• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 23
  • 22
  • 7
  • 6
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 35
  • 33
  • 24
  • 22
  • 21
  • 18
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Etude et caractérisation de nouvelles protéines du cytosquelette du pathogène Trypanosoma Brucei / Characterization of new cytoskeletal proteins in Trypanosoma brucei

Florimond, Celia 21 December 2012 (has links)
La maladie du sommeil ou trypanosomiase africaine humaine fait partie des maladies tropicales négligées sévissant en Afrique sub-saharienne. Elle est causée par le parasite mono-flagellé, Trypanosoma brucei, véhiculé par la mouche tsé-tsé (Glossina spp.). Le flagelle de ce parasite prend naissance au niveau du corps basal et émerge de la cellule en traversant une structure appelée poche flagellaire (FP). Cette poche est formée par l’invagination de la membrane plasmique autour de la base proximale du flagelle. Elle est essentielle à la survie du parasite, car elle constitue l’unique site d’endo- et d’exocytose de la cellule. Cette structure est maintenue autour du flagelle via un constituant du cytosquelette appelé, collier de la poche flagellaire (FPC). Ce collier décrit une structure en anneau ou en fer-à-cheval à la zone de sortie du flagelle. Le premier composant identifié au niveau du FPC est une protéine appelée BILBO1. BILBO1 est essentielle et nécessaire à la biogenèse du FPC et de la FP. Une analyse protéomique et un crible en double-hybride réalisé contre une banque génomique de T. brucei ont permis d’identifier plusieurs partenaires potentiels de BILBO1. Nous avons pu identifier et caractériser de nouvelles protéines du FPC, localisées comme BILBO1 dans une structure en anneau. Nous avons étudié leur fonction chez le parasite, en caractérisant les effets de la surexpression de ces protéines ou de leur ARN interférence sur la croissance et la morphologie cellulaire. / The Human African Trypanosomiasis is a Sub-Saharan Neglected Tropical Disease, caused by Trypanosoma brucei, a mono-flagellate protozoan transmitted by the tsetse fly (Glossina spp.). The T. brucei flagellum originates from a cytoplasmic basal body then grows, to emerge from the cell, by traversing an unusual and essential structure called the Flagellar Pocket (FP). This pocket is an invagination of the pellicular membrane at the base of the flagellum. The FP is essential for the survival of the parasite, because it is the unique site for endo- and exocytosis. The Flagellar Pocket Collar (FPC) is a cytoskeletal component of the FP, and is located at the neck of the FP where it maintains a ring/horseshoe structure at the exit site of the flagellum. The FPC contains numerous uncharacterised proteins, including the first protein identified as FPC component - BILBO1. BILBO1 is essential and required for FPC and FP biogenesis. A proteomic analysis and a private two-hybrid genomic screen experiment on T. brucei have revealed a number of potential BILBO1 partners. We found several proteins localize to the FPC like BILBO1 in a ring-like structure. We characterise these new FPC proteins and their function in the parasite. We have characterised the effects of the GFP fusion protein over-expression and RNAi on cell growth and morphology in T. brucei.
112

Recherche de facteurs impliqués dans le contrôle de l'expression des gènes d'antigènes de surface chez Trypanosoma brucei / Trnascription of surface protein coding genes by trypanosoma brucei

Devaux, Sara 02 February 2007 (has links)
Trypanosoma brucei est un parasite unicellulaire qui est transmis d’un hôte mammifère à l’autre par l’intermédiaire de la mouche Tsé-tsé. Au cours de son cycle de vie, il est donc confronté à des environnements extrêmement différents auxquels il s’adapte en modifiant, entre autres choses, ses antigènes de surface. Dans la mouche, l’antigène de surface exprimé est la PROCYCLINE alors que dans le sang des mammifères, l’antigène exprimé est le VSG. Ces protéines sont importantes pour l’adaptation du parasite à son environnement. L’objet de ce travail était de trouver des facteurs impliqués dans le contrôle de l’expression de ces antigènes de surface. <p>Nous nous sommes donc intéressés aux mécanismes de transcription, impliqués dans la régulation de l’expression des gènes. Chez les autres eucaryotes, les gènes codant pour des protéines sont toujours transcrits par une ARN polymérase de type II (Pol II). Les ARN codant pour des protéines subissent en effet une maturation particulière (épissage et polyadénylation) et la machinerie enzymatique nécessaire à cette maturation est spécifiquement recrutée par la Pol II. Une particularité étonnante des gènes de PROCYCLINE et de VSG est qu’ils sont transcrits par une ARN polymérase de type I (Pol I) mais les transcrits résultants sont maturés comme s’ils étaient transcrits par la Pol II. L’hypothèse à la base de ce travail est que la régulation de l’expression des gènes codant pour la PROCYCLINE et le VSG s’effectue via le recrutement, au niveau de la Pol I, d’un/de facteurs normalement associé(s) à la Pol II. Nous avons donc tenté de trouver un lien entre les machineries Pol I et Pol II du parasite. Pour ce faire, nous nous sommes intéressés d’une part au facteur de transcription TFIIH et d’autre part à la machinerie de transcription Pol II du trypanosome.<p>Le facteur TFIIH est un facteur de transcription qui interagit avec la Pol II mais aussi avec la Pol I chez d’autres eucaryotes. Il nous semblait donc être un bon facteur potentiel de lien entre les deux machineries de transcription. Nous avons dans un premier temps mis en évidence que six des dix sous-unités humaines de ce complexe ont des homologues chez le parasite et que au moins quatre d’entre elles forment un complexe. Nous avons ensuite montré que la présence de TFIIH est importante pour la transcription des gènes Pol II du parasite. Sa fonction dans la transcription des gènes Pol I devra être confirmée. <p>Par ailleurs, nous avons caractérisé la composition du complexe Pol II du parasite ce qui nous permet de conclure que la composition globale de la Pol II du parasite est conservée par rapport à celle de l’homme et de la levure. Nous avons aussi montré que la sous-unité RPB5 qui interagit avec le complexe Pol II n’est pas la même que celle qui interagit avec le complexe Pol I. Le trypanosome possède en effet deux gènes codant pour deux isoformes de RPB5 (RPB5 et RPB5z) alors que la majorité des eucaryotes ne possèdent qu’un seul variant de cette protéine. Nous avons mis en évidence au cours de ce travail que chaque isoforme était spécifique d’un complexe de polymérase particulier. L’isoforme associée à la Pol II et à la Pol III ressemble à la protéine homologue présente chez l’homme et la levure, tandis que l’isoforme associée à la Pol I diverge de cette isoforme canonique. Le même phénomène a été mis en évidence pour la sous-unité RPB6. La présence d’isoformes divergentes spécifiquement associées à la Pol I du parasite pourraient être liées aux capacités qu’à cette holoenzyme de transcrire des gènes codant pour des protéines. <p>Enfin, au cours de ce travail, nous avons montré que l’inhibition de la transcription Pol II perturbait l’expression spécifique de stade des gènes codant pour les antigènes de surface. Bien que le mécanisme sous-jacent reste inconnu, il est possible que l’inhibition de la transcription Pol II, créee artificiellement dans nos expériences, mime ce qui ce passe naturellement lorsque le parasite s’apprête à changer de stade.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
113

Transcription of surfaces proteine genes by Trypanosoma brucei/Recherche de facteurs impliqués dans le contrôle de l’expression des gènes d’antigènes de surface chez Trypanosoma brucei

Devaux, Sara 02 February 2007 (has links)
Trypanosoma brucei est un parasite unicellulaire qui est transmis d’un hôte mammifère à l’autre par l’intermédiaire de la mouche Tsé-tsé. Au cours de son cycle de vie, il est donc confronté à des environnements extrêmement différents auxquels il s’adapte en modifiant, entre autres choses, ses antigènes de surface. Dans la mouche, l’antigène de surface exprimé est la PROCYCLINE alors que dans le sang des mammifères, l’antigène exprimé est le VSG. Ces protéines sont importantes pour l’adaptation du parasite à son environnement. L’objet de ce travail était de trouver des facteurs impliqués dans le contrôle de l’expression de ces antigènes de surface. Nous nous sommes donc intéressés aux mécanismes de transcription, impliqués dans la régulation de l’expression des gènes. Chez les autres eucaryotes, les gènes codant pour des protéines sont toujours transcrits par une ARN polymérase de type II (Pol II). Les ARN codant pour des protéines subissent en effet une maturation particulière (épissage et polyadénylation) et la machinerie enzymatique nécessaire à cette maturation est spécifiquement recrutée par la Pol II. Une particularité étonnante des gènes de PROCYCLINE et de VSG est qu’ils sont transcrits par une ARN polymérase de type I (Pol I) mais les transcrits résultants sont maturés comme s’ils étaient transcrits par la Pol II. L’hypothèse à la base de ce travail est que la régulation de l’expression des gènes codant pour la PROCYCLINE et le VSG s’effectue via le recrutement, au niveau de la Pol I, d’un/de facteurs normalement associé(s) à la Pol II. Nous avons donc tenté de trouver un lien entre les machineries Pol I et Pol II du parasite. Pour ce faire, nous nous sommes intéressés d’une part au facteur de transcription TFIIH et d’autre part à la machinerie de transcription Pol II du trypanosome. Le facteur TFIIH est un facteur de transcription qui interagit avec la Pol II mais aussi avec la Pol I chez d’autres eucaryotes. Il nous semblait donc être un bon facteur potentiel de lien entre les deux machineries de transcription. Nous avons dans un premier temps mis en évidence que six des dix sous-unités humaines de ce complexe ont des homologues chez le parasite et que au moins quatre d’entre elles forment un complexe. Nous avons ensuite montré que la présence de TFIIH est importante pour la transcription des gènes Pol II du parasite. Sa fonction dans la transcription des gènes Pol I devra être confirmée. Par ailleurs, nous avons caractérisé la composition du complexe Pol II du parasite ce qui nous permet de conclure que la composition globale de la Pol II du parasite est conservée par rapport à celle de l’homme et de la levure. Nous avons aussi montré que la sous-unité RPB5 qui interagit avec le complexe Pol II n’est pas la même que celle qui interagit avec le complexe Pol I. Le trypanosome possède en effet deux gènes codant pour deux isoformes de RPB5 (RPB5 et RPB5z) alors que la majorité des eucaryotes ne possèdent qu’un seul variant de cette protéine. Nous avons mis en évidence au cours de ce travail que chaque isoforme était spécifique d’un complexe de polymérase particulier. L’isoforme associée à la Pol II et à la Pol III ressemble à la protéine homologue présente chez l’homme et la levure, tandis que l’isoforme associée à la Pol I diverge de cette isoforme canonique. Le même phénomène a été mis en évidence pour la sous-unité RPB6. La présence d’isoformes divergentes spécifiquement associées à la Pol I du parasite pourraient être liées aux capacités qu’à cette holoenzyme de transcrire des gènes codant pour des protéines. Enfin, au cours de ce travail, nous avons montré que l’inhibition de la transcription Pol II perturbait l’expression spécifique de stade des gènes codant pour les antigènes de surface. Bien que le mécanisme sous-jacent reste inconnu, il est possible que l’inhibition de la transcription Pol II, créee artificiellement dans nos expériences, mime ce qui ce passe naturellement lorsque le parasite s’apprête à changer de stade.
114

Etude fonctionnelle du métabolisme de l’acétyl-CoA chez Trypanosoma brucei / Functional study of acetyl-CoA metabolism in Trypanosoma brucei

Millerioux, Yoann 16 December 2013 (has links)
Trypanosoma brucei, parasite protozoaire flagellé appartenant à l’ordre des kinétoplastidés, est responsable de la maladie du sommeil, ou trypanosomiase humaine africaine (THA). Son cycle de vie fait intervenir un insecte vecteur hématophage (la mouche tsé-tsé ou glossine) qui lors d’un repas sanguin sur un individu infecté ingère des parasites. Après plusieurs étapes de différentiation, les parasites sont injectés à un hôte lors d’un autre repas sanguin. Nous avons étudié le métabolisme intermédiaire et énergétique de la forme procyclique de T. brucei, forme présente dans l’appareil digestif de l’insecte vecteur. Chez ce parasite, la dégradation du glucose aboutit à la production d’acétate dans l’unique mitochondrie, et de succinate dans la mitochondrie et les glycosomes, organelles spécifiques des trypanosomatidés dans lesquels la glycolyse est compartimentalisée. T. brucei utilise une "navette acétate" permettant de transférer l’acétyl-CoA produit dans la mitochondrie vers le cytosol pour initier la biosynthèse de novo des acides gras et la production d’acétate est essentielle à la croissance du parasite. La navette acétate fait intervenir dans la mitochondrie l’acétate:succinate CoA-transférase (ASCT), qui converti l'acétyl-CoA produit à partir du glucose en acétate. Nous avons identifié et caractérisé une autre enzyme mitochondriale contribuant aussi à la production d’acétate à partir du glucose : l’acétyl-CoA thioesterase (ACH). Le double mutant n’exprimant ni l’ACH ni l’ASCT ne produit plus d’acétate et n’est plus viable, confirmant le rôle essentiel de la production d’acétate. Par ailleurs, nous avons montré que l’ASCT, grâce au cycle formé avec la succinyl-CoA synthétase (SCoAS), contribue à la production d’ATP par phosphorylation au niveau du substrat dans la mitochondrie, mais l’ACH n’est pas impliqué dans la production d’ATP. La thréonine est l’acide aminé le plus rapidement consommé par le parasite et sa dégradation aboutit à la production d’acétate et de glycine. En utilisant des outils de génétique inverse et des analyses métaboliques par RMN du proton et HPTLC, nous avons caractérisé la première étape enzymatique de cette voie, catalysée par la thréonine déshydrogénase (TDH), et nous avons montré que la thréonine est la principale source de carbone pour la production d’acétate, pour la biosynthèse de novo des acides gras et des stérols. L’acétyl-CoA est produit dans la mitochondrie à partir du pyruvate provenant de la dégradation du glucose par le complexe pyruvate déshydrogénase (PDH) et à partir de la thréonine dont la dégradation est initiée par la TDH. L’acétyl-CoA provenant de la dégradation du glucose ou de la thréonine est converti en acétate par les mêmes enzymes, l’ACH et l’ASCT. Nous avons montré que la voie de dégradation de la thréonine est sous régulation métabolique. L’activité et l’expression de la TDH ainsi que la production d’acétate à partir de la thréonine sont diminuées dans le mutant knock out de la phosphoenolpyruvate carboxykinase (PEPCK) dans lequel le flux glycolytique est redirigé vers la production d’acétate. De plus, contrairement au glucose, la dégradation de la thréonine ne participe pas à la production d’ATP dans la mitochondrie du parasite. Nos résultats nous amène à l’hypothèse d’un channeling mitochondrial des voies de dégradation du pyruvate et de la thréonine pour la production d’acétate. Les trypanosomes ont développé une voie de biosynthèse de novo des acides gras faisant appel aux élongases du réticulum endoplasmique et un précurseur inhabituel, le butyryl-CoA dont la voie de biosynthèse n’est à l’heure actuelle pas connue chez les trypanosomatidés. Nous avons reconstitué une voie de biosynthèse hypothétique à partir de l’acétyl-CoA dans la mitochondrie. La dernière enzyme de cette voie, l’isovaléryl-CoA déshydrogénase (IVDH), a été caractérisée, et nos premiers résultats indiquent que cette enzyme est impliquée dans la production du butyryl-CoA. / Trypanosoma brucei, a flagellated protozoan parasite of the kinetoplastidae order, is responsible for human sleeping sickness or human african trypanosomiasis (HAT). Its life cycle is complex and involves a haematophageous insect vector (tse-tse fly or Glossina), which ingests parasites during a blood meal on an infected host. After a series of differentiations, the parasites are injected to another host during another blood meal. We studied the energy and intermediary metabolism of the procyclic form of T. brucei, which is present into the midgut of the tse-tse fly. In this parasite, glucose degradation produces acetate into the mitochondria of the parasite and succinate into both the mitochondria and the glycosomes. Glycosomes are specific organites of trypanosomatids in which the glycolysis is compartimentalized. T. brucei uses an "acetate shuttle" to transfer acetyl-CoA from the mitochondrion to the cytosol to feed de novo fatty acids biosynthesis. This acetate production is essential for cell viability. The "acetate shuttle" involves inside the mitochondrion, the acetate:succinate CoA-transferase (ASCT), which converts glucose-derived acetyl-CoA into acetate. We identified and characterised a new mitochondrial enzyme involved in acetate production from glucose, in addition to ASCT: the acetyl-CoA thioesterase (ACH). Indeed, a double mutant affecting expression of both ACH and ASCT doesn’t produce anymore acetate and is lethal, which confirms the essential role of mitochondrial production of acetate. In addition, we showed that ASCT, via the ASCT/SCoAS (succinyl-CoA synthetase) cycle, contributes to mitochondrial ATP production by substrate phosphorylation, while ACH is not involved in ATP production. We also observed that contribution of the ASCT/SCoAS cycle and oxidative phosphorylation by the mitochondrial F0-F1-ATP synthase to ATP production are similar. Threonine is the most rapidly consumed amino acid by the procyclic trypanosomes and its degradation produces acetate and glycine. Using a combination of reverse genetics, proton NMR metabolic profiling and HPTLC, we characterized the first enzymatic step of the pathway, catalysed by the threonine dehydrogenase (TDH) and showed that threonine is the main carbon source for acetate production, de novo fatty acids and sterol biosynthesis. Acetyl-CoA is produced into the mitochondrion from glucose-derived pyruvate by the pyruvate dehydrogenase complex (PDH) and by the two first steps of the threonine degradation pathway, including TDH. Both glucose-derived and threonine-derived acetyl-CoA is then converted into acetate by the same enzymes, ACH and ASCT. We also found that the threonine degradation pathway is under metabolic control. Indeed, TDH activity, TDH expression and threonine-derived acetate production are reduced in the phosphoenolpyruvate carboxykinase (PEPCK) knock out mutant, in which glycolytic flux is redirected towards acetate production. In addition, we showed that, as opposed to glucose-derived acetyl-CoA, metabolism of threonine-derived acetyl-CoA doesn’t contribute to ATP production into the mitochondrion of the parasite. Our results suggest the existence of mitochondrial metabolic channelings, which disconnect pyruvate and threonine degradation pathways leading to acetate production. Trypanosomes developed a specific de novo fatty acids biosynthesis pathway using elongases located in the endoplasmic reticulum and an unusual primer, butyryl-CoA. The biosynthesic pathway of butyryl-CoA has not been investigated so far in trypanosomatids. Genomic data mining of the T. brucei database, highlights an hypothetical mitochondrial biosynthesis pathway from acetyl-CoA to butyryl-CoA. The last enzyme of this pathway, isovaleryl-CoA dehydrogenase (IVDH), was characterised and our first results suggest that this enzyme is indeed involved into butyryl-CoA production.
115

Identificação dos determinantes estruturais de Fe/MnSODs necessários a especificidade por metal. / Identification of Fe/MnSODs structural determinants necessary to metal specificity.

Fontolan, Laureana Stelmastchuk Benassi 18 January 2016 (has links)
Superóxido dismutases (SODs) são metaloenzimas que convertem o ânion superóxido em oxigênio molecular (O2) e peróxido de hidrogênio (H2O2). A presença de metal nessas enzimas está diretamente relacionada com seus mecanismos de catálise e com suas estruturas tridimensionais. Evolucionariamente, FeSOD e MnSOD podem ter evoluído de um gene ancestral comum, porque possuem sequências homólogas e estruturas cristalográficas sobreponíveis. Entretanto, a nível catalítico, ambas as proteínas divergiram o suficiente para que seus metais não possam ser intercambiáveis, produzindo uma enzima funcional, indicando que essas proteínas possuem alta especificidade por metal. O objetivo deste projeto de pesquisa é Identificar os determinantes estruturais do ajuste fino da especificidade por metal de MnSOD e FeSOD. Inicialmente, pretendese selecionar resíduos para mutagênese sítio-dirigida em TrMnSOD e TbFeSODB2, a partir de análise de acoplamento estatístico (SCA). Em seguida, mutantes serão construídos, expressos, purificados e cristalizados. A estrutura tridimensional dos mutantes será resolvida por cristalografia e sua atividade enzimática determinada, bem como a acomodação estrutural dos metais por Resonância Paramagnética Eletrônica. Nossa hipótese de trabalho é que através de SCA é possível elencar resíduos de aminoácidos candidatos para mutagênese sítio-dirigida para desenhar novas SODs, com características intermediárias de ligação por Fe/Mn, como possibilidade de interconversão de especificidade, caminhando na história evolutiva dessas moléculas. / Superoxide dismutases (SODs) are metalloenzymes that convert the superoxide anion in molecular oxygen (O2) and hydrogen peroxide (H2O2). The metal in the catalytic center of such enzymes is directly related to their catalysis mechanisms and tridimensional structures. Evolutionarily, FeSOD and MnSOD may have evolved from a common ancestor, because both proteins have homologous primary sequences and superposable crystallographic structures. However, at the catalytic level, both proteins diverged sufficiently to prevent interchange of their metallic centers, which would generate non-functional enzymes, indicating that these proteins have high metal specificity. The objective of this research project is to identify structural determinants of Fe/MnSODs necessary to metal specificity. We intend to use statistical coupling analysis (SCA) to select amino acid residues for site-directed mutagenesis in TrMnSOD e TbFeSODB2. Mutant genes will be constructed and their proteins expressed, purified and crystallized. The tridimensional structure of such mutants will be solved by X-ray crystallography and their enzymatic activities determined, as well as their electron paramagnetic resonance spectra. We hypothesize that SCA is useful to identify amino acid candidates for site-directed mutagenesis to design new SODs with intermediated Fe/Mn specificity, and even metal specificity interconversion, by studying the evolutionary history of these proteins.
116

Caracterização de interações proteína-DNA em tripanossomas. / Characterization of protein-DNA interactions in trypanosomes.

Llanos, Ricardo Pariona 23 April 2014 (has links)
O T. cruzi, é o agente causador da doença de Chagas. O estado redox NAD+/NADH intracelular é fundamental na manutenção do metabolismo celular. A GAPDH apresenta a função de proteção do telômero em mamíferos contra degradação, isto por causa de ligar se ao telômero. Aqui, mostramos que a GAPDH recombinante de T. cruzi (rTcGAPDH) interage com o DNA telomérico. A rTcGAPDH liga ao DNA de simples fita. Mostramos que a GAPDH liga ao DNA telomérico in vivo em células epimastigotas, onde a [NADH] é maior que [NAD+], mas a adição de NAD+ exógeno bloqueia esta interação. Corroborando a hipótese de que o equilíbrio NAD+/NADH determina a interação GAPDH-telômero, vimos que o tripomastigota tem maior [NAD+] intracelular que a [NADH] e a GAPDH não é capaz de ligar se ao DNA telomérico. Além disso, o NADH exógeno resgata a interação GAPDH-telómero nesta fase. É importante o equilíbrio NAD+/NADH desta interação em tripanosomas, sugerindo que a proteção do telômero do parasita pode ser regulada pelo estado metabólico das células. / The T. cruzi, is the causative agent of Chagas disease. The redox state of NAD+/NADH intracellular is critical in the maintenance of cellular metabolism. The GAPDH has the protection function of the telomere in mammals against degradation, because it is connecting to the telomere. Here we show the recombinant GAPDH of T. cruzi (rTcGAPDH) interacts with telomeric DNA. The rTcGAPDH binds to single-stranded DNA. We show GAPDH to bind to telomeric DNA in vivo epimastigotes cells, where [NADH] is greater than [NAD+], but the addition of exogenous NAD+ blocks this interaction. Corroborating the hypothesis that the NAD+/NADH balance determines the GAPDH-telomere interaction, we saw that the trypomastigote has higher [NAD+] that intracellular [NADH] and GAPDH is not able to connect to telomeric DNA. In addition, the exogenous NADH recovers the GAPDH-telomere interaction at this stage. It is important the NAD+/NADH balance this interaction in trypanosomes, suggesting that the protection of the telomere of the parasite can be regulated by the metabolic state of the cells.
117

Synthesis of Fused Heterocyclic Diamidines for the Treatment of Human African Trypanosomiasis and Fluorescence Studies of Selected Diamidines

Brown Barber, Jennifer Crystal 20 April 2010 (has links)
A class of linear diamidines was synthesized for the evaluation as a treatment of Human African Trypanosomiasis. These fused heterocyclic compounds are thiazole[5,4-d]thiazoles and are of interest because the parent compound, 2,5-Bis(4-amidinophenyl)-thiazolo[5,4-d]thiazole HCl salt, which is also called DB 1929, has exhibited a low nanomolar IC50 value against Trypanosoma brucei rhodesiense and has shown selectivity for binding to the human telomere G-quadruplex over that of DNA duplex. A fluoro and a methoxy derivative have been synthesized and are currently undergoing testing for activity and binding affinity. In addition, fluorescence studies of selected diamidines were done to study the effect of structural variation on fluorescence. This data is useful since it can determine what types of moieties are needed to yield a compound that will fluoresce in the higher wavelengths (500 nm and above) of the visible spectrum, which would be advantageous in determining the uptake of the drug in the trypanosome within the endemic areas of Africa with a simple microscope.
118

Salvage and de novo synthesis of nucleotides in Trypanosoma brucei and mammalian cells /

Fijolek, Artur, January 2008 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2008. / Härtill 3 uppsatser.
119

Caracterização de interações proteína-DNA em tripanossomas. / Characterization of protein-DNA interactions in trypanosomes.

Ricardo Pariona Llanos 23 April 2014 (has links)
O T. cruzi, é o agente causador da doença de Chagas. O estado redox NAD+/NADH intracelular é fundamental na manutenção do metabolismo celular. A GAPDH apresenta a função de proteção do telômero em mamíferos contra degradação, isto por causa de ligar se ao telômero. Aqui, mostramos que a GAPDH recombinante de T. cruzi (rTcGAPDH) interage com o DNA telomérico. A rTcGAPDH liga ao DNA de simples fita. Mostramos que a GAPDH liga ao DNA telomérico in vivo em células epimastigotas, onde a [NADH] é maior que [NAD+], mas a adição de NAD+ exógeno bloqueia esta interação. Corroborando a hipótese de que o equilíbrio NAD+/NADH determina a interação GAPDH-telômero, vimos que o tripomastigota tem maior [NAD+] intracelular que a [NADH] e a GAPDH não é capaz de ligar se ao DNA telomérico. Além disso, o NADH exógeno resgata a interação GAPDH-telómero nesta fase. É importante o equilíbrio NAD+/NADH desta interação em tripanosomas, sugerindo que a proteção do telômero do parasita pode ser regulada pelo estado metabólico das células. / The T. cruzi, is the causative agent of Chagas disease. The redox state of NAD+/NADH intracellular is critical in the maintenance of cellular metabolism. The GAPDH has the protection function of the telomere in mammals against degradation, because it is connecting to the telomere. Here we show the recombinant GAPDH of T. cruzi (rTcGAPDH) interacts with telomeric DNA. The rTcGAPDH binds to single-stranded DNA. We show GAPDH to bind to telomeric DNA in vivo epimastigotes cells, where [NADH] is greater than [NAD+], but the addition of exogenous NAD+ blocks this interaction. Corroborating the hypothesis that the NAD+/NADH balance determines the GAPDH-telomere interaction, we saw that the trypomastigote has higher [NAD+] that intracellular [NADH] and GAPDH is not able to connect to telomeric DNA. In addition, the exogenous NADH recovers the GAPDH-telomere interaction at this stage. It is important the NAD+/NADH balance this interaction in trypanosomes, suggesting that the protection of the telomere of the parasite can be regulated by the metabolic state of the cells.
120

The trypanosome lytic factor of human serum, a Trojan horse

Vanhollebeke, Benoît 01 December 2008 (has links)
The trypanolytic factor of human serum :a trojan horse.<p><p><p>African trypanosomes, the prototype of which is Trypanosoma brucei, are protozoan parasites of huge clinical, veterinary and economical importance. They develop in the body fluids of various mammals (including humans) where they face and manipulate many different aspects of the immune system. The extent of this interplay is pivotal to both host and parasite survival, and depending on parasite virulence and host susceptibility, infection duration ranges from some months to several years. At the end, host survival is invariably compromised.<p><p>Humans and few other primates provide however a striking exception to this fatal outcome. They are indeed fully protected against most trypanosome infections through the presence in their blood of a so-called trypanosome lytic factor (TLF). The TLF is known to circulate mainly in the form of a high density lipoprotein particle characterized by the simultaneous presence of two primate-specific proteins: haptoglobin-related protein (Hpr) and apolipoprotein L-I (apoL-I).<p><p>We have contributed to delineate the respective roles played by Hpr and apoL-I in the lysis process.<p><p>ApoL-I was shown to be the exclusive toxin of the TLF. In its absence humans get fully susceptible to any trypanosome infection. The toxin was shown to kill the parasite after endocytosis through the generation of ionic pores in the lysosomal membrane. Those pores dissipate membrane potential and trigger the influx of chloride ions from the cytoplasm into the lysosomal compartment, leading to an eventually fatal uncontrolled osmotic phenomenon. <p><p>ApoL-I efficient delivery to the parasite relies on Hpr. African trypanosomes indeed fulfil their heme nutritional requirements by receptor-mediated internalization of the complex formed by haptoglobin, an evolutionary conserved acute-phase protein, and hemoglobin, resulting from physiological intravascular hemolysis. This heme uptake by the auxotrophic parasites contributes to both growth rate and resistance against host oxidative burst. In human serum, the trypanosome receptor is unable to discriminate between Hp and the closely related TLF-bound Hpr, explaining TLF efficient endocytosis.<p><p>As such, the TLF acts as a Trojan horse, killing the parasite from inside the cell after having deceived its vigilance through the high similarity between heme-delivering haptoglobin and toxin-associated Hpr. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0572 seconds