Spelling suggestions: "subject:"titandioxid""
1 |
Einfluss von Beschichtungsparametern auf den Teilchen- und Energiestrom zum Substrat und Auswirkungen auf ausgewählte Eigenschaften von Titanoxidschichten beim reaktiven Puls-Magnetron-SputternGlöß, Daniel 03 September 2007 (has links) (PDF)
Diese Dissertation befasst sich mit den Plasmaeigenschaften und dem Schichtbildungsprozess bei der Titanoxidbeschichtung mit dem reaktiven Puls-Magnetron-Sputterverfahren. Insbesondere werden die Vorgänge, die zu einer vermehrt oder vermindert starken Kristallinität und photokatalytischen Aktivität der Schichten führen, untersucht und die Verflechtungen mit den Beschichtungsbedingungen analysiert.
Es werden Untersuchungen zur Messung der sich während der Beschichtung einstellenden Substrattemperatur, zur Messung des auf das Substrat einfallenden integralen Ionenstroms sowie zur Energieverteilung positiver und negativer Ionen vorgestellt. Zu den wichtigsten Erkenntnissen dieser Untersuchungen zählt, dass bei Nutzung des Pulspaket- bzw. des Bipolar-Pulsmodus bei Rechteck-Magnetrons eine um etwa Faktor zwei stärkere Substraterwärmung auftritt als bei Nutzung des Unipolar-Pulsmodus. Das ist auf einen höheren Ionenstrom auf das Substrat bei gleichzeitig höherer Selbstbiasspannung zurückzuführen, was insgesamt zu einem deutlich intensiveren Bombardement des Substrats mit Ionen führt. Durch Vergleich mit den Eigenschaften von DC-Plasmen konnte gezeigt werden, dass die unterschiedliche Lage der Anode relativ zum Magnetron-Magnetfeld die primäre Ursache für die gefundenen Unterschiede ist.
Der Titanoxid-Beschichtungsprozess wurde umfassend untersucht und dabei die Abhängigkeiten der Kristallinität und der Schichteigenschaften von Substrattemperatur, Beschichtungsrate und von dem während der Beschichtung auftretenden Ionenbombardement aufgezeigt. Eine wichtiges Resultat ist, dass durch Anwendung eines intensiven Ionenbombardements des Beschichtungsplasmas die für kristallines Schichtwachstum erforderliche Substrattemperatur sinkt. Das wird durch Nutzung des Pulspaket- bzw. des Bipolar-Pulsmodus anstatt des Unipolar-Pulsmodus sowie durch Wahl eines reaktiveren Arbeitspunkts erreicht. Insgesamt konnte anhand der Untersuchungen der Parameterbereich, in dem die Abscheidung polykristalliner Titanoxidschichten möglich ist, in Richtung niedriger Substrattemperaturen und dünner Schichten ermittelt werden. / In this dissertation, the plasma characteristics and the layer forming process during the titanium oxide deposition with the reactive pulse magnetron sputtering method are investigated. In particular, the procedures which lead to a higher or lower crystallinity and photocatalytic activity are examined and the connections with the coating conditions are analyzed.
Investigations are presented concerning the maximum substrate temperature during deposition, the integral ion current onto the substrate as well as the ion energy distribution function of positive and negative ions. One of the most important findings is that when using rectangular magnetrons in the pulse packet mode or in the bipolar pulse about to factor two stronger substrate heating arises in comparison to the unipolar pulse mode. That is due to a higher ion current onto the substrate and a higher self bias potential which leads altogether to a significantly higher ion bombardment of the substrate. It could be shown by comparison with the characteristics of DC plasmas that the different configuration of the anode relative to the magnetic field of the magnetrons is the primary cause for the differences.
The titanium oxide coating process was comprehensively examined. Layer crystallinity and layer properties could be related to substrate temperature, deposition rate and ion bombardment during deposition. An important result is that by application of an intensive ion bombardment the substrate temperature necessary for crystalline layer growth decreases. This can be achieved by using the pulse packet or the bipolar pulse mode instead of the unipolar pulse mode as well as by choice of a more reactive working point. All in all, the parameter range in which is it possible to deposit polycrystalline titanium oxide layers could be determined toward low substrate temperatures and small layer thickness.
|
2 |
Einfluss von Beschichtungsparametern auf den Teilchen- und Energiestrom zum Substrat und Auswirkungen auf ausgewählte Eigenschaften von Titanoxidschichten beim reaktiven Puls-Magnetron-SputternGlöß, Daniel 12 July 2007 (has links)
Diese Dissertation befasst sich mit den Plasmaeigenschaften und dem Schichtbildungsprozess bei der Titanoxidbeschichtung mit dem reaktiven Puls-Magnetron-Sputterverfahren. Insbesondere werden die Vorgänge, die zu einer vermehrt oder vermindert starken Kristallinität und photokatalytischen Aktivität der Schichten führen, untersucht und die Verflechtungen mit den Beschichtungsbedingungen analysiert.
Es werden Untersuchungen zur Messung der sich während der Beschichtung einstellenden Substrattemperatur, zur Messung des auf das Substrat einfallenden integralen Ionenstroms sowie zur Energieverteilung positiver und negativer Ionen vorgestellt. Zu den wichtigsten Erkenntnissen dieser Untersuchungen zählt, dass bei Nutzung des Pulspaket- bzw. des Bipolar-Pulsmodus bei Rechteck-Magnetrons eine um etwa Faktor zwei stärkere Substraterwärmung auftritt als bei Nutzung des Unipolar-Pulsmodus. Das ist auf einen höheren Ionenstrom auf das Substrat bei gleichzeitig höherer Selbstbiasspannung zurückzuführen, was insgesamt zu einem deutlich intensiveren Bombardement des Substrats mit Ionen führt. Durch Vergleich mit den Eigenschaften von DC-Plasmen konnte gezeigt werden, dass die unterschiedliche Lage der Anode relativ zum Magnetron-Magnetfeld die primäre Ursache für die gefundenen Unterschiede ist.
Der Titanoxid-Beschichtungsprozess wurde umfassend untersucht und dabei die Abhängigkeiten der Kristallinität und der Schichteigenschaften von Substrattemperatur, Beschichtungsrate und von dem während der Beschichtung auftretenden Ionenbombardement aufgezeigt. Eine wichtiges Resultat ist, dass durch Anwendung eines intensiven Ionenbombardements des Beschichtungsplasmas die für kristallines Schichtwachstum erforderliche Substrattemperatur sinkt. Das wird durch Nutzung des Pulspaket- bzw. des Bipolar-Pulsmodus anstatt des Unipolar-Pulsmodus sowie durch Wahl eines reaktiveren Arbeitspunkts erreicht. Insgesamt konnte anhand der Untersuchungen der Parameterbereich, in dem die Abscheidung polykristalliner Titanoxidschichten möglich ist, in Richtung niedriger Substrattemperaturen und dünner Schichten ermittelt werden. / In this dissertation, the plasma characteristics and the layer forming process during the titanium oxide deposition with the reactive pulse magnetron sputtering method are investigated. In particular, the procedures which lead to a higher or lower crystallinity and photocatalytic activity are examined and the connections with the coating conditions are analyzed.
Investigations are presented concerning the maximum substrate temperature during deposition, the integral ion current onto the substrate as well as the ion energy distribution function of positive and negative ions. One of the most important findings is that when using rectangular magnetrons in the pulse packet mode or in the bipolar pulse about to factor two stronger substrate heating arises in comparison to the unipolar pulse mode. That is due to a higher ion current onto the substrate and a higher self bias potential which leads altogether to a significantly higher ion bombardment of the substrate. It could be shown by comparison with the characteristics of DC plasmas that the different configuration of the anode relative to the magnetic field of the magnetrons is the primary cause for the differences.
The titanium oxide coating process was comprehensively examined. Layer crystallinity and layer properties could be related to substrate temperature, deposition rate and ion bombardment during deposition. An important result is that by application of an intensive ion bombardment the substrate temperature necessary for crystalline layer growth decreases. This can be achieved by using the pulse packet or the bipolar pulse mode instead of the unipolar pulse mode as well as by choice of a more reactive working point. All in all, the parameter range in which is it possible to deposit polycrystalline titanium oxide layers could be determined toward low substrate temperatures and small layer thickness.
|
3 |
Evaluating Cathode Catalysts in the Polymer Electrolyte Fuel CellEkström, Henrik January 2007 (has links)
The polymer electrolyte membrane fuel cell (PEMFC) converts the chemical energy of hydrogen and oxygen (air) into usable electrical energy. At the cathode (the positive electrode), a considerable amount of platinum is generally required to catalyse the sluggish oxygen reduction reaction (ORR). This has implications regarding the cost in high-power applications, and for making a broad commercialisation of the PEMFC technology possible, it would be desirable to lower the amount of Pt used to catalyse the ORR. In this thesis a number of techniques are described that have been developed in order to investigate catalytic activity at the cathode of the PEMFC. These methodologies resemble traditional three-electrode research in liquid electrolytes, including cyclic voltammetry in inert gas, but with the advantage of performing the experiments in the true PEMFC environment. From the porous electrode studies it was seen that it is possible to reach mass activities close to 0.2 gPt/kW at potentials above 0.65 V at 60 ◦C, but that the mass activities may become considerably lower when raising the temperature to 80 ◦C and changing the measurement methodology regarding potential cycling limits and electrode manufacturing. The model electrode studies rendered some interesting results regarding the ORR at the Pt/Nafion interface. Using a novel measurement setup for measuring on catalysed planar glassy carbon disks, it was seen that humidity has a considerable effect on the ORR kinetics of Pt. The Tafel slopes become steeper and the activity decreases when the humidity level of the inlet gases decreases. Since no change in the the electrochemical area of the Pt/Nafion interface could be seen, these kinetic phenomena were ascribed to a lowered Pt oxide coverage at the lower humidity level, in combination with a lower proton activity. Using bi-layered nm-thick model electrodes deposited directly on Nafion membranes, the behaviour of TiO2 and other metal oxides in combination with Pt in the PEMFC environment was investigated. Kinetically, no intrinsic effect could be seen for the model electrodes when adding a metal oxide, but compared to porous electrodes, the surface (specific) activity of a 3 nm film of Pt deposited on Nafion seems to be higher than for a porous electrode using ∼4 nm Pt grains deposited on a carbon support. Comparing the cyclic voltammograms in N2, this higher activity could be ascribed to less Pt oxide formation, possibly due to a particle size effect. For these bi-layered films it was also seen that TiO2 may operate as a proton-conducting electrolyte in the PEMFC. / I polymerelektrolytbränslecellen (PEMFC) omvandlas den kemiska energin hos vätgas och syrgas (luft) direkt till användbar elektrisk energi. På katoden (den positiva elektroden) krävs betydande mängder platina för att katalysera den tröga syrereduktionsreaktionen (ORR). Detta inverkar på kostnaden för högeffektsapplikationer, och för att göra en bred kommersialisering av PEMFC-teknologin möjlig skulle det vara önskvärt att minska den Pt-mängd som används för att katalysera ORR. I denna avhandling beskrivs ett antal tekniker som utvecklats för att undersöka katalytisk aktivitet på katoden i PEMFC. Metodiken liknar traditionella treelektrodexperiment i vätskeformig elektrolyt, med cyklisk voltammetri i inert gas, men med fördelen att försöken utförs i den riktiga PEMFC-miljön. I försök med porösa elektroder visades att det är möjligt att nå massaktiviteter nära 0.2 gPt/kW för potentialer över 0.65 V vid 60 ◦C, men massaktiviteterna kan bli betydligt lägre om temperaturen höjs till 80 ◦C, och om potentialsvepgränser och elektrodentillverkningsmetod ändras. Försök med modellelektroder resulterade i intressanta resultat rörande ORR i gränsskiktet Pt/Nafion. Genom att använda en ny metodik för att mäta på katalyserade plana elektroder av vitröst kol (glassy carbon), var det möjligt att se att gasernas fuktighet har en betydande inverkan på ORR-kinetiken hos Pt. Tafellutningarna blir brantare och aktiviteten minskar när inloppsgasernas fuktighetsgrad minskar. Eftersom den elektrokemiska arean hos Pt/Nafion-gränsskiktet inte ändrades, ansågs dessa kinetiska effekter bero på en lägre täckningsgrad av Ptoxider vid lägre fuktigheter, i kombination med lägre protonaktivitet. Genom att använda Nafionmembran belagda med nm-tjocka tvåskiktsmodellelektroder undersöktes hur Pt i kombination med TiO2 och andra metalloxider verkar i PEMFC-miljön. Kinetiskt sett hade tillsatsen av metalloxider ingen inre påverkan på aktiviteten, men vid jämförelse med porösa elektroder tycks den specifika ytaktiviteten vara högre hos en 3 nm film av Pt på Nafion än för en porös elektrod baserad på ∼4 nm Pt-korn belagda på ett kolbärarmaterial. Jämför man de cykliska voltammogrammen i N2, kan den högre aktiviteten tillskrivas en lägre grad av Pt-oxidbildning, vilket i sin tur kan bero på en storlekseffekt hos Pt-partiklarna. Försöken med dessa tvåskiktselektroder visade också att TiO2 kan verka som protonledande elektrolyt i PEMFC. / QC 20100706
|
4 |
Towards Full-area Passivating Contacts for Silicon Surfaces based on Al₂O₃-TiOₓ Double LayersTröger, David, Grube, Matthias, Knaut, Martin, Reif, Johanna, Bartha, Johann W., Mikolajick, Thomas 08 December 2021 (has links)
In order to remove the local openings for contacting PERC Solar cells, one has to introduce passivating contacts. The Al₂O₃-TiOₓ double layer stack is an attractive candidate for this purpose. This study will guide a way to enhance the conductivity of those contacts by doping TiO x with a. Additionally, it is shown, that major parts of the stacks are deposited by sputtering. This demonstrates a higher feasibility for industrial applications than atomic layer deposition as reported earlier [1], [2].
|
5 |
Polydopamine-mediated long-term elution of the direct thrombin inhibitor bivalirudin from TiO₂ nanotubes for improved vascular biocompatibilityYang, Zhilu, Zhong, Si, Yang, Ying, Maitz, Manfred F., Li, Xiangyang, Tu, Qiufen, Qi, Pengkai, Zhang, Heng, Qiu, Hua, Wan, Jin, Huang, Nan 07 January 2020 (has links)
Thrombosis and restenosis are two major complications associated with current commercial vascular stents. In situ regeneration of a healthy endothelium has been recognized as a promising strategy to address these issues. Numerous strategies have been explored for this goal. However, in most of the cases, they only focused on enhancing endothelial cell growth, ignoring antithrombotic requirements and the competition between smooth muscle cells (SMCs) and endothelial cells (ECs) for their growth. This resulted in non-satisfying clinical results. In this study, we created a multifunctional surface that meets the need of antithrombosis and re-endothelialization. A nanotubular titanium oxide (TiO₂) system has been developed, which elutes the direct thrombin inhibitor, bivalirudin (BVLD); moreover, polydopamine (PDAM) is used to tailor the surface functionality of TiO₂ nanotubes (NTs) for controlling the elution of BVLD. PDAM-functionalized TiO₂ NTs controls the BVLD for more than two months. BVLD eluted from NTs was bioactive and showed a substantial inhibitory effect on thrombin bioactivity, platelet adhesion and activation. In addition, the BVLD-eluting nanotubular TiO₂ system has high selectivity to enhance human umbilical vein endothelial cell (HUVEC) growth, while it inhibits human umbilical artery smooth muscle cell (HUASMC) proliferation. Our design strategy for the BVLD-eluting nanotubular TiO₂ system creates a favorable microenvironment for durable thromboresistance and the promotion of reendothelialization, and thus it is suitable for the long-term treatment of cardiovascular diseases.
|
6 |
Atomic Layer Deposition onto Fibers / Atomlagenabscheidung auf FasernRoy, Amit Kumar 19 March 2012 (has links) (PDF)
The main goal of this dissertation was to show that the principle of atomic layer deposition (ALD) can be applied to “endless” fibers. A reactor of atomic layer deposition has been designed, especially for coating depositions onto meter long bundles of fibers. Aluminum oxide (alumina), titanium oxide (titania), double layers of alumina and titania, as well as aluminium phosphate have been deposited onto bundles of carbon fibers using the home-built reactor. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images indicate that the coatings were uniform and conformal onto fiber surface. There was a good adhesion of the coatings to the fibers.
Alumina has been deposited using two separate aluminum sources (aluminum trichloride and trimethylaluminum), and water as a source of oxygen. In case of alumina deposition using aluminum trichloride and water, initial deposition temperature was 500 °C. In these conditions, a part of the fiber bundle has been damaged. Thus, the deposition temperature was decreased to 300 °C and the fibers were unaffected. In addition, during this process hydrochloric acid is formed as a byproduct which is a corrosive substance and affects the reactor and there was a chloride impurity in the coatings. Thus, aluminum trichloride precursor was replaced by trimethylalumium.
Alumina deposition onto carbon fibers using trimethylaluminum and water was carried out at a temperature of 77 °C. SEM images revealed that the fibers were unaffected and the coatings were uniform and conformal. Oxidation resistance of the carbon fibers was improved slightly after alumina deposition. Oxidation onset temperature of the uncoated fibers was about 630 °C. The resistance was linearly increased with the coating thickness (up to 660 °C) and getting saturated over a thickness of 120 nm. Titania coatings have been deposited using titanium tetrachloride and water. The physical appearances of the titania coatings were similar to the alumina coatings. The oxidation onset temperature of the titania coated carbon fibers was similar to the uncoated fibers but the rate of oxidation was decreased than the uncoated fibers. Two double layer coatings were deposited, alumina followed by titania (alumina/titania), and titania followed by alumina (titania/alumina). If the fibers were coated with the double layer of alumina/titania, they had almost same oxidation onset as alumina coated fibers but the rate of oxidation was decreased significantly compared to alumina coated fibers. This feature is independent of the thickness of the titania layers, at least in the regime investigated (50 nm alumina followed by 13 nm and 40 nm titania). On the other hand, the oxidation onset temperature of fibers coated with titania/alumina (20 nm titania /30 nm alumina) was approximately 750 °C. The fibers were burned completely when temperature was further increased to 900 °C and held another 60 minutes at 900 °C. This is significantly better than any other coating used in this dissertation.
ALD of titania and alumina in principle was known beforehand, this dissertation here applies this knowledge for the first time to endless fibers. Furthermore, this dissertation shows for the first time that one can deposit aluminum phosphate via ALD (planar surface as well as fibers). Aluminum phosphate might be special interest in the fiber coating because it is a rather soft material and thus might be used to obtain a weak coupling between fiber and matrix in composites. Aluminum phosphate was deposited using trimethylaluminum and triethylphosphate as precursors. Energy dispersive X-ray spectroscopy and solid state nuclear magnetic resonance spectra confirmed that the coating comprises aluminum phosphate (orthophosphate as well as other stoichiometries). Scanning electron microscopic images revealed that coatings are uniform and conformal. In cases of alumina and titania, it was observed that the coatings were delaminated from the ends of cut fibers and thus formed of clear steps. On the other hand, for aluminum phosphate coating it was observed that the border between coating and underlying fiber often being smeared out and thus formed an irregular line. It seems in case aluminum phosphate cohesion is weaker than adhesion, thus it might be act a weak interface between fiber and matrix. Alumina, titania, and double layer microtubes have been obtained after selective removal of the underlying carbon fibers. The carbon fibers were selectively removed via thermal oxidation in air at temperatures exceeding 550 °C. SEM and TEM images indicate that the inner side of the tube wall has the same morphology like the fibers. In addition, it was observed that the individual microtubes were separated from their neighbors and they had almost uniform wall thicknesses. The longest tubes had a length of 30 cm. / Das Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.
|
7 |
Atomic Layer Deposition onto FibersRoy, Amit Kumar 14 March 2012 (has links)
The main goal of this dissertation was to show that the principle of atomic layer deposition (ALD) can be applied to “endless” fibers. A reactor of atomic layer deposition has been designed, especially for coating depositions onto meter long bundles of fibers. Aluminum oxide (alumina), titanium oxide (titania), double layers of alumina and titania, as well as aluminium phosphate have been deposited onto bundles of carbon fibers using the home-built reactor. Scanning electron microscopic (SEM) and transmission electron microscopic (TEM) images indicate that the coatings were uniform and conformal onto fiber surface. There was a good adhesion of the coatings to the fibers.
Alumina has been deposited using two separate aluminum sources (aluminum trichloride and trimethylaluminum), and water as a source of oxygen. In case of alumina deposition using aluminum trichloride and water, initial deposition temperature was 500 °C. In these conditions, a part of the fiber bundle has been damaged. Thus, the deposition temperature was decreased to 300 °C and the fibers were unaffected. In addition, during this process hydrochloric acid is formed as a byproduct which is a corrosive substance and affects the reactor and there was a chloride impurity in the coatings. Thus, aluminum trichloride precursor was replaced by trimethylalumium.
Alumina deposition onto carbon fibers using trimethylaluminum and water was carried out at a temperature of 77 °C. SEM images revealed that the fibers were unaffected and the coatings were uniform and conformal. Oxidation resistance of the carbon fibers was improved slightly after alumina deposition. Oxidation onset temperature of the uncoated fibers was about 630 °C. The resistance was linearly increased with the coating thickness (up to 660 °C) and getting saturated over a thickness of 120 nm. Titania coatings have been deposited using titanium tetrachloride and water. The physical appearances of the titania coatings were similar to the alumina coatings. The oxidation onset temperature of the titania coated carbon fibers was similar to the uncoated fibers but the rate of oxidation was decreased than the uncoated fibers. Two double layer coatings were deposited, alumina followed by titania (alumina/titania), and titania followed by alumina (titania/alumina). If the fibers were coated with the double layer of alumina/titania, they had almost same oxidation onset as alumina coated fibers but the rate of oxidation was decreased significantly compared to alumina coated fibers. This feature is independent of the thickness of the titania layers, at least in the regime investigated (50 nm alumina followed by 13 nm and 40 nm titania). On the other hand, the oxidation onset temperature of fibers coated with titania/alumina (20 nm titania /30 nm alumina) was approximately 750 °C. The fibers were burned completely when temperature was further increased to 900 °C and held another 60 minutes at 900 °C. This is significantly better than any other coating used in this dissertation.
ALD of titania and alumina in principle was known beforehand, this dissertation here applies this knowledge for the first time to endless fibers. Furthermore, this dissertation shows for the first time that one can deposit aluminum phosphate via ALD (planar surface as well as fibers). Aluminum phosphate might be special interest in the fiber coating because it is a rather soft material and thus might be used to obtain a weak coupling between fiber and matrix in composites. Aluminum phosphate was deposited using trimethylaluminum and triethylphosphate as precursors. Energy dispersive X-ray spectroscopy and solid state nuclear magnetic resonance spectra confirmed that the coating comprises aluminum phosphate (orthophosphate as well as other stoichiometries). Scanning electron microscopic images revealed that coatings are uniform and conformal. In cases of alumina and titania, it was observed that the coatings were delaminated from the ends of cut fibers and thus formed of clear steps. On the other hand, for aluminum phosphate coating it was observed that the border between coating and underlying fiber often being smeared out and thus formed an irregular line. It seems in case aluminum phosphate cohesion is weaker than adhesion, thus it might be act a weak interface between fiber and matrix. Alumina, titania, and double layer microtubes have been obtained after selective removal of the underlying carbon fibers. The carbon fibers were selectively removed via thermal oxidation in air at temperatures exceeding 550 °C. SEM and TEM images indicate that the inner side of the tube wall has the same morphology like the fibers. In addition, it was observed that the individual microtubes were separated from their neighbors and they had almost uniform wall thicknesses. The longest tubes had a length of 30 cm.:Bibliographische Beschreibung und Referat 2
Abstract 4
List of abbreviations 10
1. General introduction and outline of this dissertation 12
1.1 References 20
2. Atomic layer deposition: Process and reactor 25
2.1 Introduction 25
2.2 Principle of atomic layer deposition 26
2.3 Materials and methods 29
2.3.1 Precursors 29
2.3.2 Precursors transportation 31
2.3.3 Carrier and purge gas 32
2.3.4 ALD reactors 32
2.4 Flow-Type ALD reactor for fiber coating 33
2.5 Conclusion 35
2.6 References 35
3. Single layer oxide coatings 38
3.1 State of the art 38
3.2 Alumina coating using non-flammable precursors 39
3.2.1 Introduction 39
3.2.Result and discussion 39
3.3 Alumina coating using organometallic precursor 46
3.2.1 Introduction 46
3.2.2 Results and discussion 46
3.4 Titania coating using titanium tetrachloride and water 59
3.4.1 Introduction 59
3.4.2 Results and discussion 59
3.5 Experimental Part 67
3.5.1 General experiments 67
3.5.2 Alumina coating using aluminum chloride and water 69
3.5.3 Alumina coating using trimethylalumium and water 69
3.5.4 Titania coating 72
3.6 Conclusions 72
3.7 References 74
4. Coating thickness and morphology 78
4.1 Introduction 78
4.2 Results and discussion 80
4.2.1 Purge time 15 s 81
4.2.2 Purge time 30 s 85
4.2.3 Purge time 45 s to 100 s 85
4.3 Experimental part 88
4.4 Conclusions 89
4.5 References 89
5. Alumina and titania double layer coatings 91
5.1 Introduction 91
5.2 Results and discussion 92
5.3 Experimental part 102
5.4 Conclusions 103
5.5 References 103
6. Atomic layer deposition of aluminum phosphate 105
6.1 Introduction 105
6.2 Results and discussion 106
6.3 Experimental part 113
6.4 Conclusions 114
6.5 References 115
7. Alumina microtubes 117
7.1 Introduction 117
7.2 Results and discussion 118
7.2.1 Fibers before coating deposition 118
7.2.2 Coatings on the carbon fibers 118
7.2.3 Microtubes 121
7.3 Experimental part 127
7.4 Conclusions 128
7.5 References 128
8. Conclusions 131
Acknowledgements 136
Curriculum Vitae 138
Selbständigkeitserklärung 142 / Das Hauptziel dieser Dissertation bestand darin nachzuweisen, dass die Atomlagenabscheidung (engl. atomic layer deposition (ALD)) auf „endlose“ Fasern angewendet werden kann. Es wurde ein Reaktor zur Atomlagenabscheidung gestaltet, der speziell für die Beschichtung meterlanger Faserbündel geeignet ist. Aluminiumoxid, Titanoxid, Doppelschichten aus Aluminiumoxid und Titanoxid sowie Aluminiumphosphat wurden mit Hilfe des selbstgebauten Reaktors auf Kohlefaserbündel abgeschieden. Rasterelektronenmikroskopische (REM) und transmissionselektronenmikroskopische (TEM) Aufnahmen zeigten, dass die Beschichtung auf den Fasern einheitlich und oberflächentreu war. Des Weiteren wurde eine gute Adhäsion zwischen Beschichtung und Fasern beobachtet. Das Prinzip der Beschichtung mit Titanoxid und Aluminiumoxid mit Hilfe der ALD war bereits vorher bekannt und im Rahmen dieser Dissertation jedoch erstmals auf "endlose" Fasern angewendet. Des Weiteren wird in dieser Dissertation erstmals gezeigt, dass es möglich ist, Aluminiumphosphat mittels ALD abzuscheiden (sowohl auf planaren Oberflächen als auch auf Fasern). Aluminiumphosphat könnte von besonderem Interesse in der Faserbeschichtung sein, da es ein relativ weiches Material ist und könnte daher als eine Art „schwacher“ Verbindung zwischen Faser und Matrix in Kompositen dienen. Die Oxidationsbeständigkeit von beschichten Kohlefasern wurde im Vergleich zu unbeschichteten Fasern bis zu einem gewissen Grad erhöht. Monoschichten von Aluminiumoxid und Titanoxid waren dafür wenig effektiv. Aluminiumphosphatbeschichtete Fasern waren deutlich besser geeignet als die beiden anderen. Eine Doppelschicht aus Titanoxid gefolgt von Aluminiumoxid verbesserte die Oxidationsbeständigkeit nochmals deutlich gegenüber allen anderen Beschichtungen, die in dieser Dissertation verwendet wurden. Mikroröhren aus Aluminiumoxid, Titanoxid und Doppelschichten wurden durch die selektive Entfernung der zugrunde liegenden Kohlefasern erhalten. Einzelne Mikroröhren waren von benachbarten Röhren getrennt und sie weisen eine nahezu einheitliche Wanddicke auf.:Bibliographische Beschreibung und Referat 2
Abstract 4
List of abbreviations 10
1. General introduction and outline of this dissertation 12
1.1 References 20
2. Atomic layer deposition: Process and reactor 25
2.1 Introduction 25
2.2 Principle of atomic layer deposition 26
2.3 Materials and methods 29
2.3.1 Precursors 29
2.3.2 Precursors transportation 31
2.3.3 Carrier and purge gas 32
2.3.4 ALD reactors 32
2.4 Flow-Type ALD reactor for fiber coating 33
2.5 Conclusion 35
2.6 References 35
3. Single layer oxide coatings 38
3.1 State of the art 38
3.2 Alumina coating using non-flammable precursors 39
3.2.1 Introduction 39
3.2.Result and discussion 39
3.3 Alumina coating using organometallic precursor 46
3.2.1 Introduction 46
3.2.2 Results and discussion 46
3.4 Titania coating using titanium tetrachloride and water 59
3.4.1 Introduction 59
3.4.2 Results and discussion 59
3.5 Experimental Part 67
3.5.1 General experiments 67
3.5.2 Alumina coating using aluminum chloride and water 69
3.5.3 Alumina coating using trimethylalumium and water 69
3.5.4 Titania coating 72
3.6 Conclusions 72
3.7 References 74
4. Coating thickness and morphology 78
4.1 Introduction 78
4.2 Results and discussion 80
4.2.1 Purge time 15 s 81
4.2.2 Purge time 30 s 85
4.2.3 Purge time 45 s to 100 s 85
4.3 Experimental part 88
4.4 Conclusions 89
4.5 References 89
5. Alumina and titania double layer coatings 91
5.1 Introduction 91
5.2 Results and discussion 92
5.3 Experimental part 102
5.4 Conclusions 103
5.5 References 103
6. Atomic layer deposition of aluminum phosphate 105
6.1 Introduction 105
6.2 Results and discussion 106
6.3 Experimental part 113
6.4 Conclusions 114
6.5 References 115
7. Alumina microtubes 117
7.1 Introduction 117
7.2 Results and discussion 118
7.2.1 Fibers before coating deposition 118
7.2.2 Coatings on the carbon fibers 118
7.2.3 Microtubes 121
7.3 Experimental part 127
7.4 Conclusions 128
7.5 References 128
8. Conclusions 131
Acknowledgements 136
Curriculum Vitae 138
Selbständigkeitserklärung 142
|
Page generated in 0.0655 seconds