• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 17
  • 3
  • 2
  • Tagged with
  • 43
  • 16
  • 12
  • 12
  • 10
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Tunneling spectroscopy of highly ordered organic thin films / Tunnelspektroskopie von hochgeordneten organischen Dünnschichten

Törker, Michael 23 May 2003 (has links) (PDF)
In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data were recorded on monolayer and submonolayer PTCDA films. Measurements on closed PTCDA layers at different fixed tip sample separations revealed a peak +0.95V. Other measurements performed consecutively on a PTCDA island and on uncovered Au(100) areas showed that this peak is indeed caused by the PTCDA molecules. Another set of consecutive measurements on herringbone and square phase PTCDA islands indicates that in the normalized differential conductivity the peak shape and peak position depend on the molecular arrangement. The STS data are compared to UPS and IPES results, already published. In the case of highly ordered films of HBC on Au(100) it was possible to derive the energetic positions of the HBC frontier orbitals and the energies of the molecular states next to these frontier orbitals from Tunneling Spectroscopy measurements. These measurements were performed using two different tip materials. The results are compared to UPS measurements, to theoretical calculations of the electronic conductance based on a combination of the Landauer transport formalism with a density-functional-parametrized tight-binding scheme within the Local Density Approximation (LDA) as well as semiempirical quantum chemistry calculations. / Für die hier dargestelleten Arbeiten wurde ein Au(100) Einkristall als Substrat für die organische Molekularstrahlepitaxie verwendet. Hochgeordnete organische Dünnschichten der Moleküle 3,4,9,10-Perylen-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Hexa-peri-hexabenzo-coronen (HBC) sowie organisch-organische Heteroschichten wurden auf der Au(100) Oberfläche abgeschieden. Die Struktur der Schichten wurde mittels Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) untersucht. Tunnelspektroskopiedaten wurden für Monolagen sowie Submonolagen von PTCDA aufgenommen. Messungen an geschlossenen PTCDA Filmen zeigen für verschiedene Probe-Spitze-Abstände ein Maximum in der normierten differentiellen Leitfähigkeit bei +0.95V. Aufeinanderfolgende Messungen auf PTCDA-Inseln und unbedeckten Gebieten der Au(100) Oberfläche zeigen eindeutig, dass dieses Maximum auf die PTCDA Moleküle zurückzuführen ist. Weitere Messungen an PTCDA Inseln unterschiedlicher Struktur (Fischgrätenstruktur bzw. quadratische Struktur) belegen einen Zusammenhang zwischen der Anordnung der Moleküle und der Peakposition bzw. Peakform in der normierten differentiellen Leitfähigkeit. Die STS Daten werden mit UPS und IPES Ergebnissen aus der Literatur verglichen. Im Falle hochgeordneter HBC Schichten auf Au(100) war es möglich, neben dem höchsten besetzten und niedrigsten unbesetzten Molekülorbital auch die energetische Position der jeweils nächsten Orbitale zu bestimmen. Diese Messungen wurden mit zwei unterschiedlichen Spitzenmaterialien durchgeführt. Die Ergebnisse für HBC auf Au(100) werden mit UPS Daten sowie mit theoretischen Rechnungen verglichen.
32

Photoluminescence Intermittency of Semiconductor Quantum Dots in Dielectric Environments

Issac, Abey 14 August 2006 (has links) (PDF)
The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. The distribution of the dark state lifetimes can be described by a power law over a wide range while that of bright state can be described by a power law at shorter times followed by an exponential decay. The lifetimes of the bright and dark states are influenced by the dielectric properties of the surrounding environment. Our experimental results show that the lifetime of the dark state increases with the dielectric constant of the matrix. This is very clear from the linear correlation between αoff and f (ε). We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. A charge will be more stabilized in a medium with high dielectric constant. An energetically more favourable state for an electron in a high dielectric medium decreases the return probability which eventually increases the duration of the off-time. Moreover, the self-trapping model establishes a general model for distribution of states in a matrix. We like to mention, that in the case of bright states, a qualitative observation is the cross over of the on-time power law behavior to an exponential one. The power law part of the decay is nearly matrix independent while the exponential decay, which limits the maximum on-time, strongly depends on dielectric properties of the environment. The exponential part of the on-time probability decays much faster in a high dielectric medium and there exists a linear relation between the time constant of the exponential decay and f (ε). Theoretical background has been provided for the observed results using the recently published DCET model which correlates PL intermittency of QDs with properties of the environment. This supports our previous conjecture of a general model for matrix controlled blinking process. The disagreement between experimentally observed dependence of αoff and f (ε) for different matrices with that of the static tunnelling model proposed by Verberk is due to the fact that the tunneling model considers only an electron transfer between a QD and spatially distributed trap states in vacuum. These states are already stabilized states. It does not assume any medium in between. Therefore, matrix dependent blinking kinetics can not be explained quantitatively by tunneling model even though tunneling between a QD and spatially distributed trap states gives a power law distribution for the blinking kinetics. DCET is a more general (dynamic) model. The bright and dark state parabolas contain QD, charge and the matrix. Therefore, this model could in principle explain matrix dependent blinking kinetics in a better way, for example, the energy difference between the minima of the bright and dark state parabolas (-ΔG0) is defined by the stabilization energy of the system provided by the matrix. However, due to lack of the relevant intrinsic parameters we did not compare this relationship and dependence qualitatively. / Betrachtet man die Fluoreszenz einzelner Farbstoffmoleküle oder Halbleiternanokristalle bei kontinuierlicher Anregung, so stellt man fest, dass die im Zeitverlauf beobachtete Intensität einer stochastischen Variation unterliegt, d. h. dass das Chromophor zwischen emittierenden und nicht emittierenden Zuständen, auch Hell- und Dunkelzuständen genannt, hin- und herschaltet. Dieses als Blinken bekannte Phänomen ist physikalisch wie auch technologisch herausfordernd, lässt es doch einerseits die Realisierbarkeit einer Reihe von quantenoptischen Anwendungen, so z. B. auf dem Gebiet der Quantenkryptographie, dem Quantum Computing oder der optischen Schaltungstechnik auf Basis einzelner Quantenobjekte, in naher Zukunft möglich erscheinen. Andererseits setzt es gewissen Anwendungen, die auf die permanente Sichtbarkeit des Chromophors aufbauen, Grenzen, so zum Beispiel der Verwendung als Lumineszenzmarker in der medizinischen Diagnostik. Weiterhin ist festzustellen, dass das Blinken kritisch von den äußeren Bedingungen und von den Umgebungsparametern abhängt. Aus diesen und anderen Gründen ist ein fundamentales Verständnis der physikalischen Ursachen und der Wechselwirkungsprozesse unerlässlich. Die Forschung dazu steckt noch in den Kinderschuhen. Basierend auf umfangreiche Messungen der Fluoreszenzzeitreihen einzelner Nanokristalle aus CdSe und CdSe/ZnS in verschiedenen Umgebungen, zeigt diese Dissertation exemplarisch den Einfluss der Dielektrizitätsparameter auf das Blinken. Zur Erklärung des Sachverhalts wird ein so genanntes Self-Trapping-Modell zu Rate gezogen. Demnach kommt es zu einer Ionisation des Quantenobjekts und anschließender Ladungstrennung, woraufhin die abgetrennte Ladung für eine gewisse Zeit in der Umgebung lokalisiert bleibt. Die Dauer der Lokalisierung und damit der emittierenden und nicht emittierenden Perioden hängt von der dielektrischen Funktion des umgebenden Materials ab. Dies ist als direkter Nachweis für den photoinduzierten Ladungstransfer als Ursache des Fluoreszenzblinkens zu deuten. Die Arbeit demonstriert, dass die experimentellen Zeitreihen die charakteristischen Merkmale eines diffusionsgesteuerten Ladungstransferprozesses besitzen und nimmt dabei den gegenwärtigen wissenschaftlichen Diskurs über geeignete theoretische Modelle des Fluoreszenzblinkens auf.
33

Photoluminescence Intermittency of Semiconductor Quantum Dots in Dielectric Environments

Issac, Abey 11 August 2006 (has links)
The experimental studies presented in this thesis deal with the photoluminescence intermittency of semiconductor quantum dots in different dielectric environments. Detailed analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the model of photoionization with a charge ejected into the surrounding matrix as the source of PL intermittency phenomenon. The distribution of the dark state lifetimes can be described by a power law over a wide range while that of bright state can be described by a power law at shorter times followed by an exponential decay. The lifetimes of the bright and dark states are influenced by the dielectric properties of the surrounding environment. Our experimental results show that the lifetime of the dark state increases with the dielectric constant of the matrix. This is very clear from the linear correlation between αoff and f (ε). We propose a self-trapping model to explain the increase of dark state lifetimes with the dielectric constant of the matrix. A charge will be more stabilized in a medium with high dielectric constant. An energetically more favourable state for an electron in a high dielectric medium decreases the return probability which eventually increases the duration of the off-time. Moreover, the self-trapping model establishes a general model for distribution of states in a matrix. We like to mention, that in the case of bright states, a qualitative observation is the cross over of the on-time power law behavior to an exponential one. The power law part of the decay is nearly matrix independent while the exponential decay, which limits the maximum on-time, strongly depends on dielectric properties of the environment. The exponential part of the on-time probability decays much faster in a high dielectric medium and there exists a linear relation between the time constant of the exponential decay and f (ε). Theoretical background has been provided for the observed results using the recently published DCET model which correlates PL intermittency of QDs with properties of the environment. This supports our previous conjecture of a general model for matrix controlled blinking process. The disagreement between experimentally observed dependence of αoff and f (ε) for different matrices with that of the static tunnelling model proposed by Verberk is due to the fact that the tunneling model considers only an electron transfer between a QD and spatially distributed trap states in vacuum. These states are already stabilized states. It does not assume any medium in between. Therefore, matrix dependent blinking kinetics can not be explained quantitatively by tunneling model even though tunneling between a QD and spatially distributed trap states gives a power law distribution for the blinking kinetics. DCET is a more general (dynamic) model. The bright and dark state parabolas contain QD, charge and the matrix. Therefore, this model could in principle explain matrix dependent blinking kinetics in a better way, for example, the energy difference between the minima of the bright and dark state parabolas (-ΔG0) is defined by the stabilization energy of the system provided by the matrix. However, due to lack of the relevant intrinsic parameters we did not compare this relationship and dependence qualitatively. / Betrachtet man die Fluoreszenz einzelner Farbstoffmoleküle oder Halbleiternanokristalle bei kontinuierlicher Anregung, so stellt man fest, dass die im Zeitverlauf beobachtete Intensität einer stochastischen Variation unterliegt, d. h. dass das Chromophor zwischen emittierenden und nicht emittierenden Zuständen, auch Hell- und Dunkelzuständen genannt, hin- und herschaltet. Dieses als Blinken bekannte Phänomen ist physikalisch wie auch technologisch herausfordernd, lässt es doch einerseits die Realisierbarkeit einer Reihe von quantenoptischen Anwendungen, so z. B. auf dem Gebiet der Quantenkryptographie, dem Quantum Computing oder der optischen Schaltungstechnik auf Basis einzelner Quantenobjekte, in naher Zukunft möglich erscheinen. Andererseits setzt es gewissen Anwendungen, die auf die permanente Sichtbarkeit des Chromophors aufbauen, Grenzen, so zum Beispiel der Verwendung als Lumineszenzmarker in der medizinischen Diagnostik. Weiterhin ist festzustellen, dass das Blinken kritisch von den äußeren Bedingungen und von den Umgebungsparametern abhängt. Aus diesen und anderen Gründen ist ein fundamentales Verständnis der physikalischen Ursachen und der Wechselwirkungsprozesse unerlässlich. Die Forschung dazu steckt noch in den Kinderschuhen. Basierend auf umfangreiche Messungen der Fluoreszenzzeitreihen einzelner Nanokristalle aus CdSe und CdSe/ZnS in verschiedenen Umgebungen, zeigt diese Dissertation exemplarisch den Einfluss der Dielektrizitätsparameter auf das Blinken. Zur Erklärung des Sachverhalts wird ein so genanntes Self-Trapping-Modell zu Rate gezogen. Demnach kommt es zu einer Ionisation des Quantenobjekts und anschließender Ladungstrennung, woraufhin die abgetrennte Ladung für eine gewisse Zeit in der Umgebung lokalisiert bleibt. Die Dauer der Lokalisierung und damit der emittierenden und nicht emittierenden Perioden hängt von der dielektrischen Funktion des umgebenden Materials ab. Dies ist als direkter Nachweis für den photoinduzierten Ladungstransfer als Ursache des Fluoreszenzblinkens zu deuten. Die Arbeit demonstriert, dass die experimentellen Zeitreihen die charakteristischen Merkmale eines diffusionsgesteuerten Ladungstransferprozesses besitzen und nimmt dabei den gegenwärtigen wissenschaftlichen Diskurs über geeignete theoretische Modelle des Fluoreszenzblinkens auf.
34

Orts- und zeitaufgelöste optische Spektroskopie an Silizium-Nanokristallen

Martin, Jörg 01 December 2004 (has links)
Gegenstand der Dissertation sind Untersuchungen zur Photolumineszenz von Silizium-Nanokristallen. Den Schwerpunkt bilden dabei die Messungen an isolierten Partikeln mittels konfokaler Mikroskopie und optischer Spektroskopie. Von einzelnen Silizium-Partikeln konnten relativ schmale, strukturierte Photolumineszenzbanden detektiert werden, die die Aussagen des Quantum-Confinement-Modells bestätigen. Ein weiteres Merkmal der Photolumineszenz von einzelnen Halbleiter-Nanopartikeln ist das so genannte Blinken. Die Erstellung von Blinkstatistiken unter verschiedenen Anregungsbedingungen ermöglichte es, die zum Blinken führenden photophysikalischen Prozesse genauer zu charakterisieren. Es wird unter anderem gezeigt, dass das reversible Bleichen der Lumineszenz von Silizium-Nanokristall-Ensemblen und porösem Silizium auf ein instationäres Blinkverhalten zurückzuführen ist. Abschließend werden Bezüge zu den astrophysikalischen Beobachtungen von der Extended Red Emission hergestellt und verschiedene Tunnel- und Random-Walk-Modelle zur Beschreibung der photophysikalischen Prozesse diskutiert.
35

Quantum breathers in small networks: Dynamics, tunneling, correlations, and application to Josephson cells

Pinto Rengifo, Ricardo Alberto 20 June 2008 (has links)
We address the excitation of quantum breathers in small nonlinear networks of two and three degrees of freedom, in order to study their properties. The invariance under permutation of two sites of these networks substitutes the translation invariance that is present in nonlinear lattices, where (classical) discrete breathers are time periodic space localized solutions of the underlying classical equations of motion. We do a systematic analysis of the spectrum and eigenstates of such small systems, characterizing quantum breather states by their tunnelling rate (energy splitting), site correlations, fluctuations of the number of quanta, and entanglement. We observe how these properties are reflected in the time evolution of initially localized excitations. Quantum breathers manifest as pairs of nearly degenerate eigenstates that show strong site correlation of quanta, and are characterized by a strong excitation of quanta on one site of the network which perform slow coherent tunnelling motion from one site to another. They enhance the fluctuations of quanta, and are the least entangled states among the group of eigenstates in the same range of the energy spectrum. We use our analysis methods to consider the excitation of quantum breathers in a cell of two coupled Josephson junctions, and study their properties as compared with those in the previous cases. We describe how quantum breathers could be experimentally observed by employing the already developed techniques for quantum information processing with Josephson junctions.
36

Asymptotic spectral analysis and tunnelling for a class of difference operators

Rosenberger, Elke January 2006 (has links)
We analyze the asymptotic behavior in the limit epsilon to zero for a wide class of difference operators H_epsilon = T_epsilon + V_epsilon with underlying multi-well potential. They act on the square summable functions on the lattice (epsilon Z)^d.<br> We start showing the validity of an harmonic approximation and construct WKB-solutions at the wells. Then we construct a Finslerian distance d induced by H and show that short integral curves are geodesics and d gives the rate for the exponential decay of Dirichlet eigenfunctions. In terms of this distance, we give sharp estimates for the interaction between the wells and construct the interaction matrix. / Wir analysieren das asymptotische Verhalten im Grenzwert epsilon gegen null von einer weiten Klasse von Differenzen operatoren H_epsilon = T_epsilon + V_epsilon mit unterliegendem Potential. Sie wirken auf die quadrat-summierbaren Funktionen auf dem Gitter (epsilon Z)^d.<br> Zunächst zeigen wir die Gültigkeit einer harmonischen Approximation und konstruieren WKB-Lösungen an den Töpfen. Dann konstruieren wir eine Finslersche Abstandsfunktion d, die durch H induziert wird und zeigen, daß kurze Integralkurven Geodäten sind und daß d die Rate des exponentiellen Abfallverhaltens von Dirichlet-Eigenfunktionen beschreibt. Bezügliche dieses Abstands geben wir scharfe Abschätzungen für die Wechselwirkung zwischen den Töpfen und konstruieren die Wechselwirkungs-Matrix.
37

Multiskalensimulation des Ladungstransports in Silizium-Nanodraht-Transistoren / Multiscale simulations of charge transport in silicon nanowire-based transistors

Eckert, Hagen 13 November 2012 (has links) (PDF)
Durch Multiskalensimulationen wird der Ladungstransport in nanodrahtbasierten Schottky-Barrieren-Feldeffekt-Transistoren im Materialsystem Ni2Si/Si untersucht. Die Bedingungen an die Genauigkeit der verwendeten Eingangsparameter werden bestimmt und Vorhersagen über optimale Material- und Geräteparameter werden getroffen. Es wird die Frage beantwortet, ob die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinie möglich ist. Der Feldeffekt wird durch Berechnungen auf Basis der Finiten-Elemente-Methode und die resultierenden Stromflüsse durch ein quantenmechanisches Transportmodell ermittelt. In der Untersuchung der geometrischen Eingangsparameter wird gezeigt, dass bis auf den Radius des Nanodrahtes die in einem Experiment zu erwartenden Messfehler keinen drastischen Einfluss auf die Strom-Spannungs-Kennlinie haben. Signifikant ist hingegen der Einfluss der Temperatur, der effektiven Ladungsträgermassen und der Höhe der Schottky-Barriere. Da diese drei Eingangsparameter des betrachteten Systems mit relativ großen Ungenauigkeiten behaftet sind, ist die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinien auf die erhoffte Weise nicht möglich. Die Arbeit zeigt auch, dass bereits moderate Veränderungen der Arbeitstemperatur einen bedeutenden Einfluss auf die Strom-Spannungs-Kennlinie haben. Für die Konstruktion von Transistoren mit hoher Stromdichte kann anhand der ermittelten Daten die Verkleinerung der aktiven Region durch Oxidation vorgeschlagen werden. / Charge transport in nanowire-based Schottky-barrier field-effect transistors in the material system Ni2Si/Si is examined by multi-scale simulations. The requirements for the accuracy of the input parameters are determined and predictions about optimum material and device parameters are made. The question is answered, whether the determination of physical parameters from individual measured current-voltage curves is possible? The field effect is described by calculations based on the finite element method and the resulting currents are calculated with a quantum mechanical transport model. In the study of the geometric input parameters it is shown that experimental uncertainties do not drastically affect the current-voltage characteristic, except from the nanowire radius. However, significant is the influence of the temperature, the effective charge carrier mass and the height of the Schottky-barrier. Since these three input parameters are known only with low experimental accuracy for the considered system, the determination of physical parameters from individual measured current-voltage curves is not possible in the expected way. The results also show that moderate changes of the working temperature have a significant influence on the current-voltage characteristic. For the construction of transistors with high current density the reduction of the active region by oxidation is proposed.
38

Tunneling spectroscopy of highly ordered organic thin films

Törker, Michael 23 April 2003 (has links)
In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data were recorded on monolayer and submonolayer PTCDA films. Measurements on closed PTCDA layers at different fixed tip sample separations revealed a peak +0.95V. Other measurements performed consecutively on a PTCDA island and on uncovered Au(100) areas showed that this peak is indeed caused by the PTCDA molecules. Another set of consecutive measurements on herringbone and square phase PTCDA islands indicates that in the normalized differential conductivity the peak shape and peak position depend on the molecular arrangement. The STS data are compared to UPS and IPES results, already published. In the case of highly ordered films of HBC on Au(100) it was possible to derive the energetic positions of the HBC frontier orbitals and the energies of the molecular states next to these frontier orbitals from Tunneling Spectroscopy measurements. These measurements were performed using two different tip materials. The results are compared to UPS measurements, to theoretical calculations of the electronic conductance based on a combination of the Landauer transport formalism with a density-functional-parametrized tight-binding scheme within the Local Density Approximation (LDA) as well as semiempirical quantum chemistry calculations. / Für die hier dargestelleten Arbeiten wurde ein Au(100) Einkristall als Substrat für die organische Molekularstrahlepitaxie verwendet. Hochgeordnete organische Dünnschichten der Moleküle 3,4,9,10-Perylen-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Hexa-peri-hexabenzo-coronen (HBC) sowie organisch-organische Heteroschichten wurden auf der Au(100) Oberfläche abgeschieden. Die Struktur der Schichten wurde mittels Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) untersucht. Tunnelspektroskopiedaten wurden für Monolagen sowie Submonolagen von PTCDA aufgenommen. Messungen an geschlossenen PTCDA Filmen zeigen für verschiedene Probe-Spitze-Abstände ein Maximum in der normierten differentiellen Leitfähigkeit bei +0.95V. Aufeinanderfolgende Messungen auf PTCDA-Inseln und unbedeckten Gebieten der Au(100) Oberfläche zeigen eindeutig, dass dieses Maximum auf die PTCDA Moleküle zurückzuführen ist. Weitere Messungen an PTCDA Inseln unterschiedlicher Struktur (Fischgrätenstruktur bzw. quadratische Struktur) belegen einen Zusammenhang zwischen der Anordnung der Moleküle und der Peakposition bzw. Peakform in der normierten differentiellen Leitfähigkeit. Die STS Daten werden mit UPS und IPES Ergebnissen aus der Literatur verglichen. Im Falle hochgeordneter HBC Schichten auf Au(100) war es möglich, neben dem höchsten besetzten und niedrigsten unbesetzten Molekülorbital auch die energetische Position der jeweils nächsten Orbitale zu bestimmen. Diese Messungen wurden mit zwei unterschiedlichen Spitzenmaterialien durchgeführt. Die Ergebnisse für HBC auf Au(100) werden mit UPS Daten sowie mit theoretischen Rechnungen verglichen.
39

Self organized formation of Ge nanocrystals in multilayers

Zschintzsch-Dias, Manuel 05 June 2012 (has links) (PDF)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation. In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated. Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure. A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively. The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2. The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range. The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.
40

Self organized formation of Ge nanocrystals in multilayers

Zschintzsch-Dias, Manuel 27 April 2012 (has links)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation. In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated. Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure. A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively. The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2. The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range. The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.:Contents 1 Introduction and motivation 1 2 Basic aspects 6 2.1 Microstructure of sub-stoichiometric oxides (SiOx, GeOx) 6 2.2 Phase transformations 9 2.3 Quantum confinement effect in nanocrystals 12 2.4 Applications of nanostructures in 3rd generation photovoltaics 17 3 Experimental setup 21 3.1 The magnetron deposition chamber 21 3.2 (Reactive) dc sputtering 22 3.3 Annealing processing 26 3.4 X-ray facilities 26 4 Analytical methods 30 4.1 Rutherford backscattering spectrometry (RBS) 30 4.2 Raman scattering 33 4.3 (Grazing incidence) X-ray diffraction (GIXRD) 35 4.4 X-ray reflectivity (XRR) 39 4.5 X-ray absorption near edge structure (XANES) 41 4.6 Transmission electron microscopy (TEM) 42 5 Properties of reactive dc magnetron sputtered Si-Ge-O (multi)layers 44 5.1 Deposition rate and film stoichiometry investigations 44 5.2 Stoichiometry dependent properties of GeOx/SiO2 multilayers 47 5.3 Lateral intercluster distance of the Ge nanocrystals in multilayers 51 6 Confined Ge nanocrystal growth in GeOx/SiO2 multilayers 54 6.1 Phase separation in GeOx single layers and GeOx/SiO2 multilayers 54 6.2 Crystallization in GeOx single layers and GeOx/SiO2 multilayers 58 6.3 Multilayer stability and smallest possible Ge nanocrystal size 60 6.4 Stacked Ge NC films with ultra thin SiO2 separation layers 66 7 Confined Ge nanocrystal growth in Ge:SiOx/SiO2 multilayers 71 7.1 Phase separation in Ge:SiOx/SiO2 multilayers 72 7.2 Crystallisation in Ge:SiOx/SiO2 multilayers 76 8 Summary and conclusions 79 List of Figures 83 List of Tables 85 Bibliography 86

Page generated in 0.0587 seconds