• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 513
  • 195
  • 144
  • 127
  • 95
  • 28
  • 27
  • 14
  • 13
  • 13
  • 13
  • 13
  • 13
  • 13
  • 11
  • Tagged with
  • 1402
  • 174
  • 144
  • 125
  • 124
  • 112
  • 78
  • 75
  • 73
  • 71
  • 71
  • 71
  • 68
  • 64
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Blast Performance of Reinforced Concrete Columns Protected by FRP Laminates

Kadhom, Bessam January 2016 (has links)
Recent terrorist attacks on critical infrastructures using car bombs have heightened awareness on the needs for blast resistance of structures. Blast design of civilian buildings has not been a common practice in structural design. For this reason, there is now an urgent need to mitigate the potentially devastating effects of blast shock waves on existing structures. The current research project, the results of which are reported in this dissertation, aims to expand knowledge on blast resistance of reinforced concrete building columns, while developing a technology and design procedure for protecting critical buildings columns against the damaging effects of impulsive blast loads through the use of externally applied fibre-reinforced polymer (FRP) jackets of different material architecture. The research project has a significant experimental component, with analytical verifications. A total of thirty two reinforced concrete columns were experimentally investigated under the effects of simulated blast loads using the University of Ottawa Shock Tube. Column dimensions were 150 mm x 150 mm in cross section and 2438 mm in length. Each concrete column was reinforced longitudinally with four 10M rebars which were tied laterally with 6.3 mm closed steel hoops, spaced at 37.5 mm and 100 mm c/c, representing seismic and non-seismic column details, respectively. The experimental research had two phases. Phase-I (sub-study) included blast tests of eight as-built, seismically detailed columns. The behaviour of these columns was explored under single and multiple blast shots, with and without the application of pre-blast axial loads. Phase-II (main-study) included column tests of different carbon FRP (CFRP) designs to investigate the significance of the use of different CFRP column jacket designs on dynamic response of twenty four seismic and non-seismic RC columns. Analytical investigation was conducted to assess and verify the significance of experimentally investigated parameters on column response. These included the use of Single-Degree-of-Freedom (SDOF) dynamic inelastic analysis, generation of dynamic resistance functions, the effects of variable axial loads, different plastic hinge lengths and the influence of secondary moments (P- moments) on column behaviour. The results indicate that the loading history has effects on column response, with multiple shots reducing column stiffness, and affecting dynamic response of columns relative to single blast shots of equivalent magnitude. The effect of concrete strength within the normal-strength concrete range is to increase strength and decrease deformations. Columns with CFRP jackets have considerable improvements in column deformability, with additional increases in column strength. The CFRP laminate design influences performance, with jackets having fibres in ±45o orientation especially improving column ductility and increasing plastic hinge lengths, thereby permitting redistribution of stresses and dissipating blast energy. Axial gravity loads vary during blast loads and can affect column strength. It was shown that SDOF dynamic inelastic analysis does capture key structural performance parameters in blast analysis. The consideration of experimentally observed parameters in column analysis; including the influence of CFRP design and associated change in plastic hinge length, variable axial load during response, and secondary moment (P- moments) result in significant improvements in the accuracy of blast analysis. The experimental results and the suggested improvements to the SDOF analysis technique can be used to implement a performance-based design approach recommended as part of the current research project for design of CFRP protection systems for concrete columns.This research project was conducted jointly by the National Research Council Canada (NRC) and the University of Ottawa.
322

Modeling and experimenting a novel inverted drift tube device for improved mobility analysis of aerosol particles

Nahin, Md Minal 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Ion Mobility Spectrometry (IMS) is an analytical technique for separation of charged particles in the gas phase. The history of IMS is not very old, and in this century, the IMS technique has grown rapidly in the advent of modern instruments. Among currently available ion mobility spectrometers, the DTIMS, FAIMS, TWIMS, DMA are notable. Though all the IMS systems have some uniqueness in case of particle separation and detection, however, all instruments have common shortcomings. They lack in resolution, which is independent of mobility of different charged particles and they are not able to separate bigger particles (20 120 nm) with good accuracy. The work presented here demonstrates a new concept of IMS technique at atmospheric pressure which has a resolution much higher than that of the currently available DTIMS (Drift Tube Ion Mobility Spectrometry) instruments. The unique feature of this instrument is the diffusion auto-correction. Being tunable, It can separate the wide range of particles of different diameters. The working principle of this new IMS technique is different from the typical DTIMS and to simply put, it can be considered as an inversion of commonly used technique, so termed as Inverted Drift Tube (IDT).The whole work performed here can be divided into three major phases. In the first phase, the analytical solution was derived for two new separation techniques: IPF (Intermittent push flow) and NSP (Nearly stopping potential) separations. In the next phase, simulations were done to show the accuracy of the analytical solution. An ion optics simulator software called SIMION 8.1 was used for conducting the simulation works. These simulations adopted the statistical diffusion (SDS) collision algorithm to emulate the real scenario in gas phase more precisely. In the last phase, a prototype of experimental setup was built. The experimental results were then validated by simulated results.
323

Template Synthesis of Structure-Controlled Porphyrin Tubes and Those Inclusion and Optical Properties / テンプレート法による構造規定されたポルフィリンチューブの合成とその分子認識能ならびに光特性

Chiba, Yusuke 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21117号 / 工博第4481号 / 新制||工||1696(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 辻 康之, 教授 大江 浩一, 教授 村田 靖次郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
324

The Role of Glycosylphosphatidylinositol Biosynthesis and Remodeling in Neural and Craniofacial Development

Lukacs, Marshall 14 October 2019 (has links)
No description available.
325

Mesenchymal Analysis of Human Pluripotent Stem Cell-Derived Gastrointestinal Organoids

Haines, Lauren E. 04 November 2019 (has links)
No description available.
326

Characterization of a Novel Terahertz Chemical Sensor

Tyree, Daniel J. January 2020 (has links)
No description available.
327

Experimental and kinetic modeling study of isoprene oxidation

Zhou, Chengyu 11 May 2023 (has links)
Rapid consumption of energy storage and serious environmental pollution demand more advanced combustion strategies and more renewable fuels. Development of chemical kinetic models and suitable selection of fuels are key factors in evolving and optimizing new engine and combustion concepts. Alkenes are typical composition of gasoline as well as typical intermediates in the oxidation of larger alkanes and alcohol, while isoprene is one of the important alkenes impacting both the atmospheric pollution and energy depletion. Isoprene is one of the most important species in the atmosphere chemistry, dominating the carbon flux emitted by vegetation and accounting for forty percent of non-methane biogenic emissions globally. Isoprene has been recognized not only as a noteworthy precursor to polycyclic aromatic hydrocarbons but also as a promising fuel additive. Isoprene has been extensively investigated in the atmosphere chemistry, but its role as a critical diolefin in combustion chemistry has received less attention. Only A few researchers studied isoprene chemistry by carrying out pyrolysis experiments and theoretical calculations. To better understand the combustion chemistry of isoprene, this work presents a detailed experimental and kinetic modeling investigation. This study explored the chemical kinetics of isoprene oxidation in ignition delay times and speciation measurements. Our shock tube experiments for ignition delay times covered the temperatures of 680 – 1470 K, pressures of 1 – 30 bar, and equivalence ratios of 0.5 – 2. We measured laser-based time-resolved CO speciation in a low-pressure shock tube at temperatures of 900 – 1470 K, pressures of 1 and 4 bar, and equivalence ratios of 0.5 and 1. Major species concentrations were measured in a jet-stirred reactor at 680 – 1280 K, 1 bar, and φ = 0.5 – 2. Afterwards, we used 1,3-butadiene as a basis to develop fuel-specific isoprene sub-mechanism and coupled it with a C0-C5 core sub-mechanism. Finally we developed a comprehensive kinetic model including 1585 species and 6884 reactions and achieved a good agreement between the model’s predictions and the experiments. To our knowledge, this study is the first comprehensive effort to describe the process and provides valuable insights into isoprene oxidation. The work reported in the thesis also facilitates the better understanding of combustion chemistry of diolefins.
328

Histopathology of, and retinoic acid effects in, biochemically identified splotch-delayed mouse embryos

Moase, Connie E. (Connie Evelyn) January 1986 (has links)
No description available.
329

The Effect of Early Enteral Nutrition on the Number of Mechanical Ventilation Days and Length of Stay in the Coronary Intensive Care Unit

Penniman, Elizabeth Pash 12 May 2008 (has links)
No description available.
330

Analys av värmeåtervinningsmöjligheter och värmeväxlare kring elektrolysprocessen vid Bolidens Rönnskärsanläggning / Analysis of potential for heat recovery and heat exchanger for the electrolysis process at the Boliden Rönnskär plant

Lundberg, Anton January 2022 (has links)
Bolidens elektrolysverk på Rönnskär hade ett behov av att analysera potentialen för att återvinna och utnyttja spillvärme från kondensat för verket. Ångan som användes för existerande värmeväxlare varåtervunnen från olika processer inom Rönnskär, men även producerad av en oljepanna. Den ännu outnyttjade spillvärme som fanns på elektrolysverket skulle potentiellt kunna assistera existerande värmeväxlare för att minska oljekonsumtionen. Ett av målen var att undersöka om det var möjligt attöka temperaturen på elektrolyten till 63 ℃ med ytterligare en värmeväxlare före den nuvarandevärmeväxlaren. Uppvärmningspotentialen för en värmeväxlare med den kondensatmängd och kondensattemperatur som fanns på elektrolysverket skulle undersökas om temperaturen på kondensatet var lägre än 63 ℃. Projektet analyserade relaterade system inom elektrolysverket och mer specifikt avkoppringens utformning med olika maskiner och system. Analysen inkluderade också rekommendationer inom val av värmeväxlare, dimensionering och beräkningar för konfiguration av rörvärmeväxlaren. Sedan beräknades även kondensatmängd, kondensattemperatur, hållbarhetsanalys och ekonomisk analys. En känslighetsanalys utfördes för de viktigaste variablerna.  Resultaten visade att mängden kondensat var för liten för att motivera ytterligare en värmeväxlare. Detta ledde till två fallstudier för olika scenarion inom elektrolysverket vad gällde mängd kondensat, kondensattemperaturer och uppvärmningspotential för elektrolyten. I första fallet beräknades kravet på kondensattemperaturen för uppvärmning av elektrolyten till 63 ℃. I andra fallet utforskades uppvärmningspotentialen av elektrolyten med den beräknade kondensattemperatur på cirka 60 ℃. För båda fallen så användes varierande volymflöden mellan 53,5 liter/min till 126 liter/min. Det medfördeatt elektrolyttemperaturen kunde värmas upp till ett intervall på mellan 30 och 44 ℃. Elektrolytens uppnådda temperatur var beroende av vilket volymflöde som valdes. För att nå temperaturen 63 ℃ påelektrolyten behövdes en kondensattemperatur på cirka 96 ℃ för maxkapacitet. Bästa valet av värmeväxlare var rörvärmeväxlare. Utformningen av värmeväxlaren gav ett acceptabelt tryckfall och god total värmeöverföringskoefficient. Hållbarhetsanalysen visade att det var gynnsamt med en värmeväxlare för att minska koldioxidutsläppen. Minskade koldioxidkostnader gav en mer gynnsam ekonomi, frånsett eventuella investeringskostnader. Känslighetsanalysen visade att känsliga variabler har låg påverkan på resultatet och att de viktiga variablerna som temperaturer och flöden påverkaderesultatet som förväntat. Slutligen kunde man konstatera att denna lösning inte var gynnsam för tillfället på grund av brist på kondensatmängd, men kan vara relevant för elektrolysverket i framtiden. / Boliden's electrolysis plant at Rönnskär had a need to analyze the potential to reuse waste heat from the condensate. The steam used for existing heat exchangers was recovered by various processes within Rönnskär and/or produced by an oil fired boiler. The waste heat that was available at the electrolysis plant could possibly assist existing heat exchangers to reduce oil consumption. One of the goals was to investigate whether it was possible to increase the temperature of the electrolyte to 63 ℃with an additional heat exchanger before the current heat exchanger. The heating potential of a heat exchanger with the certain amount of condensate and condensate temperature that was present at the electrolysis plant would be investigated if the temperature of the condensate was lower than 63 ℃.The project analyzed related systems within the electrolysis plant and more specifically, the process of interest in terms of design with different machines and systems. The analysis also included recommendations in the selection of heat exchangers, dimensioning and calculations for the configuration of a shell and tube heat exchanger. The amount of condensate, condensate temperature, sustainability analysis and economic analysis were also calculated. The sensitivity analysis was performed on important and sensitive variables. The result showed that the amount of condensate was too small to justify an additional heat exchanger. This led to two case studies for different scenarios within the electrolysis plant in terms of amount of condensate, condensate temperatures and heating potential for the electrolyte. In the first case, the requirement for the condensate temperature for heating the electrolyte to 63 ℃ was calculated. In the second case, the heating potential of the electrolyte with the calculated condensate temperature and the different amounts of condensate were explored. The volume flow varied between 53,5 liters/min to 126 liters/min for the condensate with a temperature of about 60 ℃. This meant that the electrolyte temperature could be heated between a range 30 to 44 ℃. The temperature of the electrolyte was depended on the volume flow chosen. To reach the temperature of 63 ℃ on the electrolyte, a condensate temperature of approximately 96 ℃ was needed for maximum capacity. The best choices of heat exchangers were a shell and tube heat exchanger. The design of the heat exchanger gave an acceptable pressure drop and a good overall heat transfer coefficient. The sustainability analysis showed that it was beneficial to have a heat exchanger to reduce carbon dioxide emissions. By reducing the carbon emissions, it resulted in less cost for EUA (European union allowance), but the investment cost was not included in these calculations. The sensitivity analysis showed that sensitive variables have a low impact on the result and that the important variables such as temperatures and flows affected the result as expected. Finally, it could be stated that this solution was not favorable at the moment due to a lack of condensate but may be relevant for the electrolysis plant in the future.

Page generated in 0.036 seconds