• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 13
  • 1
  • Tagged with
  • 34
  • 28
  • 21
  • 19
  • 19
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

[pt] OTIMIZAÇÃO TOPOLÓGICA ESTRUTURAL COM MUITOS CASOS DE CARGA: ABORDAGENS APROXIMAÇÃO ESTOCÁSTICA E DECOMPOSIÇÃO DE VALORES SINGULARES / [en] STRUCTURAL TOPOLOGY OPTIMIZATION WITH MANY LOAD CASES: STOCHASTIC APPROXIMATION AND SINGULAR VALUE DECOMPOSITION APPROACHES

LUCAS DO NASCIMENTO SAGRILO 17 November 2022 (has links)
[pt] Sabe-se que a maioria das estruturas reais estão sujeitas à diferentes casos de carregamentos, relacionadas à diferentes solicitações estruturais e à ação de forças naturais, como ventos e ondas. Neste contexto, é importante levar em consideração o efeito da maior quantidade de cenários possíveis que possam atuar em uma estrutura ao realizar um estudo de otimização topológica. A maneira tradicional de solução deste tipo de probema envolve uma análise caso a caso dos cenários, o que no contexto de um algoritmo de otimização estrutural requer a solução de um problema de elementos finitos para cada cenário em cada passo do algoritmo, ficando limitada pelo elevado custo computacional associado. Esta limitação abre espaço para abordagens baseadas em redução de dimensões como a aproximação estocástica e a decomposição em valores singulares. Este trabalho verifica a viabilidade do uso destes dois métodos na solução de problemas de otimização topológica estrutural com muitos casos de carga. Duas aplicações são apresentadas, otimização robusta e o problema de cargas dinâmicas usando o método do carregamento estático equivalente. Com isso, situações envolvendo carregamentos mais complexos podem ser estudadas através de algoritmos eficientes de otimização topológica. Para ambos os casos, são mostrados resultados comparando os resultados obtidos através da metodologia desenvolvida neste trabalho com resultados da literatura. / [en] It is known that most real structures are subject to different loading scenarios, related to different structural solicitations and the action of natural forces, such as winds and sea waves. In this context, it is important to consider the effect of the largest number of possible scenarios that can act on a structure when performing a topology optimization study. The traditional way of solving this type of problem involves a case-by-case analysis of the scenarios, which in the context of a structural optimization algorithm requires the solution of one finite element problem for each scenario and at each step of the algorithm, being limited by the high associated computational cost. This limitation leave room for approaches based on dimenson reduction such as stochastic approximation and decomposition into singular values. This work verifies the feasibility of using these two approaches to solve structural topology optimization problems with many load cases. Two applications are presented, robust optimization and the problem of dynamic loads using the equivalent static loading method. Thus, situations involving more complex loads can be studied through efficient topology optimization algorithms. For both cases, comparisons are established between the results obtained through the methodology developed in this work and the ones from the literature.
32

[pt] OTIMIZAÇÃO TOPOLÓGICA PARA PROBLEMAS DE ESCOAMENTO DE FLUIDOS NÃO NEWTONIANOS USANDO O MÉTODO DOS ELEMENTOS VIRTUAIS / [en] TOPOLOGY OPTIMIZATION FOR NON-NEWTONIAN FLUID-FLOW PROBLEMS USING THE VIRTUAL ELEMENT METHOD

MIGUEL ANGEL AMPUERO SUAREZ 28 August 2020 (has links)
[pt] Este trabalho apresenta aplicações da técnica de otimização topológica para problemas de escoamento com fluidos não Newtonianos, usando o método dos elementos virtuais (VEM) em domínios bidimensionais arbitrários. O objetivo é projetar a trajetória ótima, a partir da minimização da energia dissipativa, de um escoamento governado pelas equações de Navier-Stokes-Brinkman e do modelo não Newtoniano de Carreau-Yasuda. A abordagem de porosidade proposta por (Borrvall e Petersson, 2003) [1] é usada na formulação do problema de otimização topológica. Para resolver este problema numericamente é usado o método VEM, recentemente proposto. A principal característica que diferencia o VEM do método dos elementos finitos (FEM) é que as funções de interpolação no interior dos elementos não precisam ser computadas explicitamente. Isso ocorre porque a integração é feita em funções polinomiais e bases de ordem inferior, permitindo assim uma grande flexibilidade no que diz respeito ao uso de elementos não convexos. Portanto, o cálculo das matrizes e vetores elementares se reduz à avaliação de grandezas geométricas nos contornos desses elementos. Finalmente, são apresentados exemplos numéricos representativos para demonstrar a eficiência do VEM em comparação com o FEM e a aplicabilidade da otimização topológica para esta classe de problemas de escoamento. / [en] This work presents selected applications of topology optimization for non-Newtonian fluid flow problems using the virtual element method (VEM) in arbitrary two-dimensional domains. The objective is to design an optimal layout into a fluid flow domain to minimize dissipative energy governed by the Navier-Stokes-Brinkman and non-Newtonian Carreau-Yasuda model equations. The porosity approach proposed by (Borrvall and Petersson, 2003) [1] is used in the topology optimization formulation. To solve this problem numerically, the recently proposed VEM method is used. The key feature that distinguishes VEM from the standard finite element method (FEM) is that the interpolation functions in the interior of the elements do not need to be computed explicitly. This is because the integration is on lower-order polynomial and basis functions, and there is great flexibility by using a non-convex element. Therefore, the computation of the main element matrices and vectors are reduced to the evaluation of geometric quantities on the boundary of the elements. Finally, several numerical examples are provided to demonstrate the efficiency of the VEM compared to FEM and the applicability of the topology optimization to fluid flow problems.
33

[en] TOPSIM: A PLUGIN-BASED FRAMEWORK FOR LARGE-SCALE NUMERICAL ANALYSIS / [pt] TOPSIM: UM SISTEMA BASEADO EM PLUGIN PARA ANÁLISE NUMÉRICA EM LARGA ESCALA

LEONARDO SEPERUELO DUARTE 12 January 2017 (has links)
[pt] Métodos computacionais em engenharia são usados na solução de problemas físicos que não possuem solução analítica ou sua perfeita representação matemática é inviável. Técnicas de métodos numéricos, incluindo o amplamente usado método dos elementos finitos, podem exigir a solução de sistemas lineares com centenas de milhares de equações, demandando altos recursos computacionais (memória e tempo). Nesta tese, nós apresentamos um sistema baseado em plugins para análise numérica em larga escala. O sistema é usado como uma ferramenta original na solução de problemas de otimização topológica usando o método dos elementos finitos com milhões de elementos. Nossa estratégia utiliza uma técnica elemento-por-elemento para implementar um código altamente paralelo para um solver iterativo com baixo consumo de memória. Além disso, a abordagem de plugin proporciona um ambiente completamente flexível e fácil de estender, onde diferentes aplicações, exigindo diferentes tipos de elementos finitos, materiais, solvers lineares e formulações podem ser desenvolvidos e melhorados. O kernel do sistema é mínimo, com apenas um módulo gerenciador de plugin, responsável por carregar os plugins desejados em tempo real usando um arquivo de configuração de entrada. Todas as funcionalidades necessárias para uma determinada aplicação são definidas dentro dos plugins, sem a necessidade de mudar o kernel. Plugins podem disponibilizar ou exigir interfaces adicionais especializadas, onde outros plugins podem ser conectados para compor um sistema mais complexo e completo. Nós apresentamos resultados para uma análise estrutural estática linear elástica e para uma análise estrutural de otimização topológica. As simulações utilizam elementos Q4, hexagonal (Brick8) e prisma hexagonal (Honeycomb), com solvers diretos e iterativos usando computação sequencial, paralela e distribuída. Nós investigamos o desempenho com relação ao uso de memória e escalabilidade da solução para problemas com diferentes tamanhos, de exemplos pequenos a muito grandes em apenas uma máquina e em um cluster. Foi simulado um exemplo de análise estática linear elástica com 500 milhões de elementos em 300 máquinas. / [en] Computational methods in engineering are used to solve physical problems that do not have analytical solution or their perfect mathematical representation is unfeasible. Numerical techniques, including the largely used finite element method, require the solution of linear systems with hundreds of thousands equations, demanding high computational resources (memory and time). In this thesis, we present a plugin-based framework for large-scale numerical analysis. The framework is used as an original tool to solve topology optimization problems using the finite element method with millions of elements. Our strategy uses an element-by-element technique to implement a highly parallel code for an iterative solver with low memory consumption. Besides, the plugin approach provides a fully flexible and easy to extend environment, where different types of applications, requiring different types of finite elements, materials, linear solvers, and formulations, can be developed and improved. The kernel of the framework is minimum with only a plugin manager module, responsible to load the desired plugins during runtime using an input configuration file. All the features required for a specific application are defined inside plugins, with no need to change the kernel. Plugins may provide or require additional specialized interfaces, where other plugins may be connected to compose a more complex and complete system. We present results for a structural linear elastic static analysis and for a structural topology optimization analysis. The simulations use elements Q4, hexahedron (Brick8), and hexagonal prism (Honeycomb), with direct and iterative solvers using sequential, parallel and distributed computing. We investigate the performance regarding the use of memory and the scalability of the solution for problems with different sizes, from small to very large examples on a single machine and on a cluster. We simulated a linear elastic static example with 500 million elements on 300 machines.
34

[pt] OTIMIZAÇÃO TOPOLÓGICA DE ESTRUTURAS GEOMETRICAMENTE NÃOLINEARES BASEADA EM UM ESQUEMA DE INTERPOLAÇÃO DE ENERGIA / [en] TOPOLOGY OPTIMIZATION OF GEOMETRICALLY NONLINEAR STRUCTURES BASED ON AN ENERGY INTERPOLATION SCHEME

ANDRE XAVIER LEITAO 26 May 2020 (has links)
[pt] Em muitos problemas de engenharia, e.g., no projeto de próteses biomédicas flexíveis ou em dispositivos de absorção de energia, estruturas sofrem grandes deslocamentos. Nestes casos, a não linearidade geométrica deve ser levada em conta na resposta estrutural. Contudo, algoritmos de otimização topológica considerando não linearidades, e modelados segundo o método de elementos finitos, sofrem instabilidades numéricas causadas por distorções excessivas nas regiões de baixa densidade dentro do domínio de projeto. Em particular, a matriz de rigidez pode não ser positiva definida comprometendo a convergência do processo de otimização. Esta dissertação visa estudar um esquema de interpolação entre as formulações lineares e não lineares de elementos finitos para aliviar tais distorções. Em cada etapa da otimização, para determinar a configuração de equilíbrio, o sistema de equações não-lineares é resolvido pelo procedimento de Newton-Raphson. Utilizando-se das informações dos gradientes calculadas através do método adjunto, o Método das Assíntotas Móveis é empregado para atualizar as variáveis de projeto. Por meio de problemas de referência considerando grandes deslocamentos, são demonstradas a eficácia e a eficiência deste esquema de interpolação. Mais especificamente, as topologias otimizadas estão de acordo com aquelas obtidas na literatura e exibem a dependência esperada em relação ao nível de carga. O esquema de interpolação em estudo desempenha papel crucial na solução de problemas não lineares em níveis elevados de carga, permitindo que a rotina de otimização convirja e se obtenha a distribuição de material ótima. / [en] In many engineering problems, e.g., design of flexible biomedical prostheses or energy absorption devices, structures undergo large displacements. In those problems, the structural response must take into account the geometric nonlinearity. However, topology optimization algorithms regarding nonlinearities, and based on the finite element method, typically suffer from numerical instabilities caused by excessive distortions of low-density regions within the design domain. In particular, the stiffness matrix may be no longer positive definite, which can jeopardize the convergence of the optimization process. This thesis aims to study an interpolation scheme between linear and nonlinear finite element formultation to alleviate this convergence issue. At each step of the optimization, the nonlinear state equation is solved by the Newton-Raphson procedure to determine the equilibrium configuration. Making use of the gradient information computed from the adjoint method, the Method of Moving Asymptotes is employed to update the design variables. Through several benchmark problems considering large displacements, it is demonstrated the effectiveness and efficiency of this interpolation scheme. More specifically, the optimized designs are in agreement with those obtained in the literature and exhibit correct load-level dependence. The investigated interpolation scheme plays a crucial role in the solution of nonlinear problems with high load levels, allowing the optimization routine to converge and to obtain the optimal material arrangement.

Page generated in 0.0545 seconds