• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 347
  • 95
  • 47
  • 41
  • 16
  • 13
  • 10
  • 9
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 713
  • 385
  • 164
  • 146
  • 144
  • 110
  • 109
  • 101
  • 95
  • 95
  • 94
  • 85
  • 80
  • 77
  • 65
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Analysis and Reconstruction of the Hematopoietic Stem Cell Differentiation Tree: A Linear Programming Approach for Gene Selection

Ghadie, Mohamed A. January 2015 (has links)
Stem cells differentiate through an organized hierarchy of intermediate cell types to terminally differentiated cell types. This process is largely guided by master transcriptional regulators, but it also depends on the expression of many other types of genes. The discrete cell types in the differentiation hierarchy are often identified based on the expression or non-expression of certain marker genes. Historically, these have often been various cell-surface proteins, which are fairly easy to assay biochemically but are not necessarily causative of the cell type, in the sense of being master transcriptional regulators. This raises important questions about how gene expression across the whole genome controls or reflects cell state, and in particular, differentiation hierarchies. Traditional approaches to understanding gene expression patterns across multiple conditions, such as principal components analysis or K-means clustering, can group cell types based on gene expression, but they do so without knowledge of the differentiation hierarchy. Hierarchical clustering and maximization of parsimony can organize the cell types into a tree, but in general this tree is different from the differentiation hierarchy. Using hematopoietic differentiation as an example, we demonstrate how many genes other than marker genes are able to discriminate between different branches of the differentiation tree by proposing two models for detecting genes that are up-regulated or down-regulated in distinct lineages. We then propose a novel approach to solving the following problem: Given the differentiation hierarchy and gene expression data at each node, construct a weighted Euclidean distance metric such that the minimum spanning tree with respect to that metric is precisely the given differentiation hierarchy. We provide a set of linear constraints that are provably sufficient for the desired construction and a linear programming framework to identify sparse sets of weights, effectively identifying genes that are most relevant for discriminating different parts of the tree. We apply our method to microarray gene expression data describing 38 cell types in the hematopoiesis hierarchy, constructing a sparse weighted Euclidean metric that uses just 175 genes. These 175 genes are different than the marker genes that were used to identify the 38 cell types, hence offering a novel alternative way of discriminating different branches of the tree. A DAVID functional annotation analysis shows that the 175 genes reflect major processes and pathways active in different parts of the tree. However, we find that there are many alternative sets of weights that satisfy the linear constraints. Thus, in the style of random-forest training, we also construct metrics based on random subsets of the genes and compare them to the metric of 175 genes. Our results show that the 175 genes frequently appear in the random metrics, implicating their significance from an empirical point of view as well. Finally, we show how our linear programming method is able to identify columns that were selected to build minimum spanning trees on the nodes of random variable-size matrices.
712

Transcriptional regulation and physiological importance of the kdp-system from the halophilic archaeon Halobacterium salinarum

Kixmüller, Dorthe 03 April 2012 (has links)
The high affinity, ATP-dependent K+ uptake system KdpFABC of Halobacterium salinarum, is highly induced under K+ limitation. In contrast to the well-characterized Kdp system in Escherichia coli, in which the kdpFABC genes are transcriptionally regulated by the sensor kinase/response regulator system KdpD/KdpE, transcriptional regulation of the kdp genes in H. salinarum was unknown due to the absence of halobacterial homologues of KdpD/KdpE. Furthermore, the physiological relevance of the KdpFABC K+ uptake system of H. salinarum was puzzling, since hypersaline habitats usually comprise K+ concentrations which do not induce kdp expression. In order to analyze the regulation of kdp gene expression, it was essential to gain information about the transcriptional unit(s) involved. Northern blotting, primer extension analysis and real-time RT-PCR revealed the presence of a polycistronic leaderless kdpFABCQ transcript with a putative kdp terminator or at least a potential mRNA processing site downstream of kdpQ. Furthermore, promoter truncation studies verified the so far only predicted basal transcription elements together with an upstream-located operator sequence. Since deletions of this putative operator sequence did not lead to a constitutive expression, a further component has to be involved in the regulation of the kdpFABCQ genes. However, truncation and scanning mutagenesis analyses of the kdp promoter as well as translational fusions of a halophilic beta-galactosidase to the kdp promoter excluded an additional regulatory element up- or downstream of the basal transcription elements and in the kdp-coding region. These results lead to speculations of multiple basal transcription factors to be involved. Furthermore, an inducible expression vector (shuttle vector) was constructed based on the promoter of the kdpFABCQ operon due to its, K+-sensitive features. Inducible expression systems are yet not available for H. salinarum. The resulting, replicating vector pKIX is functional and enables a K+-dependent expression from the kdp promoter with rather high induction ratios of 50-fold. Expression levels could further be improved by plasmid- and additional chromosomally encoded kdpQ and mutations generated in the kdp promoter. Since transcript levels from pKIX were found to be independent of differential target genes, the general application of pKIX as an inducible expression system is strongly supported and pKIX could, thus, be made accessible to the scientific community. To decipher the physiological relevance of the halobacterial Kdp system, H. salinarum was encountered to desiccation stress and salt crystal (halite) entombment. Halite crystals grown under non-inducing K+ concentrations with entombed strains of H. salinarum and H. salinarum deleted in the kdpFABCQ genes revealed a significantly reduced survival rate of the deletion strain upon recultivation. Additionally, a kdpFABCQ-inducing desiccation stress could already be determined on agar plates under non-limiting K+ concentrations. Furthermore, the cell morphology of H. salinarum entrapped in halite crystals resembled that of H. salinarum grown under K+-limiting conditions. Therefore, the Kdp system promotes survival of H. salinarum under desiccation stress. Furthermore, the Kdp system could be identified as at least one of the systems important for long-term survival of H. salinarum in halite.
713

Micro RNA-Mediated regulation of the full-length and truncated isoforms of human neurotrophic tyrosine kinase receptor type 3 (NTRK 3)

Guidi, Mònica 13 January 2009 (has links)
Neurotrophins and their receptors are key molecules in the development of thenervous system. Neurotrophin-3 binds preferentially to its high-affinity receptorNTRK3, which exists in two major isoforms in humans, the full-length kinaseactiveform (150 kDa) and a truncated non-catalytic form (50 kDa). The twovariants show different 3'UTR regions, indicating that they might be differentiallyregulated at the post-transcriptional level. In this work we explore howmicroRNAs take part in the regulation of full-length and truncated NTRK3,demonstrating that the two isoforms are targeted by different sets of microRNAs.We analyze the physiological consequences of the overexpression of some of theregulating microRNAs in human neuroblastoma cells. Finally, we providepreliminary evidence for a possible involvement of miR-124 - a microRNA with noputative target site in either NTRK3 isoform - in the control of the alternativespicing of NTRK3 through the downregulation of the splicing repressor PTBP1. / Las neurotrofinas y sus receptores constituyen una familia de factores crucialespara el desarrollo del sistema nervioso. La neurotrofina 3 ejerce su funciónprincipalmente a través de una unión de gran afinidad al receptor NTRK3, del cualse conocen dos isoformas principales, una larga de 150KDa con actividad de tipotirosina kinasa y una truncada de 50KDa sin dicha actividad. Estas dos isoformasno comparten la misma región 3'UTR, lo que sugiere la existencia de unaregulación postranscripcional diferente. En el presente trabajo se ha exploradocomo los microRNAs intervienen en la regulación de NTRK3, demostrando que lasdos isoformas son reguladas por diferentes miRNAs. Se han analizado lasconsecuencias fisiológicas de la sobrexpresión de dichos microRNAs utilizandocélulas de neuroblastoma. Finalmente, se ha estudiado la posible implicación delmicroRNA miR-124 en el control del splicing alternativo de NTRK3 a través de laregulación de represor de splicing PTBP1.

Page generated in 0.1158 seconds