• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 10
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 91
  • 65
  • 20
  • 15
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Biological synthesis of metallic nanoparticles and their interactions with various biomedical targets

Sennuga, Afolake Temitope January 2012 (has links)
The synthesis of nanostructured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The biomineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology. In this study, a comparative biological synthesis, characterization and biomedical effects of metallic nanoparticles of platinum, gold and silver were investigated. Metallic nanoparticles were biologically synthesized using cage-like (apoferritin), barrel-like (GroEL) and non-caged (ribonuclease) proteins. Nanoparticles generated were characterized using common techniques such as UV-visible spectroscopy, scanning and transmission electron microscopy, inductively coupled optical emission spectroscopy, Fourier transform infra-red spectroscopy and energy dispersion analysis of X-rays (EDAX). Nanoparticles synthesised biologically using apoferritin, GroEL and RNase with exhibited similar chemical and physical properties as thoses nanoparticles generated chemically. In addition, the metallic nanoparticles fabricated within the cage-like and barrel-like cavities of apoferritin and GroEL respectively, resulted in nanoparticles with relatively uniform morphology as opposed to those obtained with the non-caged ribonuclease. The enzymatic (ferroxidase) activity of apoferritin was found to be greatly enhanced with platinum (9-fold), gold (7-fold) and silver (54-fold) nanoparticles. The ATPase activity of GroEL was inhibited by silver nanoparticles (64%), was moderately activated by gold nanoparticles (47%) and considerably enhanced by platinum nanoparticles (85%). The hydrolytic activity of RNase was however, lowered by these metallic nanoparticles (90% in Ag nanoparticles) and to a higher degree with platinum (95%) and gold nanoparticles (~100%). The effect of synthesized nanoparticles on the respective enzyme activities of these proteins was also investigated and the potential neurotoxic property of these particles was also determined by an in vitro interaction with acetylcholinesterase. Protein encapsulated nanoparticles with apoferrtin and GroEL showed a decreased inhibition of acetylcholinesterase (<50%) compared with nanoparticles attached to ribonuclease (>50%). Thus, it can be concluded that the cavities of apoferitin and GroEL acted as nanobiofactories for the synthesis and confinement of the size and shape of nanoparticles. Furthermore, the interior of these proteins provided a shielding effect for these nanoparticles and thus reduced/prevented their possible neurotoxic effect and confirmed safety in their method of production and application. The findings from this study would prove beneficial in the application of these nanoparticles as a potential drug/drug delivery vehicle for the prevention, treatment/management of diseases associated with these enzymes/proteins.
82

Calcium transport and ATP hydrolytic activities in guinea-pig pancreatic acinar plasma membranes

Mahey, Rajesh January 1991 (has links)
The aim of the present investigation was to determine whether a plasma membrane high affinity Ca²+-ATPase plays an integral role in the maintenance of cytoplasmic free Ca²+ in pancreatic acinar cells. To achieve this, the Ca²+-transport and Ca²+-ATPase activities were characterized and their properties compared. Plasma membranes from guinea-pig pancreatic acini were shown to contain an ATP-dependent high affinity Ca²+-pump and a high affinity Ca²+-dependent ATPase activity. In addition, a low affinity ATPase activity was also observed. The high affinity Ca²+-ATPase activity as well as the Ca²+-transport were found to be dependent on Mg²+, whereas the low affinity ATPase activity appeared to be inhibited by Mg²+. The high affinity ATPase activity was 7-fold greater in magnitude than the Ca²+-transport. Whereas the Ca²+-transport was very specific for ATP as a substrate, the high affinity Ca²+-ATPase showed little specificity for various nucleotide triphosphates. These data would suggest that the Ca²+-transport and the high affinity Ca²+-dependent ATPase in guinea-pig pancreatic acinar plasma membranes may be two distinct activities To further investigate whether the two activities were related, we investigated how the Ca²+-transport and Ca²+-ATPase activities were regulated by intracellular mediators. Regulation of the two activities by calmodulin, cyclic AMP-dependent protein kinase, Protein kinase C and inositol phosphates was investigated. Calmodulin failed to stimulate either activity. In addition, calmodulin antagonists, trifluoperazine and compound 48/80 produced a concentration-dependent inhibition of Ca²+-transport. These data suggested the presence of endogenous calmodulin. Both antagonists failed to influence the Ca²+-dependent ATPase activity. Experiments using boiled extracts from guinea-pig pancreatic acinar plasma membranes and erythrocyte plasma membranes Ca²+-ATPase confirmed the presence of endogenous calmodulin. The catalytic subunit of cyclic AMP-dependent protein kinase stimulated Ca²+ transport, suggesting that cyclic AMP may have a role in the regulation of Ca²+-pump-mediated Ca²+ efflux from pancreatic acini. Ca²+-dependent ATPase activity, on the other hand, was not affected by the catalytic subunit. HA 1004, a specific inhibitor of cAMP-dependent protein kinase, failed to inhibit the Ca²+-transport and Ca²+-dependent ATPase activities. Since, this inhibitor was also ineffective at inhibiting the catalytic-subunit-stimulated Ca²+ transport, it may be concluded that HA 1004 is ineffective in blocking the actions of cAMP-dependent protein kinase in pancreatic acinar plasma membranes. In our studies, purified protein kinase C, the phorbol ester TPA and the diacylglycerol derivative, SA-DG, failed to stimulate the Ca²+-uptake activity. However, these agents produced stimulation of the Ca²+-dependent ATPase activity in the presence of phosphatidylserine. CGP 41 251, a potent and selective inhibitor of protein kinase C, did not inhibit the Ca²+-transport or Ca²+-dependent ATPase activities. These observations suggest that protein kinase C may not be involved in the regulation of the plasma membrane Ca²+-pump in guinea-pig pancreatic acinar cells. These results also point to another difference between Ca²+-transport and the Ca²+-ATPase activities in guinea-pig pancreatic acinar plasma membranes. Neither inositol trisphosphate nor inositol tetrakisphosphate produced a statistically significant effect on Ca²+-uptake, suggesting that IP₃- and/or IP₄-mediated Ca²+ releasing pathways may not operate in the isolated guinea-pig pancreatic acinar plasma membrane vesicles. In summary, the results presented here provide evidence to suggest that the high affinity Ca²+-ATPase is not the biochemical expression of plasma membrane Ca²+-transport in panreatic acini. Our results imply a role for calmodulin and cAMP-dependent protein kinase, but not protein kinase C, in the regulation of Ca²+ efflux from pancreatic acinar cells. / Medicine, Faculty of / Anesthesiology, Pharmacology and Therapeutics, Department of / Graduate
83

Studies on the characterization of a soluble factor of a sodium-activated, magnesium-dependent adenosinetriphosphatase in rat cerebral cortex

Toh, Lily 01 January 1975 (has links)
From the standpoint of physiologists, emphasis has been placed on viewing the chemical nature of the membrane as an operational barrier to the free diffusion of ions. This tends to explain the fact that the ionic composition of the cytoplasm of the animal cell differs from its external fluid environment. It is well know that where sodium is the principal cation of the extracellular fluid, potassium has such a role inside the cell. Since there appears to be differential distribution of these ions across the cell membrane, this infers a concentration gradient of these ions. This differential distribution is important for certain life processes, for example, the propagation of nervous impulses mainly is dependent on the changes in concentration of sodium and potassium ions on both sides of the axonal membrane. Much effort has been put into elucidating the mechanism which cells maintain and change such concentration gradients. The enzyme system investigated in this study, namely, the sodium-activated adenosine triphosphatase, might be involved in maintaining this ionic gradient.<\p>
84

Studies on the characterization and activiation by soluble factor of a sodium-activated, magnesium-dependent, adenosinetriphosphatase in rat cerebral cortex

Forrest, Alan B. 01 January 1975 (has links) (PDF)
This study presented evidence for the existence of a membrane-bound, sodium-activated ATPase which does not require potassium ions for its activity. Furthermore, the data suggest the presence of a soluble factor which activates this enzyme and may play a regulatory role in sodium transport.
85

Mechanism of Metal delivery and binding to transport sites of Cu+-transporting ATPases

Yang, Ying 29 April 2005 (has links)
CopA, a thermophilic membrane ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu+ across cellular membranes. CopA contains at least two metal binding domains, a regulatory N-terminal Metal Binding Domain (N-MBD) and an occlusion/coordinating metal binding site in the 6th, 7th and 8th transmembrane segments. Previous studies showed that the presence of millimolar concentration of Cys is essential for CopA activity. The high affinity of CopA for metal in the presence of millimolar concentration of Cys suggests a multifaceted interaction of the enzyme with Cys. To elucidate the role of Cys, we studied its effect on the partial reactions of the catalytic cycle of CopA. We observed that 2-50 mM Cys accelerates enzyme turnover with little effect on the Cu+ affinity of CopA. Cys accelerates enzyme phosphorylation, but has no effect on the dephosphorylation rates. Thus, Cys increases steady state phosphoenzyme levels. Besides, Cys has no significant effect on E1¡ÃƒÂªE2 equilibrium. Similar results were observed in truncated CopA lacking the N-MBD suggesting that enzyme activation by Cys is independent of the regulatory metal binding sites. These results and the kinetic analysis of activation curves suggest that while Cu+ is delivered to the transport site as a Cu-Cys complex, Cys in the mM range stimulates the ATPase acting as a non-essential activator.
86

Analysis of motor activity of recombinant myosin-1c

Biswas, Anindita. January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains xi, 82 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
87

NEUROFIBROMIN, NERVE GROWTH FACTOR AND RAS: THEIR ROLES IN CONTROLLING THE EXCITABILITY OF MOUSE SENSORY NEURONS

Wang, Yue 03 January 2007 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / ABSTRACT Yue Wang Neurofibromin, nerve growth factor and Ras: their roles in controlling the excitability of mouse sensory neurons Neurofibromin, the product of the Nf1 gene, is a guanosine triphosphatase activating protein (GAP) for p21ras (Ras) that accelerates the conversion of active Ras-GTP to inactive Ras-GDP. It is likely that sensory neurons with reduced levels of neurofibromin have augmented Ras-GTP activity. In a mouse model with a heterozygous mutation of the Nf1 gene (Nf1+/-), the patch-clamp recording technique is used to investigate the role of neurofibromin in controlling the state of neuronal excitability. Sensory neurons isolated from adult Nf1+/- mice generate more APs in response to a ramp of depolarizing current compared to Nf1+/+ mice. In order to elucidate whether the activation of Ras underlies this augmented excitability, sensory neurons are exposed to nerve growth factor (NGF) that activates Ras. In Nf1+/+ neurons, exposure to NGF increases the production of APs. To examine whether activation of Ras contributes to the NGF-induced sensitization in Nf1+/+ neurons, an antibody that neutralizes Ras activity is internally perfused into neurons. The NGF-mediated augmentation of excitability is suppressed by the Ras-blocking antibody in Nf1+/+ neurons, suggesting the NGF-induced sensitization in Nf1+/+ neurons depends on the activation of Ras. Surprisingly, the excitability of Nf1+/- neurons is not altered by the blocking antibody, suggesting that this enhanced excitability may depend on previous activation of downstream effectors of Ras. To determine the mechanism giving rise to augmented excitability of Nf1+/- neurons, isolated membrane currents are examined. Consistent with the enhanced excitability of Nf1+/- neurons, the peak current density of tetrodotoxin-resistant (TTX-R) and TTX-sensitive (TTX-S) sodium currents (INa) are significantly larger than in Nf1+/+ neurons. Although the voltage for half-maximal activation (V0.5) is not different, there is a significant depolarizing shift in the V0.5 for steady-state inactivation of INa in Nf1+/- neurons. In summary, these results demonstrate that the enhanced production of APs in Nf1+/- neurons results from a larger current amplitude and a depolarized voltage dependence of steady-state inactivation of INa that leads to more sodium channels being available for the subsequent firing of APs. My investigation supports the idea that regulation of channels by the Ras cascade is an important determinant of neuronal excitability. Grant D. Nicol, Ph.D, Chair
88

Bioresponsive liposomes to target drug release in alveolar macrophages

Hopkinson, Devan January 2017 (has links)
Tuberculosis is one of the most prevalent infectious diseases globally due to the successful survival mechanisms displayed by Mycobacterium tuberculosis (Mtb). Mtb primarily infects alveolar macrophages (AMs) and is able to live intracellularly for extended periods of time due to a number of virulence factors which inhibit the antibacterial mechanisms of the AMs. This aspect of the Mtb life cycle means TB treatments suffer from poor bioavailability and efficacy. Additionally, the rise in resistant strains of Mtb means the use of higher doses and the use of alternative second and third line drugs which increase the risk of systemic toxicity. Drug encapsulation is a novel approach that can provide more favourable drug pharmacokinetics and pharmacodynamics. The aim of this project was to develop a liposomal drug delivery system to target Mtb infected alveolar macrophages. The system involved the encapsulation of two drugs; the antibiotic gatifloxacin (GFLX) and Mtb virulence factor inhibitor CV7. The hypothesis was that the two different antibacterial mechanisms would work in synergy and increase the efficacy of the treatment. AM targeting and receptor-mediated endocytic uptake was encouraged by the presence of a ligand attached to the surface of the liposome. Furthermore a pH-sensitive release mechanism was to be incorporated into the liposome to encourage the release of the encapsulated drugs in the vicinity of the intracellular bacteria. The intention was to produce a drug delivery system to enable a TB therapy regime of fewer, lower doses to increase compliance and reduce systemic toxicity by increasing efficacy through improved bioavailability. GFLX was successfully encapsulated using a weak base active loading method. To establish encapsulation efficiency, a homogeneous fluorescence assay able to quantify intra- and extra-liposomal gatifloxacin simultaneously was developed. pH-sensitive release of the payload could be achieved using a pH-sensitive peptide with a novel design based on chimeric structure, namely P3. CV7 was successfully encapsulated using a weak acid active loading method. CV7 liposomes were able to be functionalised by the incorporation of a mannose ligand on the surface of the liposome. An inhibition assay using the target enzyme of CV7, MptpB, was optimised to assess efficacy of liposomally encapsulated and released CV7. Flow cytometry and confocal microscopy studies confirmed that the liposomal formulations were internalised by the target macrophage cell line, J774a.1. Mannose liposomes conveyed superior uptake kinetics. Further confocal microscopy showed that after internalisation the liposomes entered the endolysosomal pathway and colocalised with BCG. A BCG-macrophage infection model was used to determine the intracellular efficacy of the liposomal formulations. Encapsulated CV7 displayed increased efficacy over free CV7, while encapsulation in functionalised liposomes showed better efficacy still. The encapsulation of GFLX did not increase the efficacy of GFLX and synergy between the two drugs was not achieved. In conclusion, the liposomal encapsulation of CV7 increased uptake of the drug by the target cell line and facilitated colocalisation of the drug with the target pathogen thereby increasing efficacy. Such a formulation could potentially increase bioavailability and efficacy in vivo for a more tolerable TB therapy.
89

A Computational Study of the Mechanism for F1-ATPase Inhibition by the Epsilon Subunit

Thomson, Karen J. January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The multi-protein complex of F0F1 ATP synthase has been of great interest in the fields of microbiology and biochemistry, due to the ubiquitous use of ATP as a biological energy source. Efforts to better understand this complex have been made through structural determination of segments based on NMR and crystallographic data. Some experiments have provided useful data, while others have brought up more questions, especially when structures and functions are compared between bacteria and species with chloroplasts or mitochondria. The epsilon subunit is thought to play a signi cant role in the regulation of ATP synthesis and hydrolysis, yet the exact pathway is unknown due to the experimental difficulty in obtaining data along the transition pathway. Given starting and end point protein crystal structures, the transition pathway of the epsilon subunit was examined through computer simulation.The purpose of this investigation is to determine the likelihood of one such proposed mechanism for the involvement of the epsilon subunit in ATP regulation in bacterial species such as E. coli.
90

An IL-4-dependent macrophage-iNKT cell circuit resolves sterile inflammation and is defective in mice with chronic granulomatous disease

Zeng, Melody Yue 03 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The immune system initiates tissue repair following injury. In response to sterile tissue injury, neutrophils infiltrate the tissue to remove tissue debris and subsequently undergo apoptosis. Proper clearance of apoptotic neutrophils in the tissue by recruited macrophages, in a process termed efferocytosis, is critical to facilitate the resolution of inflammation and tissue repair. However, the events leading to suppression of sterile inflammation following efferocytosis, and the contribution of other innate cell types are not clearly defined in an in vivo setting. Using a sterile mouse peritonitis model, we identified IL-4 production from efferocytosing macrophages in the peritoneum that activate invariant NKT cells to produce cytokines including IL-4 and IL-13. Importantly, IL-4 from macrophages functions in autocrine and paracrine circuits to promote alternative activation of peritoneal exudate macrophages and augment type-2 cytokine production from NKT cells to suppress inflammation. The increased peritonitis in mice deficient in IL-4, NKT cells, or IL-4Ra expression on myeloid cells suggested that each is a key component for resolution of sterile inflammation. The phagocyte NADPH oxidase, a multi-subunit enzyme complex we demonstrated to require a physical interaction between the Rac GTPase and the oxidase subunit gp91phox for generation of reactive oxygen species (ROS), is required for production of ROS within macrophage phagosomes containing ingested apoptotic cells. In mice with X-linked chronic granulomatous disease (X-CGD) that lack gp91phox, efferocytosing macrophages were unable to produce ROS and were defective in activating iNKT during sterile peritonitis, resulting in enhanced and prolonged inflammation. Thus, efferocytosis-induced IL-4 production and activation of IL-4-producing iNKT cells by macrophages are immunomodulatory events in an innate immune circuit required to resolve sterile inflammation and promote tissue repair.

Page generated in 0.039 seconds