• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 9
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Développement et utilisation de méthodes asymptotiques d'ordre élevé pour la résolution de problèmes de diffraction inverse. / On the development and use of higher-order asymptotics for solving inverse scattering problems.

Cornaggia, Rémi 29 September 2016 (has links)
L'objectif de ce travail fut le développement de nouvelles méthodes pour aborder certainsproblèmes inverses en élasticité, en tirant parti de la présence d'un petit paramètre dans ces problèmespour construire des approximation asymptotiques d'ordre élevé.La première partie est consacrée à l'identification de la taille et la position d'une inhomogénéité$BTrue$ enfouie dans un domaine élastique tridimensionnel. Nous nous concentrons sur l'étude defonctions-co^uts $Jbb(Br)$ quantifiant l'écart entre $BTrue$ et une hétérogénéité ``test'' $Br$. Unetelle fonction-co^ut peut en effet être minimisée par rapport à tout ou partie des caractéristiques del'inclusion ``test'' $Br$ (position, taille, propriétés mécaniques ...) pour établir la meilleurecorrespondance possible entre $Br$ et $BTrue$. A cet effet, nous produisons un développement asymptotique de $Jbb$en la taille $incsize$ de $Br$, qui en constitue une approximation polynomiale plus aisée à minimiser. Cedéveloppement, établi jusqu'à l'ordre $O(incsize^6)$, est justifié par une estimation du résidu. Uneméthode d'identification adaptée est ensuite présentée et illustrée par des exemples numériques portant surdes obstacles de formes simples dans l'espace libre $Rbb^3$.L'objet de la seconde partie est de caractériser une inclusion microstructurée de longueur $ltot$, modéliséeen une dimension, composée de couches de deux matériaux alternés périodiquement, en supposant que les plusbasses de ses fréquences propres de transmission (TEs) sont connues. Ces fréquences sont les valeurs propres d'unproblème dit de transmission intérieur (ITP). Afin de disposer d'un modèle propiceà l'inversion, tout en prenant en compte les effets de la microstructure, nous nous reposons sur des approximationsde l'ITP exact obtenues par homogénéisation. A partir du modèle homogénéisé d'ordre 0, nous établissonstout d'abord une méthode simple pour déterminer les paramètres macroscopiques ($ltot$ et contrastes matériaux)d'une telle inclusion. Pour avoir accès à la période de la microstructure, nous nous intéressons ensuite àdes modèles homogénéisés d'ordre élevé, pour lesquels nous soulignons le besoin de conditions aux limitesadaptées. / The purpose of this work was to develop new methods to address inverse problems in elasticity,taking advantage of the presence of a small parameter in the considered problems by means of higher-order asymptoticexpansions.The first part is dedicated to the localization and size identification of a buried inhomogeneity $BTrue$ in a 3Delastic domain. In this goal, we focused on the study of functionals $Jbb(Br)$ quantifying the misfit between $BTrue$and a trial homogeneity $Br$. Such functionals are to be minimized w.r.t. some or all the characteristics of the trialinclusion $Br$ (location, size, mechanical properties ...) to find the best agreement with $BTrue$. To this end, weproduced an expansion of $Jbb$ with respect to the size $incsize$ of $Br$, providing a polynomial approximationeasier to minimize. This expansion, established up to $O(incsize^6)$ in a volume integral equations framework, isjustified by an estimate of the residual. A suited identification procedure is then given and supported by numericalillustrations for simple obstacles in full-space $Rbb^3$.The main purpose of this second part is to characterize a microstructured two-phases layered1D inclusion of length $ltot$, supposing we already know its low-frequency transmission eigenvalues (TEs). Thoseare computed as the eigenvalues of the so-called interior transmission problem (ITP). To provide a convenient invertiblemodel, while accounting for the microstructure effects, we then relied on homogenized approximations of the exact ITPfor the periodic inclusion. Focusing on the leading-order homogenized ITP, we first provide a straightforward method torecover the macroscopic parameters ($ltot$ and material contrast) of such inclusion. To access to the period of themicrostructure, higher-order homogenization is finally addressed, with emphasis on the need for suitable boundaryconditions.
12

Análise de sensibilidade topológica de segunda ordem / Second order topological sensitivity analysis

Faria, Jairo Rocha de 16 October 2008 (has links)
Made available in DSpace on 2015-03-04T18:50:53Z (GMT). No. of bitstreams: 1 Tese Jairo.pdf: 2924101 bytes, checksum: 8a9716b369188f13960e4f2bc2fbbacb (MD5) Previous issue date: 2008-10-16 / Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior / The topological derivative provides the sensitivity of a given shape functional with respect to an infinitesimal non-smooth domain pertubation (insertion of hole or inclusion, for instance). Classically, this derivative comes from the second term of the topological asymptotic expansion, dealing only with inifinitesimal pertubations. However, for pratical applications, we need to insert pertubations of finite sizes.Therefore, we consider other terms in the expansion, leading to the concept of higher-order topological derivatives. In a particular, we observe that the topological-shape sensitivity method can be naturally extended to calculate these new terms, resulting in a systematic methodology to obtain higher-order topological derivatives. In order to present these ideas, initially we apply this technique in some problems with exact solution, where the topological asymptotic expansion is obtained until third order. Later, we calculate first as well as second order topological derivative for the total potential energy associated to the Laplace equation in two-dimensional domain pertubed with the insertion of a hole, considering homogeneous Neumann or Dirichlet boundary conditions, or an inclusion with thermal conductivity coefficient value different from the bulk material. With these results, we present some numerical experiments showing the influence of the second order topological derivative in the topological asymptotic expansion, which has two main features:it allows us to deal with pertubations of finite sizes and provides a better descent direction in optimization and reconstruction algorithms. / A derivada topológica fornece a sensibilidade de uma dada função custo quando uma pertubação não suave e infinitesimal (furo ou inclusão, por exemplo) é introduzida. Classicamente, esta derivada vem do segundo termo da expansão assintótica topológica considerando-se apenas pertubações infinitesimais. No entanto, em aplicações práticas, é necessário considerar pertubação de tamanho finito. Motivado por este fato, o presente trabalho tem como objetivo fundamental introduzir o conceito de derivadas topológicas de ordem superiores, o que permite considerar mais termos na expansão assintótica topológica. Em particular, observa-se que o topological-shape sensitivity method pode ser naturalmente estendido para o cálculo destes novos termos, resultando em uma metodologia sistemática de análise de sensibilidade topológica de ordem superior. Para se apresentar essas idéias, inicialmente essa técnica é verificada através de alguns problemas que admitem solução exata, onde se calcula explicitamente a expansão assintótica topológica até terceira ordem. Posteriormente, considera-se a equação de Laplace bidimensional, cujo domínio é topologicamente pertubado pela introdução de um furo com condição de contorno de Neumann ou de Dirichlet homogêneas, ou ainda de uma inclusão com propriedade física distinta do meio. Nesse caso, são calculadas explicitamente as derivadas topológicas de primeira e segunda ordens. Com os resultados obtidos em todos os casos, estuda-se a influência dos termos de ordem superiores na expansão assintótica topológica, através de experimentos numéricos. Em particular, observa-se que esses novos termos, além de permitir considerar pertubações de tamanho finito, desempenham ainda um importante papel tanto como fator de correção da expansão assintótica topológica, quanto como direção de descida em processos de otimização. Finalmente, cabe mencionar que a metodologia desenvolvida neste trabalho apresenta um grande potencial para aplicação na otimização e em algoritimos de reconstrução.
13

Détection d’un objet immergé dans un fluide / Location of an object immersed in a fluid

Caubet, Fabien 29 June 2012 (has links)
Cette thèse s’inscrit dans le domaine des mathématiques appelé optimisation de formes. Plus précisément, nous étudions ici un problème inverse de détection à l’aide du calcul de forme et de l’analyse asymptotique. L’objectif est de localiser un objet immergé dans un fluide visqueux, incompressible et stationnaire. Les questions principales qui ont motivé ce travail sont les suivantes :– peut-on détecter un objet immergé dans un fluide à partir d’une mesure effectuée à la surface ?– peut-on reconstruire numériquement cet objet, i.e. approcher sa position et sa forme, à partir de cette mesure ?– peut-on connaître le nombre d’objets présents dans le fluide en utilisant cette mesure ?Les résultats obtenus sont décrits dans les cinq chapitres de cette thèse :– le premier met en place un cadre mathématique pour démontrer l’existence des dérivées de forme d’ordre un et deux pour les problèmes de détection d’inclusions ;– le deuxième analyse le problème de détection à l’aide de l’optimisation géométrique de forme : un résultat d’identifiabilité est montré, le gradient de forme de plusieurs types de fonctionnelles de forme est caractérisé et l’instabilité de ce problème inverse est enfin démontrée ;– le chapitre 3 utilise nos résultats théoriques pour reconstruire numériquement des objets immergés dans un fluide à l’aide d’un algorithme de gradient de forme ;– le chapitre 4 analyse la localisation de petites inclusions dans un fluide à l’aide de l’optimisation topologique de forme : le gradient topologique d’une fonctionnelle de forme de Kohn-Vogelius est caractérisé ;– le dernier chapitre utilise cette dernière expression théorique pour déterminer numériquement le nombre et la localisation de petits obstacles immergés dans un fluide à l’aide d’un algorithme de gradient topologique. / This dissertation takes place in the mathematic field called shape optimization. More precisely, we focus on a detecting inverse problem using shape calculus and asymptotic analysis. The aim is to localize an object immersed in a viscous, incompressible and stationary fluid. This work was motivated by the following main questions:– can we localize an obstacle immersed in a fluid from a boundary measurement?– can we reconstruct numerically this object, i.e. be close to its localization and its shape, from this measure?– can we know how many objects are included in the fluid using this measure?The results are described in the five chapters of the thesis:– the first one gives a mathematical framework in order to prove the existence of the shape derivatives oforder one and two in the frame of the detection of inclusions;– the second one analyzes the detection problem using geometric shape optimization: an identifiabilityresult is proved, the shape gradient of several shape functionals is characterized and the instability of thisinverse problem is proved;– the chapter 3 uses our theoretical results in order to reconstruct numerically some objets immersed in a fluid using a shape gradient algorithm;– the fourth chapter analyzes the detection of small inclusions in a fluid using the topological shape optimization : the topological gradient of a Kohn-Vogelius shape functional is characterized;– the last chapter uses this theoretical expression in order to determine numerically the number and the location of some small obstacles immersed in a fluid using a topological gradient algorithm.

Page generated in 0.091 seconds