201 |
Management of hydrogen sulphide generation at a Kraft paper millRava, Eleonora Maria Elizabeth 15 September 2008 (has links)
A local integrated pulp and paper Kraft mill had come under pressure from the local communities and mill personnel to reduce the odours that were perceived to be generated at the Farm Dams and irrigation farm situated adjacent to the mill. The typical odours associated with Kraft mills are due to the generation of four reduced sulphur compounds such as hydrogen sulphide (H2S), methyl-mercaptan (CH3SH), dimethyl-sulphide (CH3)2S and dimethyl-disulphide (CH3)2S2. These compounds are collectively referred to as Total Reduced Sulphur (TRS) components which are generated as a direct result of the Kraft pulping and chemical recovery process. These components can either be in the gaseous or aqueous phase depending on the characteristics of the effluent. Gaseous and aqueous TRS profiling of the mill indicated that hydrogen sulphide (H2S) was the main odour component generated and emitted from the Clarifiers and the Treated Effluent Transfer Sump (TETS) at the effluent treatment plant. The hydrogen sulphide (H2S) emission levels were affected by process upsets, sludge removal frequencies, chemical composition of the effluent, Sulphate Reducing Bacteria (SRB) activity, pH and temperature fluctuations. Treatment options such as pH control using slaked lime, dosing of biocides, addition of biomodifiers and/or a sulphate reduction inhibitor were investigated. The use of slaked lime, Ca(OH) 2, for pH control was not practical due to continuous pH fluctuations, increasing the pH would increase the scaling tendencies of the effluent and would also affect the soil cation-anion exchange properties of the irrigated farm land. The use of non-oxidising biocides was effective in reducing SRB activity between 99.2% and 99.8% at dosages between 4 mg/l and 25 mg/l. However, the use of biocides was not considered as a long term treatment option due to the various disadvantages such as the stability of the biocides at fluctuating pH and temperatures, half-life, environmental accumulation, toxicity and costs. The aqueous H2S level was reduced by 79% using different combinations of biomodifiers (nitrates, nitrites, molybdenum). Increasing the dosages of the biomodifiers (> 500mg/l) would be required to increase the reduction of H2S levels by more than 79%. The increased dosages would significantly increase the cost of the treatment programme. The accumulation of nitrates, nitrites and molybdenum could affect the soil texture, cation-anion exchange capacity, permeability, Sodium Absorption Ratio (SAR) and nutrient availability. A more environmentally friendly and cost effective treatment was found using sodium nitrate (biomodifier) together with AQ (sulphate reduction inhibitor). The continuous dosing of 50 mg/l sodium nitrate together with 4 mg/l AQ would be effective in reducing the average aqueous H2S levels (40 mg/l) by at least 92%. This treatment would also be compatible with aeration or oxidation procedures to further increase the removal of H2S to achieve an aqueous H2S level of <1 mg/l. Aeration or oxidation would also increase the dissolved oxygen and COD levels, increase the inhibition of SRB activity and oxidise any reduced sulphur. The dosing of sodium nitrate and AQ to control the generation of H2S is not patented in South Africa. It can, therefore, be used to treat the Kraft mill effluent without violating any intellectual property rights in South Africa. / Dissertation (MSc(Applied Science))--University of Pretoria, 2008. / Chemical Engineering / unrestricted
|
202 |
Studies on The Transport Rates of Heavy Metals in the Design of Liner Thickness and Remediation of SoilsSumalatha, J January 2016 (has links) (PDF)
The enormous rate of increase in waste generation across the world is a serious threat to the future generation, if not handled properly, due to the creation of health hazards and global warming. This was awakened many engineers and researchers to find an appropriate solution for efficient management of waste. The land filling of the waste is the most widely adopted method for its disposal, whose efficiency mainly depends on the engineered barrier system in place. Though possessing many limitations, clay liner solely or along with Geo-membrane is often used to avoid ground and surface water contamination. The thickness of the liner of a given breakthrough time depends on the transport rates of the selected contaminants. To estimate the transport rate of any given contaminant, it is necessary to understand the different migration processes of contaminants through the liner material. It was observed from the literature that, the transport rate of contaminants mainly depends on Dispersion coefficient (D) and Distribution coefficient (K) which are the main contaminant transport parameters. The amount of contaminant transport through the liner system for a desired time period is thus estimated from these contaminant transport parameters using the Advection-Dispersion Equation (ADE). The unregulated open dumps are another cause of serious environmental problem, where the contaminants are free to migrate in any direction through the underground soil. The percolation rate and the accumulation of leachate increase during the rainy season, which picks up more contaminants from the waste and thus the threat of the leachate increases. The leachate normally migrates in vertical and lateral directions, causing contamination of ground and surface water resources, and hence, there is a need to estimate the transport rates of contaminants in the porous media. These transport rates are not only useful for designing barrier systems, but also useful to find a suitable remediation technique for the removal of contaminants from a contaminated site. Thus, determination of transport rate is very important in effective waste management systems. Most of the researchers have
obtained the contaminant transport parameters through the column tests to simulate one dimensional flow. Often, it is a lengthy process and there is a need to find an easy and effective method of determining these parameters which can reduce the time and effort.
Generally, the metallic contaminants such as Cadmium (Cd), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn) which are most hazardous are considered for the contaminant migration studies. In the present study, the transport rates of two heavy metals Copper and Zinc through locally available Black Cotton soil and Red soil were studied. Column experiments were conducted to simulate the field conditions under two types of test conditions i.e., Constant and Decreasing source concentrations. For Black Cotton soil as the hydraulic conductivity was very less and was taking a long time for achieving complete breakthrough, the soil sectioning method was used to get the depth versus concentration. The soil sectioning method involves the determination of pore water concentration of any given contaminant in different sections of the soil column. The depth versus concentration profile can serve as the same purpose as that of complete column test after breakthrough. The column experiments can be done only up to a relative concentration (C/C0) of about 0.2 instead of 0.8 or more. The soil samples were compacted to different densities to know the effect of density on transport parameters. The Black Cotton Soil samples were compacted to 0.76-0.97 times of maximum dry density and Red Soil samples were compacted to 0.81-0.98 times of maximum dry density. The samples were compacted to lesser densities to reduce the experimentation time. The transport parameters for field densities can be determined by setting „Forecast Trend Lines‟ to the density versus dispersion coefficient and density versus distribution coefficient plots.
The contaminant transport was modeled by various methods i.e., Analytical, Semi-analytical, Explicit Finite Difference and Implicit Finite Difference methods. These models can be extended to predict the contaminant migration through soil liners constructed with similar soils. During the lifetime of a landfill, it may be subjected to both constant and decreasing source concentration conditions and thus the contaminant transport parameters determined by both constant and decreasing tests will be useful to estimate the optimum thickness of soil liner.
The disposal of waste solutions and sludges by industries has led to problems with the contamination of both soil and groundwater. Much research work has not been carried out in the past for the remediation of contaminated soils in India. Thus an attempt has been made to study in detail the different remediation techniques on various contaminated soils. Three heavy metal contaminated soils were studied with two remediation techniques i.e., Soil washing and immobilization. As a case study, Zinc contaminated soil was collected from Hindustan Zinc Limited located near Udaipur in Rajasthan State, India and column leach tests were conducted on this soil with different leaching solutions to study the efficiency of the soil washing technique.
The leaching solutions used for removing zinc from this soil were 0.1N HCl, 0.1N EDTA, 0.1N HCl+0.1N EDTA and 0.1N FeCl3. It was found that 0.1N FeCl3 was more efficient to remove zinc from this soil. The removal efficiency was also high with 0.1N HCl+0.1N EDTA solution. The transport rates were determined by matching the theoretical elution curves with experimental elution curves. The contaminant transport for column leach tests was modeled using analytical solution based on the Leaching Mass Ratio approach. These transport rates are useful to estimate the rate of treatment as well as the amount of flushing solution required to remove Zinc knowing the area of contamination and in-situ soil conditions.
One of the potential sources of soil and ground water contamination with toxic metal ions is Effluent Treatment Plant sludge (ETP Sludge). The efficiency of soil washing technique was also studied on ETP Sludge using five leaching solutions i.e., distilled water, 0.1N HCl, 0.1N EDTA, 0.1N HCl+0.1N EDTA and 0.1N FeCl3. ETP sludge was collected at a filter press, KIADB industrial area, Doddaballapur, Bangalore. The removal efficiencies of these leaching solutions for removal of different metal ions (Copper, Zinc, Iron, Nickel, Cadmium, Lead and Chromium) were studied. The highest removal efficiencies were observed with 0.1N FeCl3 and 0.1N HCl+0.1N EDTA. The transport rates of different metals were determined which will be useful to estimate the quantity of leaching solution required in the field to remediate this sludge using soil washing technique.
Even though soil washing technique is more effective than immobilization, for less permeable soil with more clay content, it is not a cost effective method. In such cases immobilization technique can be used to remediate the contaminated soil. The immobilized metals will not migrate through soil to groundwater and will not give adverse environmental hazards in their treated state. In the present study, immobilization technique was studied on two materials, (i) contaminated soil from open dump and (ii) ETP Sludge. The contaminated soil was collected from an open dump located at the Bingipura dumping yard, Bangalore and was tested for the presence of heavy metal ions. The efficiency of treatment to immobilize the metals was studied with different additives.
The chemical agents with which can decrease the solubility product will be effective to immobilize the metal ions. The stabilizing agents used for treating these materials were lime water, NaOH and cement. These stabilizing agents were selected after preliminary batch tests. Since most of the heavy metals in soils become less mobile with increase in pH, the lime water / NaOH was added to the soil/sludge to adjust the pH of the mixture to 7.0, 8.5 and 10.0. The cement: soil ratios used were, 1:100 (pH=6. 8), 1:50 (pH=8. 1) and 1:25 (pH=9. 8) by weight. Leaching tests were
conducted on the amended soils to know the long term efficiencies of the chemical agents for immobilizing the metal ions.
The work carried out in this thesis is presented in different chapters as given below:
For the design of the liner system, it is necessary to know the different contaminant transport processes, the determination of their rates and modeling. For remediation of contaminated soil, it is required to find the suitable remediation technique based on the amount and type of pollutants, the type of soil and other geological conditions. The detailed information about sources of heavy metals, effects of heavy metal contamination on health and the environment, contaminant transport processes, methods of determining transport rates, and different modeling techniques for contaminant transport are explained in Chapter 1. The Background information along with the scope and objectives of this study are presented in this chapter. The extensive review of literature related to column experiments, various solutions to Advection-Dispersion Equation, and different remediation techniques to treat the contaminated soil, is also presented in this chapter.
Chapter 2 gives detailed information about various materials and methods used in this study. The characteristics of soils used in the present study and preparation of different chemical solutions were explained. The experimental procedures of batch tests, column tests and soil sectioning to determine the contaminant transport parameters were given in detail. The experimental procedures that are required for assessing the efficiency of soil washing technique i.e., Batch leach tests and column leach tests were also explained. The laboratory assessment of immobilization efficiency through leaching test was explained briefly. The analytical and numerical solutions used for this study were discussed in detail. This chapter also includes a method of prediction of breakthrough curves from the incomplete column test data.
The contaminant transport parameters of metal ion Copper in two locally available soils i.e., Black cotton soil and Red soil were determined by various techniques i.e., Analytical (using MATLAB v7 software), semi-analytical (using POLLUTE v7 software), Explicit Finite Difference Method with two software tools (MATLAB v7 and M.S.EXCEL 2010), Implicit Finite Difference method with three schemes (BTCS, UPWIND & CRANK NICOLSON) using two software tools (MATLAB v7 and M.S.EXCEL 2010). Modifications were done in the spreadsheet solution of non-reactive solute available from the literature to incorporate the retardation factor as the solutes used in this study are reactive in nature. These results are presented in Chapter 3. The contaminant transport parameters determined for different test conditions (constant and variable source concentrations) and for different densities of soil are reported in this chapter. Determination of transport rates corresponding to maximum dry density using trend lines and preparation of design charts to estimate the thickness of the liner are also discussed in this chapter.
The contaminant transport parameters were also determined for metal ion Zinc in the same soils with the same techniques as that of Copper and the migration rates were compared for both the ions. These models and comparative results are presented Chapter 4. It was observed that with increase in density, the dispersion coefficient decreases and Distribution coefficient increases. It was also found that the dispersion coefficient of Black Cotton Soil was lower than that of Red Soil whereas the distribution coefficient of Black Cotton soil is much higher than that of Red Soil. Further, it was observed that the dispersion coefficient of Copper was less than that of Zinc whereas the distribution coefficient of Copper was higher than Zinc. The design of liner thickness, based on transport rates of Zinc is briefly discussed in this chapter.
A case study has been explained for the remediation of Zinc contaminated sandy soil using soil washing technique. The undisturbed soil samples collected from four locations of waste disposal site of Hindustan Zinc Limited located near Udaipur in Rajasthan State of Western India were assessed to find the suitable leaching solution and number of pore volumes for the effective removal of Zinc from this soil. The chelates/ solvents used for this soil were 0.1N HCl, 0.1N EDTA, 0.1N HCl+0.1N EDTA and 0.1N FeCl3. The contaminant transport parameters were also determined from the column leach tests based on the Leaching Mass Ratio approach and the results are presented in Chapter 5. From the experimental study it was observed that 0.1N FeCl3 and 0.1N HCl+0.1N EDTA are the most suitable leaching solutions to treat this soil.
The Chapter 6 contains the sludge analysis of an industrial ETP sludge, column leach test results of this sludge with different leaching solutions, removal efficiencies of different solutions used and the transport rates of different contaminants. The leaching solutions used for this sludge were distilled water, 0.1N HCl, 0.1N EDTA, 0.1N HCl+0.1N EDTA and 0.1N FeCl3. It was observed that 0.1N FeCl3 and 0.1N HCl+0.1N EDTA are the most suitable leaching solutions to treat this sludge. Other solutions have also removed the contaminants by more than 50%, but the number of pore volumes required to leach out the contaminants was high. The order of removal efficiencies of different solutions is presented below:
0.1N FeCl3 > 0.1N HCl + 0.1N EDTA > 0.1N EDTA > 0.1N HCl > distilled water.
The transport rates of different contaminants (Cu, Zn, Cd, Fe, Ni, Pb and Cr) were determined using analytical solution and are presented in this chapter. These transport rates are useful to estimate the quantity of leaching solution required in the field to remediate the sludge using soil washing technique.
A contaminated soil collected from an open dump site within Bangalore city and ETP Sludge were analyzed to know the efficiency of immobilization/ solidification technique of remediation using three chemical agents lime, NaOH and cement. The soil samples were mixed with different proportions of these chemicals to adjust the pH of the mixtures to 7.0, 8.5 and 10.0. Leaching tests were conducted on the modified soils to know the long term efficiency of these chemical agents to immobilize the contaminants and these results are discussed in Chapter7. The results showed that highest immobilization efficiencies can be achieved with lime for this contaminated soil and cement is the most suitable chemical agent to treat this sludge. The immobilization efficiencies of different stabilizing agents for various metals were studied and the results analyzed.
The Chapter 8 includes the major observations and conclusions of the present research work which will be useful for Geotechnical and Geo-environmental engineers to estimate the transport rates of contaminants, to design the soil liners, to assess the efficiency of soil washing technique to remediate the contaminated soil, to estimate the quantity of leaching solution required in the field for soil washing and to find the suitable chemical agent for remediating the contaminated soil by immobilization technique.
|
203 |
Valoração ambiental e analise de viabilidade economica : o caso da estação escola de tratamento de esgotos da Universidade Estadual de Campinas / Environmental valuation and analysis of economical viability : the case of school wastewater treatment plant of State University of CampinasMachion, Ane Caroline Grisolio 17 July 2006 (has links)
Orientador: Jose Roberto Guimarães / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-07T16:39:23Z (GMT). No. of bitstreams: 1
Machion_AneCarolineGrisolio_M.pdf: 8431121 bytes, checksum: 6a5866ab77e4d74302c23bf3d221b93e (MD5)
Previous issue date: 2006 / Resumo: Um dos problemas ambientais urbanos mais graves é a falta de tratamento do esgoto sanitário que, freqüentemente despejado in natura em corpos d¿água, causa danos, por vezes irreversíveis, às reservas de água potável comprometendo e restringindo seu uso. A presente pesquisa tem como objetivos caracterizar os investimentos necessários à construção da Estação Escola de Tratamento de Esgotos da Universidade Estadual de Campinas aplicando-se um método de valoração ambiental e analisar a viabilidade econômica destes investimentos considerando-se o reúso do efluente tratado. A metodologia consiste em caracterizar o objeto de estudo e o seu entorno, construir cenários referentes à qualidade ambiental do rio receptor do efluente da UNICAMP e simular o fluxo de caixa para o cálculo dos indicadores econômicos / Abstract: One of the most serious urban environmental problems is the lack of sanitary wastewater treatment which frequently is discharged in natura in water bodies causing damages, sometimes irreversible, to potable water reservations compromising and restricting their use. The present research has as objectives to characterize the necessary investments for the building of School Wastewater Treatment Plant at State University of Campinas applying a valuation method and to analyze the economical viability of these investments considering the treated effluent reuse. The methodology consists in characterizing the object of study and its surrounding, to build sceneries referring to environmental quality of the receiver river of UNICAMP¿s effluent and to simulate the cash flow for the economic indicators calculation / Mestrado / Saneamento e Ambiente / Mestre em Engenharia Civil
|
204 |
En jämförelse av platsgjutna ochprefabricerade väggar vid reningsverk- Kostnader och arbetsmiljöfrågor / A Comparison of Site-molded and Prefabricated walls at Waste Waterplants- Costs and Work Environment issuesMikho, Mikael, Sandegren, Simon January 2020 (has links)
Vid byggnation av betongväggar på vatten- och reningsverk används dom tvåmetoderna platsgjutna och prefabricerade väggar. Metoderna ger liknande resultatmen skiljer sig avsevärt i genomförande. Vi har därför valt att studera ämnet och draslutsatser om vilken metod som är att föredra.För att studera ämnet valde vi Skebäcks Reningsverk i Örebro som studieobjekt därdom båda metoderna att uppföra nya mellanväggar i betong har använts i sambandmed ombyggnation av befintliga bassänger.Vi har valt att studera kostnader och arbetsmiljöfrågor kring dom två olikabyggmetoderna.Som underlag för kostnadsberäkningen har vi använt Wikells Sektionsdata samtprisuppgifter från leverantörer. För att studera arbetsmiljön har intervjuer genomförtsmed två yrkesverksamma betongarbetare. Intervjuerna gav sedan underlag för enenkät som skickades ut till yrkesverksamma betongarbetare.Vår studie visar att prefabricerade väggar beräknas ge en lägre byggkostnad änmotsvarande platsgjuten vägg vid ett reningsverk. Studien visar även attbetongarbetare föredrar prefabricerade lösningar ur arbetsmiljösynpunkt. Fysisktpåfrestande moment undviks och tiden som spenderas på arbetsplatsen minskar vidprefabricerade betongelement. / When building concrete walls at water and wastewater treatment plants , the twomethods are cast-in-place and prefabricated walls. The methods give similar resultsbut differ considerably in implementation. We have therefore chosen to study thesubject and draw conclusions about which method is preferable.To study the subject, we chose Skebäcks wastewater treatment plant in Örebro as astudy object where both methods of constructing newpartitions in concrete havebeen used in connection with the reconstruction of existing basins.We have chosen to study costs and work environment issues around the twodifferent construction methods. As a basis for the cost calculation, we have usedWikell's Sektion Data and price information from suppliers. To study the workenvironment, interviews were conducted with two professional concrete workers. Theinterviews then provided the basis for a questionnaire that was given to professionalconcrete workers.Our study shows that prefabricated walls provide a lower construction cost than thecorresponding cast-in-place wall at wastewater treatment plant . The study showsthat concrete workers prefer prefabricated solutions from a work environment pointof view. Physically stressful moments are avoided and the time spent in theworkplace is reduced when building with prefabricated concrete walls.
|
205 |
Utvärdering av effektivitet för aktivt kol och anjonbytare vid reduktion av per- och polyfluorerade alkylsubstanser (PFAS) samt läkemedelssubstanser i avloppsvattenKalecinska, Monika January 2021 (has links)
Avloppsreningsverk (ARV) utgör en viktig del som spridningsväg för utsläpp av organiska mikroföroreningar, som per- och polyfluorerade alkylsubstanser (PFAS) och läkemedelssubstanser, från samhället till den akvatiska miljön. Befintliga reningssteg vid ARV reducerar mikroföroreningar dåligt varav denna studie syftade till att jämföra reduktionseffektiviteten av 5 olika granulära aktiva kol (GAK) och en anjonbytare (AIX) för att välja ut det material som är mest lämpat för vidare undersökningar i pilotskala inför installation ett avancerat reningssteg i Kungsängsverkets ARV i Uppsala. GAK (Filtrasorb 400, Cyclecarb 401, Brennsorb 1240, Aquasorb 5000 och Aquasorb 2000) utvärderades för avskiljning av 13 PFAS-ämnen i ett inledande bägarförsök genom placering i avloppsvatten från Kungsängsverket i 8 h. Cyclecarb 401 var mest effektivt vid avskiljning av PFAS där reduktionsgraden för PFAS-11 (85 %) och PFOS (90 %) var 35 % och 40 % högre än för det minst effektiva GAK Brennsorb 1240. Cyclecarb 401, Brennsorb 1240 och AIX Purolite 694E undersöktes i ett andra bägarförsök enligt en liknande metod, men utvärderades med avseende på avskiljning av 12 PFAS och 18 läkemedelssubstanser över 48 h. Resultatet för PFAS var likvärdigt för GAK, men AIX visades nå samma reduktionsgrad av PFAS som Cyclecarb 401 och detta skedde snabbare. Efter 48 h var reduktionen med GAK högst för läkemedelssubstanser (91-99 %) och med AIX för PFAS (78 %). Samtliga adsorbenter tillfördes även till kolonner, där Purolite 694E även seriekopplades efter Cyclecarb 401, med ett kontinuerligt flöde av avloppsvatten motsvarande 5 min kontakttid (EBCT). Även om duplikatprover togs varje vecka genomfördes inom ramen för detta examensarbete analyser för de prover tagna en timme (12 bäddvolymer), 2 veckor (4000 bäddvolymer) och 7 veckor (14 000 bäddvolymer) efter start för 12 PFAS och 18 läkemedelssubstanser. Purolite 694E reducerade PFAS bäst, 40-50 % bättre än GAK, följt av negativt laddade läkemedelssubstanser och adsorptionen för dessa ämnen var bättre över tid än för GAK. Seriekoppling av AIX efter GAK förbättrade reduktionsgraden över tid för främst PFAS (30 % ökning vid 14 000 bäddvolymer). Även för läkemedelssubstanser med negativ laddning som adsorberades väl av AIX. Adsorptionen till AIX gynnades mest av substanser med negativa laddning. Adsorptionen till samtliga adsorbenter gynnades av PFAS med en sulfonatgrupp, en lägre syrakonstant, en högre fördelningskonstant mellan oktanol och vatten samt en längre kolkedja. En seriekoppling av AIX efter GAK är främst intressant för förbättrad avkiljning av diklofenak och PFOS vid Kungsängsverket, men även avskiljning av andra PFAS och negativt laddade läkemedelssubstanser kan förbättras. Andra ämnen adsorberades väl av GAK där Cyclecarb 401 i samtliga försök visats mest effektiv. De analyserade provpunkterna för kolonnförsöket var för få varav en kommande noggrannare undersökning över hela försökets genomförande kommer påvisa livslängderna för varje adsorbent vid EBCT 5 min. EBCT var kort varav efterföljande försök bör undersöka avskiljningens effektivitet för Kungsängsverket vid längre EBCT. / Waste water treatment plants (WWTPs) constitute an important role in releasing organic micropollutants, such as per- and polyfluoroalkyl substances (PFAS) and pharmaceuticals, from the society into the aquatic environment. Reduction of them in existing treatment methods in WWTPs is insufficient which is why the aim of this study was to examine the reduction efficiency for 5 granular activated carbons (GAC) and an anion exchange resin (AIX) and choose the adsorbent most suited for further studies in pilot scale before an advanced treatment step is built to Kungsängsverket WWTP in Uppsala. GAC (Filtrasorb 400, Cyclecarb 401, Brennsorb 1240, Aquasorb 5000 and Aquasorb 2000) were evaluated for 13 PFAS compounds in an initial batch experiment using wastewater from Kungsängsverket during 8 h. Cyclecarb 401 had the highest removal efficiency for PFAS where the reduction grade for PFAS-11 (85 %) and PFOS (90 %) was 35 % and 40 % higher than for the least efficient GAC Brennsorb 1240. Cyclecarb 401, Brennsorb 1240 and the AIX Purolite 694E were evaluated in a second batch experiment through a similar method, analyzed for 12 PFAS and 18 pharmaceuticals over 48 h. The results for PFAS were similar for GAC, but AIX reached the same reduction grade for PFAS as Cyclecarb 401 which also happened faster. After 48 h reduction with GAC was best for pharmaceuticals (91-99 %) and with AIX for PFAS (78 %). Finally, these adsorbents were placed in individual columns, where Cyclecarb 401 was connected to an additional column with Purolite 694E, with a continuous flow of wastewater with an empty bed contact time (EBCT) of 5 min. Even though duplicate samples were taken each week analysis was performed for samples taken an hour (12 bed volumes), 2 weeks (4000 bed volumes) and 7 weeks after start (14 000 bed volumes) for 12 PFAS and 18 pharmaceuticals. Purolite 694E reduced PFAS the best, 40-50 % better than GAC, followed by negatively charged pharmaceuticals and adsorption for these compounds was better over time than with GAC. AIX after GAC increased reduction grade over time primarily for PFAS (30 % improvement after 14 000 bed volumes) but also for pharmaceuticals well adsorbed by AIX. Adsorption to AIX was mainly improved with a negative charge of the compound. Adsorption to adsorbents was favored for PFAS containing a sulfonate group, compounds with a lower acid dissociation constant, a higher octanol-water partition coefficient and a longer carbon chain. Implementation of AIX after GAC would be of interest for Kungsängsverket mainly due to the improved removal of diclofenac and PFOS, but also if removal of other PFAS and pharmaceuticals will become prioritized. Other compounds were removed by GAC well where Cyclecarb 401 was most effective in all experiments. The analyzed samples for the column experiment were too few which is why a more comprehensive study of all samples over the whole experiment period will be able to determine the life length of each adsorbent for EBCT 5 min. EBCT was short which is why further experiments need to examine the reduction efficiency for Kungsängsverket at a longer EBCT.
|
206 |
Studie variant odkanalizování obce Crhov / The study alternatives village sewer system CrhovSakáčová, Monika January 2018 (has links)
The theme of this diploma thesis is " The study alternatives village sewer system Crhov". The thesis focuses on the design of possible wastewater treatment options with design of the technology for waste water treatment. Four alternatives are proposed - catch up existing sewerage and build an aerobic pond, new sewerage system with a container sewage treatment plant, domestic sewage treatment plant and the existing drainage system and the construction of a sewage treatment plant. In addition to the proposal itself, financial valuation of these variants is an integral part of the work with its own recommendation.
|
207 |
Studie odkanalizování vybrané obce / Study of sewer network of selected municipalityRemešová, Terezie January 2019 (has links)
The main goal of this diploma thesis is the proposal of sewerage variants of local parts of village Pačlavice, which are villages Pornice and Lhota. For individual municipalities are proposed three partially different variants, which vary mainly in the way of wastewater draining and wastewater treatment. All three variants are evaluate from an economic and technical point of view and on the basis of evaluation is propose a variant, which is in my opinion, the most suitable for these municipalities. In the villages Pornice, Lhota and Pačlavice are proposed new delivery and gravity sections, associated objects of overflow chambers with pumping stations, independent overflow chambers or separate pumping stations that complement the existing combined sewer system to ensure the drainage of wastewater to wastewater treatment plant and following treatment of this water.
|
208 |
Intenzifikace stávající čistírny odpadních vod technologií MBR / Upgrading of wastewater treatment plant by means of MBR technology.Spratková, Aneta January 2019 (has links)
This diploma thesis is focused on the topic of membrane technologies used in wastewater treatment. The research part of the thesis deals with membrane separation of activated sludge, and the focus is on the submerged membrane modules. The thesis contains basic principles of MBR systems, an overview of used membrane modules, modes of operation, advantages and disadvantages of using this process. The practical part of the thesis proposes the intensification of WWTP Perná with using MBR technology. This part includes the technical-economic assessment of the activation WWTP with the third stage of treatment and activation WWTP with MBR.
|
209 |
Optimalizace provozu čistíren odpadních vod / Optimizing the operation of wastewater treatment plantsSingrová, Veronika January 2019 (has links)
The aim of this diploma thesis is to evaluate two selected wastewater treatment plants and to propose appropriate measures related to optimization of operation. Wastewater treatment plants are from the Jihomoravský and Zlínský regions and both come under the category 2 001 - 10 000 equivalent inhabitants. In the diploma thesis there is an assessment of construction objects, machinery, cleaning efficiency and energy performance of both WWTPs. The calculations are based on the real measured values for the last three years and on the basic parameters of individual objects and equipment. The present state of the two wastewater treatment plants is summarized and optimization proposals are sorted by importance.
|
210 |
Studie variant odkanalizování obce do 2000 EO / The study alternatives village up to 2000 PEKrupicová, Simona January 2020 (has links)
The diploma thesis deals with the design of variants of sewerage and wastewater disposal in the selected municipality. Solved area for this work is the village Rovečné with the local part of Malé Tresné. The aim of this work is to propose a suitable variant and to assess it from the economic point of view with regard to grant titles. The author deals with the selection of a suitable method of sewerage of the area of interest and subsequent waste water disposal, based on the relevant standards and related regulations. The proposed options are then assessed from an economic point of view and a suitable solution option is recommended.
|
Page generated in 0.071 seconds