study the asymptotic behaviour of some conformal structure deformations to the Thuston boundary and to the Gardiner-Masur boundary. These deformations are called horocyclic deformations and they are analogous to earthquakes of hyperbolic structures. Finally, in the last part, using extremal length we extend the notion of Gardiner-Masur compactification to surfaces with non-empty boundary, and we investigate differences with the case without boundary.
|
8 |
De la topologie des courbes sur les surfaces aux cartes unicellulaires / From topology curves on surfaces to unicellular mapsSane, Abdoul Karim 02 July 2019 (has links)
Cette thèse se place à l'interface entre la topologie et la combinatoire. On s'intéresse dans un premier temps au problème de réalisation des boules unités duales des normes d'intersections sur les surfaces orientables. On montre aussi un certain lien entre les normes d'intersections et la norme de Thurston sur les 3-variétés.On montre par ailleurs l'existence d'un graphe dit de chirurgie sur l'ensemble des cartes unicellulaires d'une surface orientable. Dans le cas des collections unicellulaires et de cartes cubiques unicellulaires, le graphe de chirurgie s'avère connexe. / This thesis stay in between topology and combinatory. Our first concerned is the problem of realization of dual unit ball of intersection norms on orientable surfaces. We also show a certain relation between intersection norms and Thurston norms on 3-manifolds. On the other part, we show the existence of graph structure on unicellular maps on orientable surface coming from a surgery operation on unicellular maps: a surgery graph. Its happen that surgery graph on unicellular collections and cubic unicellular maps is connected.
|
9 |
Représentation géométriques des groupes de tressesCastel, Fabrice 15 October 2009 (has links) (PDF)
Nous montrons que les morphismes du groupe de tresses à n brins dans le mapping class group d'une surface de bord éventuellement non vide et de genre inférieur ou égal à n/2 sont soit cycliques (i.e. dont l'image est un groupe cyclique), soit des transvections de monodromie géométriques (i.e. à multiplication près par un élément du centralisateur de l'image, un générateur standard du groupe de tresses est envoyé sur un twist de Dehn, et deux générateurs standards consécutifs sont envoyés sur deux twists de Dehn le long de deux courbes s'intersectant en un point). En corollaire, nous déterminons les endomorphismes, les endomorphismes injectifs, les automorphismes et le groupe d'automorphisme des groupes suivants : le groupe de tresses à n brins lorsque n est supérieur ou égal à 6, le mapping class group de toute surface de genre supérieur ou égal à 2. Pour chacun des énoncés impliquant le mapping class group, nous étudions deux cas : lorsque le bord est fixé point par point ou seulement composante par composante. Nous décrivons également l'ensemble des morphismes entre différents groupes de tresses dont le nombre de brins diffèrent d'au plus un, et l'ensemble des morphismes entre mapping class groups de surfaces (de bord éventuellement non vide) dont les genres (supérieurs ou égal à 2) différent d'au plus un.
|
10 |
The violence at Thurston High School : individual characteristics of the victims as related to their post-traumatic responses /Curry, Vicky L., January 2001 (has links)
Thesis (Ph. D.)--University of Oregon, 2001. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 222-231). Also available for download via the World Wide Web; free to University of Oregon users.
|
Page generated in 0.0382 seconds