• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 11
  • 3
  • Tagged with
  • 80
  • 65
  • 54
  • 35
  • 35
  • 35
  • 35
  • 16
  • 14
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A Relational Localisation Theory for Topological Algebras

Schneider, Friedrich Martin 07 August 2012 (has links) (PDF)
In this thesis, we develop a relational localisation theory for topological algebras, i.e., a theory that studies local approximations of a topological algebra’s relational counterpart. In order to provide an appropriate framework for our considerations, we first introduce a general Galois theory between continuous functions and closed relations on an arbitrary topological space. Subsequently to this rather foundational discussion, we establish the desired localisation theory comprising the identification of suitable subsets, the description of local structures, and the retrieval of global information from local data. Among other results, we show that the restriction process with respect to a sufficiently large collection of local approximations of a Hausdorff topological algebra extends to a categorical equivalence between the topological quasivariety generated by the examined structure and the one generated by its localisation. Furthermore, we present methods for exploring topological algebras possessing certain operational compactness properties. Finally, we explain the developed concepts and obtained results in the particular context of three important classes of topological algebras by analysing the local structure of essentially unary topological algebras, topological lattices, and topological modules of compact Hausdorff topological rings.
32

Aspects of many-body systems on a kagome lattice

Roychowdhury, Krishanu 12 January 2016 (has links) (PDF)
Strongly correlated systems on geometrically frustrated lattices can stabilize a large number of interesting phases that includes a wide array of novel Mott insulators in both bosonic and electronic systems. Charge fluctuations in a Mott insulator are suppressed due to strong mutual interaction among the particles. The presence of frustration is of particular importance as the physics it offers is often rich, unexpectedly complicated, and continues to raise many open questions. The thesis elucidates some of these issues on a kagome lattice where strong interactions among the particles in the Mott phase impose non-trivial local constraints depending on the filling fraction on the lattice. These Mott insulators, in addition to featuring unusual magnetic and/or charge ordering, can also harbor topologically ordered states of quantum matter, e.g., resonating valence bond liquids realized in certain quantum dimer models on non-bipartite lattices. The dimer models can be regarded as low-energy effective theories for different types of bosonic models in the strong-coupling limit. Exploring this connection is a central theme of this thesis with the aim of realizing novel strongly correlated ground states. Past studies of these models have revealed the existence of various ordered and disordered phases with distinct signatures. Among these low-energy phases, the presence of a stable topological liquid at a particular point, known as Rokhsar-Kivelson point, in the phase diagram is notable. The classical versions of the dimer model are also known to have garnered a vast interest in various fields ranging from problems of pure mathematical origin to ones in physical chemistry as well as statistical physics. Pioneered by Kasteleyn, several analytical works came forward to exactly calculate the partition function of the problem from which other physical observables can be derived. Classical numerical methods are extensively applied to these models to verify the analytical predictions. We introduce a new classical algorithm here to compute the correlation functions of a classical dimer model on a square (bipartite) and a triangular (non-bipartite) lattice based on a tensor network construction. The method, called tensor network renormalization group, turns out to be a powerful tool for simulating short-ranged gapped systems as inferred from our results benchmarked against the classical Monte-Carlo technique and compared with past analytical studies. One should note that the quantum dimer model at the Rokhsar-Kivelson point can also be described as an infinite temperature canonical ensemble of classical dimers because of the particular structure of the ground state which is an equal weight superposition in the configuration manifold. The geometry of the lattice plays a pivotal role in deciding the nature of the phases that arise in the dimer models. Many physical properties of the dimer liquid phase can be extracted in the simple classical setting which certainly allows for a deep understanding of the classical models to be developed. The liquid phase is gapped on non-bipartite lattices and gapless on bipartite lattices, which is reflected in the decay of correlation functions with spatial distances. In general on non-bipartite lattices, the topological nature of the dimer liquid is characterized by a Z2 topological order which survives even when the model is perturbed away from the Rokhsar-Kivelson point. Stability of this liquid phase not only depends on the lattice geometries but notably on dimer concentrations also. In this context, we focus on a particular variant of the dimer model on a triangular lattice which is known as the quantum fully packed loop model. The model is composed of nonintersecting closed loops made of dimers and governed by the same Hamiltonian as the quantum dimer model. The loop model provides an effective low-energy description of a strongly correlated bosonic system at 1/3 filling on the kagome lattice. The corresponding Bose-Hubbard Hamiltonian consists of nearest-neighbor hopping and all possible repulsive interactions within a hexagonal plaquette. Conspicuous features of the zero-temperature phase diagram for this model include (i) presence of a stable Z2 liquid even without any Rokhsar-Kivelson potential term (in distinction to the standard quantum dimer model), and (ii) an unconventional phase transition from the liquid phase to a novel crystalline phase that has nematic order (dubbed lattice nematic). For a deeper understanding of the physics, a mapping to an Ising gauge theory is presented. The gauge theoretic description provides a useful way to predict the nature of the quantum phase transition to lie in the O(3) universality class. Finally a fermionic model at the same 1/3 filling is considered in which the ground state exhibits a number of exotic local orderings resulting from the spin-charge interplay of electrons. The Hamiltonian comprises nearest-neighbor hopping, strong on-site Coulomb interaction, and repulsive interaction terms only between nearest-neighbors. In the strong correlation limit, this fermionic problem maps to a two-color fully packed loop model – a model in which the loop segments carry an additional quantum number as color on a honeycomb lattice. The effective theory is governed by coherent three-particle ring exchanges and nearest-neighbor antiferromagnetic spin exchanges. The competition between these two leads to a phase diagram composed of a novel plaquette ordered state (known as the plaquette phase) that undergoes phase transition to a new kind of charge ordered state which we call a short loop phase. From our numerical analysis, we conclude that the plaquette phase features an unusual antiferromagnetic order with gapless spin excitations while the charge-ordered state is subjugated by spin fluctuations of localized electrons arranged in small hexagonal loops on the kagome lattice.
33

Quantum Condensates and Topological Bosons in Coupled Light-Matter Excitations

Janot, Alexander 29 February 2016 (has links)
Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons. In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments. In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.
34

Conductivity behavior of LaNiO3- and LaMnO3- based thin film superlattices

Wei, Haoming 24 April 2017 (has links)
The present work covers the fabrication and electrical and magnetic investigation of LaNiO3- and LaMnO3- based superlattices (SL). In recent years, several interesting theoretical predictions have been made in these SLs, for example, Mott insulators, metal-insulator transitions, superconductivity, topological insulators, and Chern insulators. Motivated by the promising theoretical predictions, four kinds of SLs with different designed structures and orientations were systematically studied in this thesis. The samples were grown by pulsed laser deposition with in-situ reflection high-energy electron diffraction to monitor the two-dimensional layer-by-layer growth process. In order to ensure the high-quality of SLs, growth parameters were optimised. Characteristic methods like X-ray diffraction, atomic force microscopy, and transmission electron microscopy were used. These measurements proved the high-quality of the SLs and provided the basis for electrical and magnetic measurements. The first studied SL is the (001)-oriented LaNiO3/LaAlO3 SL, which was predicted as a superconductor in theory. Temperature-dependent resistivity measurements revealed a metal-insulator transition by lowering the dimensionality of the LaNiO3 layers in the SLs from three dimensions to two dimensions. The second studied SL is the (111)-oriented LaNiO3/LaAlO3 SL, which was predicted as a topological insulator in theory. The polarity-controlled conductivity was observed and the intrinsic conductivity mechanisms were discussed by means of appropriate modeling. The third studied SL is LaMnO3/LaAlO3 SL, which was predicted as a Chern insulator in theory. By lowering the temperature, a paramagnetic-ferromagnetic phase transition and a thermal activated behavior were observed in the SLs. The last studied SL is the LaNiO3/LaMnO3 SL, in which an exchange bias effect was expected. The studies reveal the exchange bias exists in three kinds of SLs with different orientations.
35

Towards Visualization of Discrete Optimization Problems and Search Algorithms

Volke, Sebastian 24 July 2019 (has links)
Diskrete Optimierung beschäftigt sich mit dem Identifizieren einer Kombination oder Permutation von Elementen, die im Hinblick auf ein gegebenes quantitatives Kriterium optimal ist. Anwendungen dafür entstehen aus Problemen in der Wirtschaft, der industriellen Fertigung, den Ingenieursdisziplinen, der Mathematik und Informatik. Dazu gehören unter anderem maschinelles Lernen, die Planung der Reihenfolge und Terminierung von Fertigungsprozessen oder das Layout von integrierten Schaltkreisen. Häufig sind diskrete Optimierungsprobleme NP-hart. Dadurch kommt der Erforschung effizienter, heuristischer Suchalgorithmen eine große Bedeutung zu, um für mittlere und große Probleminstanzen überhaupt gute Lösungen finden zu können. Dabei wird die Entwicklung von Algorithmen dadurch erschwert, dass Eigenschaften der Probleminstanzen aufgrund von deren Größe und Komplexität häufig schwer zu identifizieren sind. Ebenso herausfordernd ist die Analyse und Evaluierung von gegebenen Algorithmen, da das Suchverhalten häufig schwer zu charakterisieren ist. Das trifft besonders im Fall von emergentem Verhalten zu, wie es in der Forschung der Schwarmintelligenz vorkommt. Visualisierung zielt auf das Nutzen des menschlichen Sehens zur Datenverarbeitung ab. Das Gehirn hat enorme Fähigkeiten optische Reize von den Sehnerven zu analysieren, Formen und Muster darin zu erkennen, ihnen Bedeutung zu verleihen und dadurch ein intuitives Verstehen des Gesehenen zu ermöglichen. Diese Fähigkeit kann im Speziellen genutzt werden, um Hypothesen über komplexe Daten zu generieren, indem man sie in einem Bild repräsentiert und so dem visuellen System des Betrachters zugänglich macht. Bisher wurde Visualisierung kaum genutzt um speziell die Forschung in diskreter Optimierung zu unterstützen. Mit dieser Dissertation soll ein Ausgangspunkt geschaffen werden, um den vermehrten Einsatz von Visualisierung bei der Entwicklung von Suchheuristiken zu ermöglichen. Dazu werden zunächst die zentralen Fragen in der Algorithmenentwicklung diskutiert und daraus folgende Anforderungen an Visualisierungssysteme abgeleitet. Mögliche Forschungsrichtungen in der Visualisierung, die konkreten Nutzen für die Forschung in der Optimierung ergeben, werden vorgestellt. Darauf aufbauend werden drei Visualisierungssysteme und eine Analysemethode für die Erforschung diskreter Suche vorgestellt. Drei wichtige Aufgaben von Algorithmendesignern werden dabei adressiert. Zunächst wird ein System für den detaillierten Vergleich von Algorithmen vorgestellt. Auf der Basis von Zwischenergebnissen der Algorithmen auf einer Probleminstanz wird der Suchverlauf der Algorithmen dargestellt. Der Fokus liegt dabei dem Verlauf der Qualität der Lösungen über die Zeit, wobei die Darstellung durch den Experten mit zusätzlichem Wissen oder Klassifizierungen angereichert werden kann. Als zweites wird ein System für die Analyse von Suchlandschaften vorgestellt. Auf Basis von Pfaden und Abständen in der Landschaft wird eine Karte der Probleminstanz gezeichnet, die strukturelle Merkmale intuitiv erfassbar macht. Der zweite Teil der Dissertation beschäftigt sich mit der topologischen Analyse von Suchlandschaften, aufbauend auf einer Schwellwertanalyse. Ein Visualisierungssystem wird vorgestellt, dass ein topologisch equivalentes Höhenprofil der Suchlandschaft darstellt, um die topologische Struktur begreifbar zu machen. Dieses System ermöglicht zudem, den Suchverlauf eines Algorithmus direkt in der Suchlandschaft zu beobachten, was insbesondere bei der Untersuchung von Schwarmintelligenzalgorithmen interessant ist. Die Berechnung der topologischen Struktur setzt eine vollständige Aufzählung aller Lösungen voraus, was aufgrund der Größe der Suchlandschaften im allgemeinen nicht möglich ist. Um eine Anwendbarkeit der Analyse auf größere Probleminstanzen zu ermöglichen, wird eine Methode zur Abschätzung der Topologie vorgestellt. Die Methode erlaubt eine schrittweise Verfeinerung der topologischen Struktur und lässt sich heuristisch steuern. Dadurch können Wissen und Hypothesen des Experten einfließen um eine möglichst hohe Qualität der Annäherung zu erreichen bei gleichzeitig überschaubarem Berechnungsaufwand. / Discrete optimization deals with the identification of combinations or permutations of elements that are optimal with regard to a specific, quantitative criterion. Applications arise from problems in economy, manufacturing, engineering, mathematics and computer sciences. Among them are machine learning, scheduling of production processes, and the layout of integrated electrical circuits. Typically, discrete optimization problems are NP hard. Thus, the investigation of efficient, heuristic search algorithms is of high relevance in order to find good solutions for medium- and large-sized problem instances, at all. The development of such algorithms is complicated, because the properties of problem instances are often hard to identify due to the size and complexity of the instances. Likewise, the analysis and evaluation of given algorithms is challenging, because the search behavior of an algorithm is hard to characterize, especially in case of emergent behavior as investigated in swarm intelligence research. Visualization targets taking advantage of human vision in order to do data processing. The visual brain possesses tremendous capabilities to analyse optical stimulation through the visual nerves, perceive shapes and patterns, assign meaning to them and thus facilitate an intuitive understanding of the seen. In particular, this can be used to generate hypotheses about complex data by representing them in a well-designed depiction and making it accessible to the visual system of the viewer. So far, there is only little use of visualization to support the discrete optimization research. This thesis is meant as a starting point to allow for an increased application of visualization throughout the process of developing discrete search heuristics. For this, we discuss the central questions that arise from the development of heuristics as well as the resulting requirements on visualization systems. Possible directions of research for visualization are described that yield a specific benefit for optimization research. Based on this, three visualization systems and one analysis method are presented. These address three important tasks of algorithm designers. First, a system for the fine-grained comparison of algorithms is introduced. Based on the intermediate results of algorithm runs on a given problem instance the search process is visualized. The focus is on the progress of the solution quality over time while allowing the algorithm expert to augment the depiction with additional domain knowledge and classification of individual solutions. Second, a system for the analysis of search landscapes is presented. Based on paths and distances in the landscape, a map of the problem instance is drawn that facilitates an intuitive cognition of structural properties. The second part of this thesis focuses on the topological analysis of search landscapes, based on barriers. A visualization system is presented that shows a topological equivalent height profile of the search landscape. Further, the system facilitates to observe the search process of an algorithm directly within the search landscape. This is of particular interest when researching swarm intelligence algorithms. The computation of topological structure requires a complete enumeration of all solutions which is not possible in the general case due to the size of the search landscapes. In order to enable an application to larger problem instances, we introduce a method to approximate the topological structure. The method allows for an incremental refinement of the topological approximation that can be controlled using a heuristic. Thus, the domain expert can introduce her knowledge and also hypotheses about the problem instance into the analysis so that an approximation of good quality is achieved with reasonable computational effort.
36

Untersuchungen zu Gasphasentransporten in quasibinären Systemen von Bi2Se3 mit Bi2Te3, Sb2Se3, MnSe und FeSe zur Erzeugung von Nanokristallen

Nowka, Christian 19 December 2016 (has links)
In Topologischen Isolatoren (TI) werden metallische Zustände an der Oberfläche beobachtet, während die entsprechenden Volumenzustände eine Bandlücke aufweisen. Der Volumenbeitrag zur Leitfähigkeit von TI-Materialien macht eine Synthese von Nanokristallen bzw. eine Dotierung nötig. Der Fokus der Untersuchungen dieser Arbeit liegt dabei auf der Erzeugung von Nanokristallen der TI-Materialien Bi2Te3- und Bi2Te2Se sowie dotierter Bi2Se3-Nanokristallen. Die Synthese der Nanokristalle erfolgte durch den Gasphasentransport im geschlossenen System über den Mechanismus einer Zersetzungssublimation bzw. unter dem Einsatz eines Transportmittels. Für eine erfolgreiche Erzeugung der Nanokristalle sind im Vorfeld thermodynamische Modellierungen des Gasphasentransports sowie Versuche zum chemischen Transport für die quasibinären Systeme Bi2Se3-Bi2Te3, Bi2Se3-Sb2Se3 und Bi2Se3-FeSe sowie für das ternäre System Mn-Bi-Se durchgeführt worden. Durch Versuche zum chemischen Transport konnten die Aussagen der Modellierung bestätigt und im Weiteren der Dotandengehalt in den abgeschiedenen Kristallen sowie der Einlagerungsmechanismus durch Ergebnisse aus XRD- und ICP-OES-Untersuchungen beschrieben werden. Die Synthese bzw. Dotierung der Nanokristalle wurde hauptsächlich durch die Transportrate und den Dampfdruck des Dotanden bestimmt. In den Systemen Bi2Se3-Bi2Te3 und Bi2Se3-Sb2Se3 ist ein Gasphasentransport über eine Zersetzungssublimation durchführbar und resultierte in einer erfolgreichen Darstellung von Bi2Te3- und Bi2Te2Se-Nanokristallen sowie von dotierten (SbxBi1-x)2Se3-Nanokristallen. Entgegen dessen erfolgte der Gasphasentransport in den Systemen Bi2Se3-FeSe und Mn-Bi-Se unter Verwendung eines Transportmittels. Hierbei verringerten die gesteigerten Transportraten das Wachtum von Nanokristallen. Im Weiteren gelang es dotierte (Fe,Mn)xBi2-xSe3-Volumenkristalle sowie MnBi2Se4-Einkristalle darzustellen und mittels XRD, ICP-OES, magnetischer Messungen sowie elektrischem Transport zu charakterisieren.
37

Topological k · p Hamiltonians and their applications to uniaxially strained Mercury telluride

Kirtschig, Frank 26 June 2017 (has links)
Topological insulators (TIs) are a new state of quantum matter that has fundamentally challenged our knowledge of insulator and metals. They are insulators in the bulk, but metallic on the edge. A TI is characterized by a so-called topological invariant. This characteristic integer number is associated to every mapping between two topological spaces and can be defined for an electronic system on the lattice. Due to the bulk-edge correspondence a non-trivial value leads to topologically protected edge states. To get insight into the electronic characteristics of these edge/surface states, however, an effective continuum theory is needed. Continuum models are analytical and are also able to model transport. In this thesis we will address the suitability of continuum low-energy theories to describe the topological characteristics of TIs. The models which are topologically well-defined are called topological k.p Hamiltonians. After introducing a necessary background in chapter 1 and 2, we will discuss in the methodological chapter 3 the strategies that have to be taken into account to allow for studying topological surface states. In chapter 4 we will study two different model classes associated to a spherical basis manifold. Both have an integer topological invariant, but one shows a marginal bulk-edge correspondence. In chapter 5 we will study a different continuum theory where the basis manifold corresponds to a hemisphere. We then apply all these ideas to a time-reversal invariant TI -- uniaxially strained Mercury Telluride (HgTe). We determine the spin textures of the topological surface states of strained HgTe using their close relations with the mirror Chern numbers of the system and the orbital composition of the surface states. We show that at the side surfaces with $C_{2v}$ point group symmetry an increase in the strain magnitude triggers a topological phase transition where the winding number of the surface state spin texture is flipped while the four topological invariants characterizing the bulk band structure are unchanged. In the last chapter we will give a summary.
38

A Relational Localisation Theory for Topological Algebras

Schneider, Friedrich Martin 19 July 2012 (has links)
In this thesis, we develop a relational localisation theory for topological algebras, i.e., a theory that studies local approximations of a topological algebra’s relational counterpart. In order to provide an appropriate framework for our considerations, we first introduce a general Galois theory between continuous functions and closed relations on an arbitrary topological space. Subsequently to this rather foundational discussion, we establish the desired localisation theory comprising the identification of suitable subsets, the description of local structures, and the retrieval of global information from local data. Among other results, we show that the restriction process with respect to a sufficiently large collection of local approximations of a Hausdorff topological algebra extends to a categorical equivalence between the topological quasivariety generated by the examined structure and the one generated by its localisation. Furthermore, we present methods for exploring topological algebras possessing certain operational compactness properties. Finally, we explain the developed concepts and obtained results in the particular context of three important classes of topological algebras by analysing the local structure of essentially unary topological algebras, topological lattices, and topological modules of compact Hausdorff topological rings.
39

Theory and simulation of Tendomers

Müller, Toni 10 January 2023 (has links)
Das Tendomer ist ein Modellsystem, um Gleitringnetzwerke besser zu verstehen. Basis dafür ist ein Molekül, das Polyrotaxan, bestehend aus einer Polymerkette mit aufgefädelten Ringmolekülen. Verknüpft man den ersten Ring eines Polyrotaxans mit dem ersten Ring eines zweiten Polyrotaxans entsteht ein Tendomer. Diese Verbingung der Polyrotaxane kann entlang der Polymerkette gleiten und teilt jedes Polyrotaxan in eine elastische und eine speichernde Kette. Die unverbundenen Ringe sind zwischen der gleitenden Verbindung und dem Kettenende eingeschlossen. Dies erzeugt eine Kraft auf die gleitende Verbindung ähnlich dem Druck eines eindimensionalen Gases. Dieser Gasdruck steht im Gleichgewicht mit der Elastizität der elastischen Kette und wir zeigen, dass daraus unter Krafteinwirkung eine nicht-lineare Kraft-Abstandskurve resultiert. Für kleine Kräfte ist das Tendomer steif und wird schlagartig weich oberhalb einer Kraftschwelle. Für hohe Kräfte ist die Ausdehnung von der finiten Deformierbarkeit der Polyrotaxane begrenzt. Wir überprüften unsere theoretischen Vorhersagen mit Hilfe von Monte-Carlo Simulationen und numerische Berechnungen der exakten Zustandsfunktion. Endvernetzte Polymernetzwerke aus Tendomeren, deren elastische Enden mit mehrfunktionalen Vernetzern verknüpft werden, sind nahezu verschlaufungsfrei, da die speichernden Ketten den elastischen Volumenanteil stark verdünnen. Dennoch wird eine Deformationserweichung in numerischen Berechnungen uniaxialer Deformationen beobachtet, die auf Tendomere oberhalb der Kraftschwelle zurückzuführen sind. Tendomernetzwerke zeigen Quellgrade von 100-1000, was sonst nur bei Polyelektrolyt- oder schwach vernetzten Netzwerken beobachtet wird. Außerdem ist der Quellgrad nahezu unabhänging von der Ringanzahl je Tendomer, wobei mit steigender Anzahl der Modul sinkt. Auf Grundlage dieser elastischen Eigenschaften sind Tendomernetzwerke vielversprechende Modellsysteme für zukünftige Anwendungen in der Mikrofluidik, als Sensoren, oder als ladungsträgerfreie Superabsorber. / We propose a model system, the tendomer, to deepen the understanding of slide ring networks. A polyrotaxane consists of a linear polymer chain where ring molecules are threaded. Connecting the first ring of one polyrotaxane with the first ring of a second polyrotaxane results in the tendomer. The formed connection can freely slide along the backbone and splits each backbone chain into an elastic and a storage chain. The remaining slide rings are confined between the slip link and the chain end resembling an one dimensional gas. This gas exerts a pressure on the slip link which is balanced by the elasticity of the elastic chain under deformation. The key feature of the tendomer is a highly non-linear force-extension relation. For low forces, the tendomer is stiff and suddendly becomes soft above a threshold force, which crosses over to the stiff finite extensibility regime. We confirmed these theoretical predictions with Monte-Carlo simulations and numerical calculations from the exact partition function. End-linked networks where tendomers replace conventional chains are almost free of entanglements due to the diluation of the elastic polymer volume fraction by the storage chains. Similar to conventional networks, a strain softening in uniaxial deformations is observed in the numerical calculations of the stress strain relation, where a fraction of all chains enters the non-linear soft regime of the force-extension relation. Tendomer networks obey swelling ratios in the range of 100-1000, which is usually measured for polyelectrolyte or weakly cross-linked gels. The swelling equilibrium is almost independent of the number of slide rings, while the modulus decreases with an increasing number. These elastic properties make tendomer networks a promising material for new applications in microfluidics, as sensors, or as charge neutral superabsorbers.
40

Quantum Transport Study in 3D Topological Insulators Nanostructures

Veyrat, Louis 20 September 2016 (has links) (PDF)
In this thesis, we investigate the quantum transport properties of disordered three dimensional topological insulator (3DTI) nanostructures of BiSe and BiTe in detail. Despite their intrinsic bulk conductivity, we show the possibility to study the specific transport properties of the topological surface states (TSS), either with or without quantum confinement. Importantly, we demonstrate that unusual transport properties not only come from the Dirac nature of the quasi-particles, but also from their spin texture. Without quantum confinement (wide ribbons), the transport properties of diffusive 2D spin-helical Dirac fermions are investigated. Using high magnetic fields allows us to measure and separate all contributions to charge transport. Band bending is investigated in BiSe nanostructures, revealing an inversion from upward to downward bending when decreasing the bulk doping. This result points out the need to control simultaneously both the bulk and surface residual doping in order to produce bulk-depleted nanostructures and to study TSS only. Moreover, Shubnikov-de-Haas oscillations and transconductance measurements are used to measure the ratio of the transport length to the electronic mean free path ltr/le. This ratio is measured to be close to one for bulk states, whereas it is close to 8 for TSS, which is a hallmark of the anisotropic scattering of spin-helical Dirac fermions. With transverse quantum confinement (narrow wires or ribbons), the ballistic transport of quasi-1D surface modes is evidenced by mesoscopic transport measurements, and specific properties due to their topological nature are revealed at very low temperatures. The metallic surface states are directly evidenced by the measure of periodic Aharonov-Bohm oscillations (ABO) in 3DTI nanowires. Their exponential temperature dependence gives an unusual power-law temperature dependence of the phase coherence length, which is interpreted in terms of quasi-ballistic transport and decoherence in the weak-coupling regime. This remarkable finding is a consequence of the enhanced transport length, which is comparable to the perimeter. Besides, the ballistic transport of quasi-1D surface modes is further evidenced by the observation of non-universal conductance fluctuations in a BiSe nanowire, despite the long-length limit (L > ltr) and a high metallicity (many modes). We show that such an unusual property for a mesoscopic conductor is related to the limited mixing of the transverse modes by disorder, as confirmed by numerical calculations. Importantly, a model based on the modes' transmissions allows us to describe our experimental results, including the full temperature dependence of the ABO amplitude.

Page generated in 0.3292 seconds