331 |
The role of STAT3 in osteoclast mediated bone resorptionHimes, Evan 01 August 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Signal Transducer and Activator of Transcription 3 (STAT3) is known to be related to bone metabolism. Mutation of STAT3 causes a rare disorder in which serum levels of IgE are elevated. This causes various skeletal problems similar to osteoporosis.
To examine the effect of STAT3 in the osteoclast, we obtained two osteoclast specific STAT3 knockout mouse models: one using the CTSK promoter to drive Cre recombinase and another using a TRAP promoter. Examination of these mice at 8 weeks of age revealed a decreased trabecular bone volume in CTSK specific STAT3 knockout mice along with a slight decrease in osteoclast number in both CTSK and TRAP specific STAT3 knockout females. We also noticed changes in bone mineral density and bone mechanical strength in females. These data suggest that STAT3 plays a part in the function of the osteoclast.
|
332 |
Novel Roles of p21 in Apoptosis During Beta-Cell Stress in DiabetesHernández-Carretero, Angelina M. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Type 2 diabetes manifests from peripheral insulin resistance and a loss of functional beta cell mass due to decreased beta cell function, survival, and/or proliferation. Beta cell stressors impair each of these factors by activating stress response mechanisms, including endoplasmic reticulum (ER) stress. The glucolipotoxic environment of the diabetic milieu also activates a stress response in beta cells, resulting in death and decreased survival. Whereas the cell cycle machinery (comprised of cyclins, kinases, and inhibitors) regulates proliferation, its involvement during beta cell stress in the development of diabetes is not well understood. Interestingly, in a screen of multiple cell cycle inhibitors, p21 was dramatically upregulated in INS-1-derived 832/13 cells and rodent islets by two independent pharmacologic inducers of beta cell stress - dexamethasone and thapsigargin. In addition, glucolipotoxic stress mimicking the diabetic milieu also induced p21. To further investigate p21’s role in the beta cell, p21 was adenovirally overexpressed in 832/13 cells and rat islets. As expected given p21’s role as a cell cycle inhibitor, p21 overexpression decreased [3H]-thymidine incorporation and blocked the G1/S and G2/M transitions as quantified by flow cytometry. Interestingly, p21 overexpression activated apoptosis, demonstrated by increased annexin- and propidium iodide-double-positive cells and cleaved caspase-3 protein. p21-mediated caspase-3 cleavage was inhibited by either overexpression of the anti-apoptotic mitochondrial protein Bcl-2 or siRNA-mediated suppression of the pro-apoptotic proteins Bax and Bak. Therefore, the intrinsic apoptotic pathway is central for p21-mediated cell death. Like glucolipotoxicity, p21 overexpression inhibited the insulin cell survival signaling pathway while also impairing glucose-stimulated insulin secretion, an index of beta cell function. Under both conditions, phosphorylation of insulin receptor substrate-1, Akt, and Forkhead box protein-O1 was reduced. p21 overexpression increased Bim and c-Jun N-terminal Kinase, however, siRNA-mediated reduction or inhibition of either protein, respectively, did not alter p21-mediated cell death. Importantly, islets of p21-knockout mice treated with the ER stress inducer thapsigargin displayed a blunted apoptotic response. In summary, our findings indicate that p21 decreases proliferation, activates apoptosis, and impairs beta cell function, thus being a potential target to inhibit for the protection of functional beta cell mass.
|
333 |
Mise en évidence du rôle de Sar1b et PLD1 dans le transport et le métabolisme des lipides dans l’intestin : impact sur la formation et la sécrétion des chylomicronsAuclair, Nickolas 12 1900 (has links)
Les chylomicrons (CM) sont des vésicules produites et sécrétées par les entérocytes de l'intestin grêle pour permettre le transport des lipides et des vitamines liposolubles de l'alimentation vers la circulation sanguine. Les mécanismes de transport, de formation et de sécrétion des CM sont très complexes et des défauts dans ces mécanismes peuvent affecter de manière significative la qualité de vie d'un individu. Il est clair qu'il existe des lacunes dans notre compréhension des protéines qui régulent ces processus puisque certains patients atteints de malabsorptions intestinales ne présentent pas de mutations pour des protéines connues et d’autres patients présentant des mutations connues ont des caractéristiques cliniques incompréhensibles. La phospholipase D(PLD) 1 et la Sar1b GTPase sont deux protéines dont le rôle dans l'homéostasie lipidique intestinale reste à mieux préciser. La PLD1 est une enzyme dont le rôle principal est de catalyser la formation d'acide phosphatidique à partir de la phosphatidylcholine. Son produit permet de réguler de nombreux processus cellulaires tels que l’endocytose, l’exocytose et le traffic vésiculaire. Cependant, sa fonction dans l'homéostasie lipidique intestinale était jusqu'à présent inconnue. La Sar1b GTPase, quant à elle, régule la formation des vésicules COPII du réticulum endoplasmique (RE) et sa mutation a été associée à la maladie de rétention du CM (MRC), l'une des trois principales maladies qui provoquent une malabsorption des lipides intestinaux. Cependant, nos connaissances scientifiques sur cette enzyme sont assez limitées et même sa relation de cause à effet reste à définir dans un organisme complexe tel qu'un mammifère.
Par conséquent, l'objectif général de cette thèse est de mettre en évidence le rôle de la PLD1 et de la Sar1b GTPase dans le transport et le métabolisme des lipides intestinaux. Pour atteindre ces objectifs, nous avons soit administré des inhibiteurs de l'activité des différents isoformes de PLD à des cellules entérocytaires Caco2/15, ou utilisé des cellules présentant une diminution de l’expression du gène de PLD1. En outre, pour la Sar1b GTPase, nous avons utilisé des souris présentant soit une mutation ponctuelle, soit une délétion de Sar1b.
Nos résultats ont montré que la diminution de l'expression protéique de PLD1 réduit la sécrétion de CM et modifie l'expression protéique de facteurs importants impliqués dans la β-oxydation et la lipogenèse. En ce qui concerne la Sar1b GTPase, nous avons pu observer que les souris homozygotes avec une mutation ou une délétion de Sar1b ne sont pas viables et sembleraient mourir juste après la naissance étant donné le développement embryonnaire normal de ces souris. Avec les souris hétérozygotes, nous avons quand même pu confirmer la relation de cause à effet entre le gène et la MRC puisque ces souris récapitulaient plusieurs anomalies gastro-intestinales retrouvées chez les patients. En outre, nous avons observé que la gravité des caractéristiques observées chez les souris peut dépendre du régime alimentaire et du génotype. De plus, nous avons observé que les mâles présentant une mutation ponctuelle reflétaient d’avantage la maladie. Par ailleurs, les lipoprotéines de ces animaux avaient une composition chimique et protéique altérée avec une diminution de la quantité d’ApoB-100 dans les fractions de VLDL et LDL, ainsi qu’une augmentation des ratios cholestérol ester/phospholipides et des ratios lipides estérifiés/lipides non-estérifiés. Enfin, nous avons observé que l'altération du gène Sar1b dans l'intestin affecte son homéostasie lipidique et modifie l'expression génique et protéique de plusieurs facteurs importants dans le stress du RE, la β-oxydation, la lipogenèse et le métabolisme du cholestérol.
En conclusion, même si cette thèse comporte plusieurs limites, nous avons pu établir le rôle de la PLD1 et de la Sar1b GTPase dans l'homéostasie lipidique. En effet, nous sommes les premiers à avoir démontré que l'altération du gène PLD1 affecte la sécrétion de CM et le métabolisme des lipides dans les cellules intestinales. De plus, nous avons pu confirmer in vivo la relation de cause à effet entre la MRC et la protéine Sar1b, tout en ayant une meilleure compréhension de son impact sur le métabolisme des lipides qui peut varier en fonction de différents facteurs tels que le génotype et la diète. Une meilleure compréhension de ces protéines permettrait d'augmenter les cibles possibles pour le développement de traitements ciblant la sécrétion de CM et de mieux comprendre les conséquences que la mutation de ces gènes peut avoir chez les patients. / Chylomicrons (CMs) are vesicles produced and secreted by enterocytes in the small intestine to transport lipids and fat-soluble vitamins from the diet into the bloodstream. The mechanisms of CM transport, formation and secretion are very complex and defects in these mechanisms can significantly affect the quality of life of an individual. It is clear that there are gaps in our understanding of the proteins that regulate these processes since some patients with intestinal malabsorptions do not have mutations for known proteins and other patients with known mutations have incomprehensible clinical features. Phospholipase D (PLD) 1 and Sar1b GTPase are two proteins whose role in intestinal lipid homeostasis remains to be better defined. PLD1 is an enzyme whose main role is to catalyze the formation of phosphatidic acid from phosphatidylcholine. Its product regulates many cellular processes such as endocytosis, exocytosis and vesicular trafficking. However, its function in intestinal lipid homeostasis was unknown until now. Sar1b GTPase, on the other hand, regulates COPII vesicle formation in the endoplasmic reticulum (ER) and its mutation has previously been associated with CM retention disease (CRD), one of the three major diseases that cause intestinal lipid malabsorption. However, our scientific knowledge about this enzyme is quite limited and even its cause and effect relationship remains to be defined in a complex organism such as a mammal.
Therefore, the overall goal of this thesis is to highlight the role of PLD1 and the Sar1b GTPase in intestinal lipid transport and metabolism. To achieve these objectives, we either administered inhibitors of the activity of different PLD isoforms to Caco2/15 enterocyte cells or used cells with protein depletion of PLD1. In addition, for the Sar1b GTPase, we used mice with either a point mutation or a deletion of Sar1b.
Our results showed that decreased protein expression of PLD1 reduces CM secretion and alters the protein expression of important factors involved in β-oxidation and lipogenesis. With regard to the Sar1b GTPase, we could observe that homozygous mice with a mutation or deletion of Sar1b are not viable and would appear to die just after birth given the normal embryonic development of these mice. With the heterozygous mice, we were still able to confirm the causal relationship between the gene and CRD since these mice recapitulated several gastrointestinal abnormalities found in patients. In addition, we observed that the severity of the features observed in the mice may depend on diet and genotype. In addition, we observed that males with a point mutation reflected the most the disease. Also, the lipoproteins of these animals had an altered chemical and protein composition, with a decrease in the amount of ApoB-100 in the VLDL and LDL fractions, as well as an increase in choesteryl ester/phospholipids ratios and esterified/nonesterified lipid ratios. Finally, we observed that alteration of the Sar1b gene in the gut affects its lipid homeostasis and alters the gene and protein expression of several factors important in ER stress, β-oxidation, lipogenesis, and cholesterol metabolism.
In conclusion, although this thesis has several limitations, we were able to establish the role of PLD1 and the Sar1b GTPase in lipid homeostasis. Indeed, we are the first to have demonstrated that alteration of the PLD1 gene affects CM secretion and lipid metabolism in intestinal cells. Furthermore, we were able to confirm in vivo the causal relationship between MRC and the Sar1b protein, while having a better understanding of its impact on lipid metabolism which can vary according to different factors such as genotype and diet. A better understanding of these proteins would increase the possible targets for the development of treatments targeting CM secretion and better understand the consequences that mutation of these genes may have in patients.
|
334 |
Der Einfluss von 5-HT 1A Rezeptoren auf die embryonale und postnatale Entwicklung des serotonergen Systems im Gehirn der MausDeng, Dongrui 23 September 2003 (has links)
In the present study 5-hydroxytryptamine (5-HT) 1A receptor knockout mice (KO), mice overexpressing the 5-HT1A receptor (OE), and wild-type (WT) mice were used to investigate the influence of 5-HT1A receptor on the development of the serotonergic system in the brain, from the embryonic day 12.5 to the postnatal day 15.5. Neither the absence nor the overexpression of 5-HT1A receptor influenced the development and differentiation of serotonergic neurons in the raphe area of the mouse brain. However, a delay in the initial development of the serotonergic projections to the mesencephalic tegmentum, cerebral cortex and hypothalamus was observed in both transgenic mice lines. The brain levels of 5-HT and 5-hydroxyindoleacetic acid were significantly higher in both transgenic mice lines during the late embryonic and early postnatal periods as compared to WT mice. An increase in the turnover of 5-HT was not observed before the early postnatal period. Both the absence and the overexpression of 5-HT1A receptor delayed the development of the dopaminergic system of the mesencephalic tegmentum in the early embryonic period. In OE mice the postnatal development of the noradrenergic system appeared to be exaggerated. The immunoreactivity for the neurotrophic protein S100ß was higher in the cerebral cortex, striatum and hippocampus of OE mice as compare to WT and KO mice. The expression of synaptic proteins, such as synapatobrevin and synaptotagmin was reduced in KO and OE mice during the early embryonic period. This reduction may be linked to the delayed development of the serotonergic projections and the dopaminergic system. In addition, no influence of 5-HT1A receptor mutations on the myelination of the brain was observed. Zusammenfassung In der vorliegenden Arbeit wurden die 5-Hydroxytryptamin (5-HT)1A Rezeptor Knockout (KO), überexprimierenden (ÜE) Mäuse und die Wild-Typ (WT) Mäuse, in den Entwicklungsperioden vom embryonalen Tag 12,5 bis postnatalen Tag 15,5 untersucht, um weitere Informationen über den Einfluss vom 5-HT1A Rezeptor auf die Entwicklung des serotonergen Systems im Gehirn zu erhalten. Sowohl das Fehlen des 5-HT1A Rezeptors als auch dessen Überexpression hatten zwar keinen Einfluss auf die Entwicklung und Differenzierung der serotonergen Neurone in den Raphe Regionen, verzögerte aber die erste Entwicklung der serotonergen Innervierungen im mesencephalen Tegmentum, Hypothalamus und cerebralen Cortex. In den späten embryonalen und insbesondere frühpostnatalen Perioden waren die 5-HT- und 5-HIAA-Spiegel bei KO und ÜE Mäusen im Vergleich zu WT Mäusen signifikant erhöht. Eine Erhöhung des 5-HT Turnovers wurde erst in der frühpostnatalen Periode beobachtet. Auch die Entwicklung des dopaminergen Systems im Mesencephalon war in der frühen embryonalen Periode sowohl bei KO als auch bei ÜE Mäusen verlangsamt. Die Überexpression des 5-HT1A Rezeptors begünstigte möglicherweise die postnatale Entwicklung des noradrenergen Systems. Bei ÜE Mäusen war die Immunreaktivität des neurotrophen Proteins S100? im cerebralen Cortex, Hippocampus und Striatum stärker als bei WT und KO Mäusen. Die Expression der synaptischen Proteine wie Synaptobrevin und Synaptotagmin war sowohl bei KO als auch bei ÜE Mäusen in der frühen embryonalen Periode verzögert. Dies könnte mit der verzögerten Entwicklung der serotonergen Projektionen und des dopaminergen Systems in Zusammenhang stehen. Darüber hinaus hatten transgene Veränderungen am 5-HT1A Rezeptor keinen Einfluss auf die Myelinisierung im Gehirn der Maus. Schlagwörter: serotonerges System, Entwicklung des Gehirns, 5-HT1A Rezeptor, transgene Mäuse, dopaminerges System, noradrenerges System, S100ß, Synaptisches Protein, Myelinisierung / In the present study 5-hydroxytryptamine (5-HT) 1A receptor knockout mice (KO), mice overexpressing the 5-HT1A receptor (OE), and wild-type (WT) mice were used to investigate the influence of 5-HT1A receptor on the development of the serotonergic system in the brain, from the embryonic day 12.5 to the postnatal day 15.5. Neither the absence nor the overexpression of 5-HT1A receptor influenced the development and differentiation of serotonergic neurons in the raphe area of the mouse brain. However, a delay in the initial development of the serotonergic projections to the mesencephalic tegmentum, cerebral cortex and hypothalamus was observed in both transgenic mice lines. The brain levels of 5-HT and 5-hydroxyindoleacetic acid were significantly higher in both transgenic mice lines during the late embryonic and early postnatal periods as compared to WT mice. An increase in the turnover of 5-HT was not observed before the early postnatal period. Both the absence and the overexpression of 5-HT1A receptor delayed the development of the dopaminergic system of the mesencephalic tegmentum in the early embryonic period. In OE mice the postnatal development of the noradrenergic system appeared to be exaggerated. The immunoreactivity for the neurotrophic protein S100ß was higher in the cerebral cortex, striatum and hippocampus of OE mice as compare to WT and KO mice. The expression of synaptic proteins, such as synapatobrevin and synaptotagmin was reduced in KO and OE mice during the early embryonic period. This reduction may be linked to the delayed development of the serotonergic projections and the dopaminergic system. In addition, no influence of 5-HT1A receptor mutations on the myelination of the brain was observed.
|
335 |
Analysis of mouse models of insulin secretion disordersKaizik, Stephan Martin January 2010 (has links)
No description available.
|
Page generated in 0.0788 seconds