• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 25
  • 7
  • 7
  • 7
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 96
  • 96
  • 34
  • 28
  • 17
  • 14
  • 14
  • 14
  • 14
  • 13
  • 13
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Analysis of Computed Torque Control Applied with Command Shaping to Minimize Residual Vibration in a Flexible-Joint Robot

Ruiwen Wei (8803472) 07 May 2020 (has links)
During fast point-to-point motion, the inherent joint flexibility could be detrimental in terms of residual vibration. Aiming to minimize the vibration, the command shaping method has been developed so as to remove critical energy from the input profile at resonant frequencies. Since this method requires information of a physical model in order to find the target frequencies, the quality of the shaped command profile relies on the accuracy of the model parameter estimation. Therefore, in this work, a system identification method using Instrumental Variables is applied from the literature. Compared with the classic Ordinary Least Square method, the IV approach has successfully improved the estimation of parameters, based on simulation results. The accuracy of parameter estimation influences the command profile, as does the feedback controller. In this work, starting from a mathematical derivation with a mismatch model due to a feedback controller called Computed Torque Control, insight for the closed-loop system is given with regard to the interaction between control gains and the actual resonant frequencies. It is found that the control gain is able to modify the actual resonant frequency curve, and push it into or out of the shaping bounds which are generated from the command shaping method. Further analysis based on the simulation results shows that the overlap area between the shaping bounds and the actual frequencies affects the level of residual vibration. In light of this fact, an optimal control gain exists and is found when the estimation error is in a certain range. At the end, recommendations for choosing the control gains are provided.
52

Implementing a Control Strategy for a Cable-­driven Ankle Exoskeleton / Implementering av en kontrollstrategi för ett kabeldrivet ankel exoskelett

Zhu, Yu January 2021 (has links)
Ankle exoskeletons are designed to help people with movement weakness to restore the walking ability . However, people with gait pathology, for instance, drop foot, usually have difficulties in lifting the front part of foot during gait. Thus, different from health subjects, both plantarflexion and dorsiflexion assistance are needed for them to walk better. The purpose of this thesis is to implement an EMG-­driven control strategy for a cable­driven ankle exoskeleton while exploring the use of reinforcement learning in exoskeleton control. The work uses an EMG­-driven musculoskeletal model to predict ankle joint torque. The model uses EMG signals from 4 lower­-limb muscles related to plantarflexion and dorsiflexion to obtain ankle torque and stiffness. The dynamic model for an ankle exoskeleton is built for simulation. The reinforcement learning controller is designed for the ankle exoskeleton tracking the desired ankle joint torques. Based on simulation results, two main conclusions can be drawn, one is that the proposed control strategy can provide precise torque assistance; the other is that using reinforcement learning to track the desired assistive trajectories is effective. / Ankel exoskeletons är utformade för att hjälpa människor med rörelsessvaghet att återställa gångförmågan. Men personer med gångpatologi, till exempel faller fot, har vanligtvis svårt att lyfta den främre delen av foten under gång. Således, annorlunda än hälsoämnen, behövs både plantarflexion- och dorsiflexionshjälp för att de ska kunna gå bättre. Syftet med denna avhandling är att implementera en EMG­-driven kontrollstrategi för ett kabeldrivet vristexoskelet samtidigt som man utforskar användningen av förstärkningsinlärning vid exoskeletskontroll. Arbetet använder en EMG­-driven muskuloskeletal modell för att förutsäga fotledets vridmoment. Modellen använder EMG-­signaler från 4 nedre extremiteter muskler relaterade till plantarflexion och dorsiflexion för att uppnå vridmoment och styvhet. Den dynamiska modellen för ett fotoskeleton är byggd för simulering. Förstärkningsinlärningskontrollern är utformad för fotledets exoskelett som spårar önskade vridmoment i fotleden. Baserat på simuleringsresultat kan två huvudsakliga slutsatser dras, en är att den föreslagna kontrollstrategin kan ge exakt momenthjälp; den andra är att det är effektivt att använda förstärkningslärande för att spåra de önskade hjälpbanorna.
53

Control of the Doubly Salient Permanent Magnet Switched Reluctance Motor

Merrifield, David Bruce 21 May 2010 (has links)
The permanent magnet switched reluctance motor (PMSRM) is hybrid dc motor which has the potential to be more effect than the switched reluctance (SRM) and permanent magnet (PM) motors. The PMSRM has a both a salient rotor and stator with permanent magnets placed directly onto the face of common pole stators. The PMSRM is wound like the SRM and can be controlled by the same family of converters. The addition of permanent magnets creates nonlinearities in both the governing electrical and mechanical equations which differentiate the PMSRM from all other classes of electric motors. The primary goal of this thesis is to develop a cohesive and comprehensive control strategy for the PMSRM so as to demonstrate its operation and highlight its efficiency. The control of the PMSRM starts with understanding its region of operation and the underlying torque production of the motor. The selection of operating region is followed by a both linear and nonlinear electrical modeling of the motor and the design of current controllers for the PMSRM. The electromechanical model of the motor is dynamically simulated with the addition of a closed loop speed controller. The speed controller is extended to add an efficiency searching algorithm which finds the operating condition with the highest efficiency online. / Master of Science
54

Scaling a Prismatic Revolute Joint (Pr) Manipulator Using Similitude and Buckingham Pi Techniques

Gilbert, Gregory S. Jr. 01 April 1998 (has links)
This thesis presents scaling methods for sizing a prototype micro prismatic revolute (PR) manipulator actuated by permanent magnet (PM) direct current (d.c.) gearmotors. Dimensional analysis was the principle tool used in this investigation, and addressed the problems of scaling a trajectory planner, control law, and gearmotors that exhibit internal nonlinear friction. Similitude methods were used to develop a scaleable two degree-of-freedom trajectory planner from a third order polynomial. Scaling laws were developed from Buckingham's Pi theorem to facilitate the selection process of gearmotors. Nondimensional, nonlinear, differential equations were developed to describe viscous, Coulomb and static friction in comparative PM d.c. motors. From the insights gained through dimensional analysis, a scaleable controller based on the computed torque method was developed and implemented with a cubic trajectory planner. Model and prototype PR manipulator systems were simulated using a hybrid Matlab/Simulink simulation scheme. Experimental systems were constructed with dissimilar model and prototype motors. Control was provided by an AT class PC equipped with 12-bit A/D, D/A cards operating at a sample rate of 100 Hz. The control algorithm was written in Borland 3.1 C for DOS. Results from the experimental testing showed excellent agreement between the test and simulated data and verified the viability of the scaling laws. The techniques presented in this thesis are expected to be applicable to any application that involves scaling PM d.c. micro gearmotors that have significant internal friction terms. These simple, practical tools should be especially beneficial to designers of micro robotic systems. / Master of Science
55

Analysis of the dynamics of the linear-and-rotary-motion energy-conversion systems with active DC excitation

He, Lijun 07 January 2016 (has links)
The objective of the dissertation is to develop simplified analytical models for typical linear-motion and rotary-motion energy-conversion systems under active DC excitation without tedious numerical-simulation effort, and provide practical implementation of the models in optimal-design and thermal-protection aspects. The model of a vacuum automatic circuit recloser (a typical linear-motion system under DC excitation) is first developed in the form of a non-linear discontinuous eighth-order dynamic system. The model is then used to simulate the transient mechanical and electromagnetic performance during the opening and closing movements of the recloser. Such a model is not found in the literature. Although the model is based on certain simplifying assumptions, the result is validated by high-speed-camera measurements. In addition, the impact of key design variables is explored, based on which an improved recloser design is proposed, and helps to optimize capital and production costs without degrading performance. Further analytical investigation is carried out in modeling an inverter-fed induction motor (IM) (a typical rotary-motion system) with active DC injection. The IM is closed-loop controlled via two popular motor-control algorithms, namely, the direct-torque-control (DTC) algorithm and field-oriented-control (FOC) algorithm. Quantitative relationships between the changes of various machine variables during the active DC excitation are provided in the theoretical analysis. The developed DC-injection model is further simplified for practical implementation. The developed IM model under DC injection results in practical ways to excite a proper amount of DC current directly or indirectly into IM stator windings via different closed-loop motor-control algorithms. In a DTC motor-drive system, the modeling work makes it possible to excite the DC current indirectly inside the motor by superimposing a stator-flux-linkage-bias command in the flux-control loop or a torque-ripple command in the torque-control loop. The proposed flux-linkage-injection and torque-injection methods are the first novel efforts to implement the DC-signal-injection method in a DTC motor-drive system. In addition, the analysis carried out in a standard FOC drive system brings about an improved DC-current-injection approach: the torque ripple in this method is significantly mitigated compared to all existing DC-injection methods in FOC systems. The proposed DC-injection methods, either in a DTC or an FOC system, lead to a simple, low-cost, accurate, and non-invasive thermal-monitoring scheme for closed-loop-controlled IMs, where the stator temperature is indirectly estimated from stator resistance. Furthermore, considering inverter non-idealities, there is a challenge for a typical inverter drive to accurately estimate the DC component of motor terminal voltages. The existing methods are extended to provide a complete study of the real-time signal-processing technique for both DTC and FOC algorithms, and are finally implemented in a custom-built programmable motor-drive system. The experimental results demonstrate that the proposed technique gives accurate and robust stator-temperature estimation, regardless of the operating conditions and cooling modes. The analytical modeling method for the linear-motion and rotary-motion energy-conversion systems can be further extended to other power devices with similar mechanisms, and implemented in optimal design, control, and thermal-protection areas.
56

Controle de velocidade sensorless aplicado ao controle direto de torque da máquina de indução / Sensorless speed control applied to direct torque control of induction machine

Pereira, William César de Andrade 14 February 2014 (has links)
Neste trabalho é apresentado um estudo sobre o controle de velocidade sensorless aplicado ao Motor de Indução Trifásico (MIT) visando sobretudo, melhorar o desempenho da máquina de indução em aplicações na região de baixa frequência de operação. Para tanto, propõe-se uma abordagem utilizando a técnica de controle Direct Torque Control (DTC) com Space Vector Modulation (SVM) em conjunto com o Observador de Fluxo com Modelo de Tensão e Corrente (OFMTC), o que possibilita a estimação precisa da posição do vetor de fluxo do estator em baixa velocidade. Para a estimativa da velocidade do rotor é utilizado a estratégia Model Reference Adaptive System (MRAS) com mecanismo de adaptação fuzzy, a fim de se diminuir a sensibilidade aos parâmetros da máquina. O desempenho da estratégia de controle de velocidade sensorless proposta é testada em simulações com diferentes condições de operação buscando reproduzir alguns dos problemas encontrados em aplicações práticas, utilizando o software Matlab. Os resultados obtidos foram condizentes com resultados encontrados na literatura, comprovando o bom desempenho do sistema de controle de velocidade proposto. / This work deals with the sensorless speed control for Three-phase Induction Motor in order to improve its operation at low speed and low frequency. At first, a Direct Torque Control employing Space Vector Pulse with Modulation (SVPWM) based on Flux Observer (voltage and current model) is studied and evaluated due to its high accuracy of estimating the stator-flux at low speed. The Model Adaptive Reference (MRAS) with Fuzzy Controler is chosen in order to estimate the rotor speed. This choice is based on its capability of high performance during Three-phase Induction Motor operation even if the machines parameters and the load change during the operation. At last, some simulations with diferent operational conditions at low speed are carried out in order to test the sensorless control. The results show a good perfomance and agreed with the results shown in recent papers.
57

Comparação entre as estratégias de controle por torque calculado e controle repetitivo aplicados a manipuladores robóticos

Oliveira, Israel Gonçalves de January 2016 (has links)
Este trabalho apresenta uma comparação entre as estratégias de controle por torque calculado e controle repetitivo aplicadas a manipuladores robóticos. O objetivo no uso desses controladores é para que o manipulador siga referência de trajetória periódica no espaço das juntas. O desenvolvimento e implementação dos controladores são focados no manipulador WAM (Whole Arm Manipulator) da Barrett Technology®Inc. Neste trabalho, também são apresentadas uma formulação do modelo não linear do manipulador e as sínteses dos controladores por torque calculado e repetitivo aplicados ao modelo do manipulador linearizado por realimentação. O controlador por torque calculado é apresentado e sintetizado na sua forma clássica. Para o controlador repetitivo, a síntese parte do princípio do modelo interno com a adição de uma estrutura repetitiva e uma realimentação proporcional e derivativa do erro de seguimento de referência O projeto dos ganhos do controlador repetitivo é feito através de um problema de otimização convexa com restrições na forma de inequações matriciais lineares (ou no inglês: Linear Matrix Inequalities - LMI). A formulação do problema de otimização parte da teoria de estabilidade segundo Lyapunov com um funcional Lyapunov-Krasoviskii, adição de um custo quadrático, para ajuste de desempenho, e de um critério de desempenho transitório dado pela taxa de decaimento exponencial da norma dos estados. É apresentada a comparação entre as estratégias de controle e a validação do controlador repetitivo proposto aplicado ao caso com linearização perfeita e ao caso com o modelo não linear do manipulador. No primeiro caso, é feita a simulação do modelo linear do manipulador com adição de um torque de atrito na junta. No segundo caso, é utilizado o sistema ROS (Robot Operating System) com o programa Gazebo simulando o manipulador WAM considerando erros de linearização, isto é, incertezas paramétricas. / This work presents a comparison between the strategies of computed-torque control and repetitive control applied to robotic manipulators. The main objective in use these controllers with the manipulator is to tracking periodic trajectory in joint space. The development and implementation of controllers are focused on the Whole Arm Manipulator (WAM) of the Barrett Technology®Inc. Also featured are a non-linear model formulation of the manipulator and the synthesis of controllers for computed-torque control and repetitive control applied to the manipulator model linearized by state feedback. The computed-torque controller is presented in its classic form. For the repetitive controller, the synthesis is based on the internal model principle with the addition of a repetitive structure and a proportional-derivative reference tracking error feedback. The design of the repetitive controller gains is done through a convex optimization problem with linear matrix inequalities (LMI) constraints. The formulation of the optimization problem is based on the Lyapunov stability theory using a Lyapunov-Krasoviskii functional, addition of a quadratic cost for performance adjustment and a transient performance criteria given by the exponential decay rate of the states norm. A comparison between the control strategies and the validation of the repetitive controller applied to the case with perfect linearization and the case with the non-linear model of the manipulator are presented. In the first case, is made simulations of the linear model of the manipulator in MATLAB program, with the addition of a disturbance modeling the friction torque at the joint. In the second case, is used the Robot Operating System (ROS) with Gazebo program simulating the WAM nonlinear model. In this case, a possible mismatch between the model used for the feedback linearization and the real system is taken into account.
58

Controle direto de torque baseado no controle do ângulo da carga utilizando controladores PI's

Gaziolla, Helio January 2014 (has links)
Orientador: Prof. Dr. Alfeu J. Sguarezi Filho / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2014. / O Controle Direto de Torque é uma das técnicas mais avançadas em acionamentos para motores de indução trifásicos, pois tem como característica principal uma resposta rápida as exigências de torque eletromagnético o que permite um controle com maior precisão da velocidade. Este trabalho apresenta o Controle Direto de Torque baseado no controle do ângulo da carga com a utilização de controladores do tipo proporcional-integral (PI). Esta estratégia baseia-se na análise do erro encontrado entre torque eletromagnético de referência e torque eletromagnético estimado que é processado por um controlador que gera um ângulo de carga. O fluxo do estator em coordenadas estacionárias é calculado a partir de sua magnitude e com o ângulo, gerado pelo controlador PI mencionado, é somado ao ângulo do rotor. O fluxo do estator de referencia é comparado ao fluxo do estator estimado e um controlador PI processa o erro de forma a gerar a tensão de estator em coordenadas estacionárias de forma que as referências de torque e fluxo sejam atendidas. Com base em um modelo computacional foram realizadas simulação para validar a eficiência da estratégia proposta, resultados obtidos demonstram o comportamento transitório e em regime das correntes, torque eletromagnético e velocidade do motor. Também foram realizados testes em bancada para validar o controlador proposto. / The Direct Torque Control is one of the most advanced techniques for three-phase induction motors drives, due its main characteristic in which it has a quick response to requirements electromagnetic torque which allows a control of the speed with greater precision. This work presents the direct torque control based on load angle control with the use proportional-integral (PI) controllers. This strategy is based on the analysis of an error found between the reference of electromagnetic torque and the measured torque that is processed by a controller that generates an electromagnetic torque load angle. The stator flux in stationary coordinates is calculated from the magnitude and the angle generated by a PI controller that is added to the rotor angle. The stator flux reference is compared to the estimated stator flux and a PI controller processes this error an calculates the stator voltage in stationary stator coordinates so that the flux and torque references are attended. The study is made using computer simulations of the proposed controller and experimental results are carried out to validate the estrategy.
59

Controle de velocidade sensorless aplicado ao controle direto de torque da máquina de indução / Sensorless speed control applied to direct torque control of induction machine

William César de Andrade Pereira 14 February 2014 (has links)
Neste trabalho é apresentado um estudo sobre o controle de velocidade sensorless aplicado ao Motor de Indução Trifásico (MIT) visando sobretudo, melhorar o desempenho da máquina de indução em aplicações na região de baixa frequência de operação. Para tanto, propõe-se uma abordagem utilizando a técnica de controle Direct Torque Control (DTC) com Space Vector Modulation (SVM) em conjunto com o Observador de Fluxo com Modelo de Tensão e Corrente (OFMTC), o que possibilita a estimação precisa da posição do vetor de fluxo do estator em baixa velocidade. Para a estimativa da velocidade do rotor é utilizado a estratégia Model Reference Adaptive System (MRAS) com mecanismo de adaptação fuzzy, a fim de se diminuir a sensibilidade aos parâmetros da máquina. O desempenho da estratégia de controle de velocidade sensorless proposta é testada em simulações com diferentes condições de operação buscando reproduzir alguns dos problemas encontrados em aplicações práticas, utilizando o software Matlab. Os resultados obtidos foram condizentes com resultados encontrados na literatura, comprovando o bom desempenho do sistema de controle de velocidade proposto. / This work deals with the sensorless speed control for Three-phase Induction Motor in order to improve its operation at low speed and low frequency. At first, a Direct Torque Control employing Space Vector Pulse with Modulation (SVPWM) based on Flux Observer (voltage and current model) is studied and evaluated due to its high accuracy of estimating the stator-flux at low speed. The Model Adaptive Reference (MRAS) with Fuzzy Controler is chosen in order to estimate the rotor speed. This choice is based on its capability of high performance during Three-phase Induction Motor operation even if the machines parameters and the load change during the operation. At last, some simulations with diferent operational conditions at low speed are carried out in order to test the sensorless control. The results show a good perfomance and agreed with the results shown in recent papers.
60

Improvements in direct torque control of induction motors

Arias Pujol, Antoni 01 March 2001 (has links)
This thesis is mainly devoted to the investigation of speed control methods for three phase cage induction motors with particular emphasis being given to Direct Torque Control (DTC) improved techniques.Classical Direct Torque Control has inherent disadvantages such as: problems during starting resulting from the null states, the compulsory requirement of torque and flux estimators, and torque ripple. In the classical DTC induction motor drive a voltage vector is applied for the entire period, and this causes the stator current and electromagnetic torque exceeds its reference value early during the cycle, causing a high torque ripple. Switching cycles then follows this, in which the zero switching vectors are applied in order to reduce the electromagnetic torque to reference value. This thesis suggests a technique based on applying to the inverter the selected active states just enough time to achieve the torque and flux references values. The rest of the switching period a null state is selected which won't almost change both the torque and the flux. Therefore, a duty ratio has to be determined each switching time. By means of varying the duty ratio between its extreme values (0 up to 1) it is possible to apply any voltage to the motor. The optimum duty ratio per sampling period is a non-linear function of the electromagnetic torque error, the stator flux position and the working point, which is determined by the motor speed and the electromagnetic torque. It is obvious that it is extremely difficult to model such an expression since it is a different non-linear function per working point. Therefore, this thesis is focused on performing a fuzzy-logic-based duty-ratio controller, where the optimum duty ratio is determined every switching period. Additionally, this Fuzzy Controller is adaptive and may be applied to any induction motor.A stator flux reference optimum controller is also designed, which not only helps to achieve a smaller torque ripple, but also reduces the reactive power consumption of the drive taken from the main supply. This is achieved by changing the stator flux reference value with reference being made to the correspondent torque reference value. Therefore, the stator flux reference value chosen is to be just of sufficient value to produce the desired torque Simulated results are shown in order to compare the classical DTC and the Fuzzy Logic based DTC.The control algorithms have been implemented on a PC/DSP based board that facilitates the use of parallelism in software design. A 1.5kW, three-phase induction motor drive has been designed and experimental data obtained from it in order to verify the results achieved by simulation.

Page generated in 0.0442 seconds