Spelling suggestions: "subject:"tunneled""
31 |
Tunneling spectroscopy of highly ordered organic thin films / Tunnelspektroskopie von hochgeordneten organischen DünnschichtenTörker, Michael 23 May 2003 (has links) (PDF)
In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data were recorded on monolayer and submonolayer PTCDA films. Measurements on closed PTCDA layers at different fixed tip sample separations revealed a peak +0.95V. Other measurements performed consecutively on a PTCDA island and on uncovered Au(100) areas showed that this peak is indeed caused by the PTCDA molecules. Another set of consecutive measurements on herringbone and square phase PTCDA islands indicates that in the normalized differential conductivity the peak shape and peak position depend on the molecular arrangement. The STS data are compared to UPS and IPES results, already published. In the case of highly ordered films of HBC on Au(100) it was possible to derive the energetic positions of the HBC frontier orbitals and the energies of the molecular states next to these frontier orbitals from Tunneling Spectroscopy measurements. These measurements were performed using two different tip materials. The results are compared to UPS measurements, to theoretical calculations of the electronic conductance based on a combination of the Landauer transport formalism with a density-functional-parametrized tight-binding scheme within the Local Density Approximation (LDA) as well as semiempirical quantum chemistry calculations. / Für die hier dargestelleten Arbeiten wurde ein Au(100) Einkristall als Substrat für die organische Molekularstrahlepitaxie verwendet. Hochgeordnete organische Dünnschichten der Moleküle 3,4,9,10-Perylen-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Hexa-peri-hexabenzo-coronen (HBC) sowie organisch-organische Heteroschichten wurden auf der Au(100) Oberfläche abgeschieden. Die Struktur der Schichten wurde mittels Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) untersucht. Tunnelspektroskopiedaten wurden für Monolagen sowie Submonolagen von PTCDA aufgenommen. Messungen an geschlossenen PTCDA Filmen zeigen für verschiedene Probe-Spitze-Abstände ein Maximum in der normierten differentiellen Leitfähigkeit bei +0.95V. Aufeinanderfolgende Messungen auf PTCDA-Inseln und unbedeckten Gebieten der Au(100) Oberfläche zeigen eindeutig, dass dieses Maximum auf die PTCDA Moleküle zurückzuführen ist. Weitere Messungen an PTCDA Inseln unterschiedlicher Struktur (Fischgrätenstruktur bzw. quadratische Struktur) belegen einen Zusammenhang zwischen der Anordnung der Moleküle und der Peakposition bzw. Peakform in der normierten differentiellen Leitfähigkeit. Die STS Daten werden mit UPS und IPES Ergebnissen aus der Literatur verglichen. Im Falle hochgeordneter HBC Schichten auf Au(100) war es möglich, neben dem höchsten besetzten und niedrigsten unbesetzten Molekülorbital auch die energetische Position der jeweils nächsten Orbitale zu bestimmen. Diese Messungen wurden mit zwei unterschiedlichen Spitzenmaterialien durchgeführt. Die Ergebnisse für HBC auf Au(100) werden mit UPS Daten sowie mit theoretischen Rechnungen verglichen.
|
32 |
Photoluminescence Intermittency of Semiconductor Quantum Dots in Dielectric EnvironmentsIssac, Abey 14 August 2006 (has links) (PDF)
The experimental studies presented in this thesis deal with the photoluminescence
intermittency of semiconductor quantum dots in different dielectric environments. Detailed
analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and
water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the
model of photoionization with a charge ejected into the surrounding matrix as the source of
PL intermittency phenomenon. The distribution of the dark state lifetimes can be described
by a power law over a wide range while that of bright state can be described by a power
law at shorter times followed by an exponential decay.
The lifetimes of the bright and dark states are influenced by the dielectric properties
of the surrounding environment. Our experimental results show that the lifetime of the dark
state increases with the dielectric constant of the matrix. This is very clear from the linear
correlation between αoff and f (ε). We propose a self-trapping model to explain the increase
of dark state lifetimes with the dielectric constant of the matrix. A charge will be more
stabilized in a medium with high dielectric constant. An energetically more favourable
state for an electron in a high dielectric medium decreases the return probability which
eventually increases the duration of the off-time. Moreover, the self-trapping model
establishes a general model for distribution of states in a matrix.
We like to mention, that in the case of bright states, a qualitative observation is the
cross over of the on-time power law behavior to an exponential one. The power law part of
the decay is nearly matrix independent while the exponential decay, which limits the
maximum on-time, strongly depends on dielectric properties of the environment. The
exponential part of the on-time probability decays much faster in a high dielectric medium
and there exists a linear relation between the time constant of the exponential decay
and f (ε). Theoretical background has been provided for the observed results using the
recently published DCET model which correlates PL intermittency of QDs with properties of the environment.
This supports our previous conjecture of a general model for matrix controlled blinking process.
The disagreement between experimentally observed dependence of αoff and f (ε) for
different matrices with that of the static tunnelling model proposed by Verberk is due to the fact that the tunneling model considers only an electron transfer between
a QD and spatially distributed trap states in vacuum. These states are already stabilized
states. It does not assume any medium in between. Therefore, matrix dependent blinking
kinetics can not be explained quantitatively by tunneling model even though tunneling
between a QD and spatially distributed trap states gives a power law distribution for the
blinking kinetics.
DCET is a more general (dynamic) model. The bright and dark state parabolas
contain QD, charge and the matrix. Therefore, this model could in principle explain matrix
dependent blinking kinetics in a better way, for example, the energy difference between the
minima of the bright and dark state parabolas (-ΔG0) is defined by the stabilization energy
of the system provided by the matrix. However, due to lack of the relevant intrinsic
parameters we did not compare this relationship and dependence qualitatively. / Betrachtet man die Fluoreszenz einzelner Farbstoffmoleküle oder Halbleiternanokristalle bei
kontinuierlicher Anregung, so stellt man fest, dass die im Zeitverlauf beobachtete Intensität einer
stochastischen Variation unterliegt, d. h. dass das Chromophor zwischen emittierenden und nicht
emittierenden Zuständen, auch Hell- und Dunkelzuständen genannt, hin- und herschaltet. Dieses als
Blinken bekannte Phänomen ist physikalisch wie auch technologisch herausfordernd, lässt es doch
einerseits die Realisierbarkeit einer Reihe von quantenoptischen Anwendungen, so z. B. auf dem
Gebiet der Quantenkryptographie, dem Quantum Computing oder der optischen Schaltungstechnik
auf Basis einzelner Quantenobjekte, in naher Zukunft möglich erscheinen. Andererseits setzt es
gewissen Anwendungen, die auf die permanente Sichtbarkeit des Chromophors aufbauen, Grenzen,
so zum Beispiel der Verwendung als Lumineszenzmarker in der medizinischen Diagnostik.
Weiterhin ist festzustellen, dass das Blinken kritisch von den äußeren Bedingungen und von den
Umgebungsparametern abhängt. Aus diesen und anderen Gründen ist ein fundamentales
Verständnis der physikalischen Ursachen und der Wechselwirkungsprozesse unerlässlich. Die
Forschung dazu steckt noch in den Kinderschuhen.
Basierend auf umfangreiche Messungen der Fluoreszenzzeitreihen einzelner Nanokristalle aus
CdSe und CdSe/ZnS in verschiedenen Umgebungen, zeigt diese Dissertation exemplarisch den
Einfluss der Dielektrizitätsparameter auf das Blinken. Zur Erklärung des Sachverhalts wird ein so
genanntes Self-Trapping-Modell zu Rate gezogen. Demnach kommt es zu einer Ionisation des
Quantenobjekts und anschließender Ladungstrennung, woraufhin die abgetrennte Ladung für eine
gewisse Zeit in der Umgebung lokalisiert bleibt. Die Dauer der Lokalisierung und damit der
emittierenden und nicht emittierenden Perioden hängt von der dielektrischen Funktion des
umgebenden Materials ab. Dies ist als direkter Nachweis für den photoinduzierten Ladungstransfer
als Ursache des Fluoreszenzblinkens zu deuten. Die Arbeit demonstriert, dass die experimentellen
Zeitreihen die charakteristischen Merkmale eines diffusionsgesteuerten Ladungstransferprozesses
besitzen und nimmt dabei den gegenwärtigen wissenschaftlichen Diskurs über geeignete
theoretische Modelle des Fluoreszenzblinkens auf.
|
33 |
Photoluminescence Intermittency of Semiconductor Quantum Dots in Dielectric EnvironmentsIssac, Abey 11 August 2006 (has links)
The experimental studies presented in this thesis deal with the photoluminescence
intermittency of semiconductor quantum dots in different dielectric environments. Detailed
analysis of intermittency statistics from single capped CdSe/ZnS, uncapped CdSe and
water dispersed CdSe/ZnS QDs in different matrices provide experimental evidence for the
model of photoionization with a charge ejected into the surrounding matrix as the source of
PL intermittency phenomenon. The distribution of the dark state lifetimes can be described
by a power law over a wide range while that of bright state can be described by a power
law at shorter times followed by an exponential decay.
The lifetimes of the bright and dark states are influenced by the dielectric properties
of the surrounding environment. Our experimental results show that the lifetime of the dark
state increases with the dielectric constant of the matrix. This is very clear from the linear
correlation between αoff and f (ε). We propose a self-trapping model to explain the increase
of dark state lifetimes with the dielectric constant of the matrix. A charge will be more
stabilized in a medium with high dielectric constant. An energetically more favourable
state for an electron in a high dielectric medium decreases the return probability which
eventually increases the duration of the off-time. Moreover, the self-trapping model
establishes a general model for distribution of states in a matrix.
We like to mention, that in the case of bright states, a qualitative observation is the
cross over of the on-time power law behavior to an exponential one. The power law part of
the decay is nearly matrix independent while the exponential decay, which limits the
maximum on-time, strongly depends on dielectric properties of the environment. The
exponential part of the on-time probability decays much faster in a high dielectric medium
and there exists a linear relation between the time constant of the exponential decay
and f (ε). Theoretical background has been provided for the observed results using the
recently published DCET model which correlates PL intermittency of QDs with properties of the environment.
This supports our previous conjecture of a general model for matrix controlled blinking process.
The disagreement between experimentally observed dependence of αoff and f (ε) for
different matrices with that of the static tunnelling model proposed by Verberk is due to the fact that the tunneling model considers only an electron transfer between
a QD and spatially distributed trap states in vacuum. These states are already stabilized
states. It does not assume any medium in between. Therefore, matrix dependent blinking
kinetics can not be explained quantitatively by tunneling model even though tunneling
between a QD and spatially distributed trap states gives a power law distribution for the
blinking kinetics.
DCET is a more general (dynamic) model. The bright and dark state parabolas
contain QD, charge and the matrix. Therefore, this model could in principle explain matrix
dependent blinking kinetics in a better way, for example, the energy difference between the
minima of the bright and dark state parabolas (-ΔG0) is defined by the stabilization energy
of the system provided by the matrix. However, due to lack of the relevant intrinsic
parameters we did not compare this relationship and dependence qualitatively. / Betrachtet man die Fluoreszenz einzelner Farbstoffmoleküle oder Halbleiternanokristalle bei
kontinuierlicher Anregung, so stellt man fest, dass die im Zeitverlauf beobachtete Intensität einer
stochastischen Variation unterliegt, d. h. dass das Chromophor zwischen emittierenden und nicht
emittierenden Zuständen, auch Hell- und Dunkelzuständen genannt, hin- und herschaltet. Dieses als
Blinken bekannte Phänomen ist physikalisch wie auch technologisch herausfordernd, lässt es doch
einerseits die Realisierbarkeit einer Reihe von quantenoptischen Anwendungen, so z. B. auf dem
Gebiet der Quantenkryptographie, dem Quantum Computing oder der optischen Schaltungstechnik
auf Basis einzelner Quantenobjekte, in naher Zukunft möglich erscheinen. Andererseits setzt es
gewissen Anwendungen, die auf die permanente Sichtbarkeit des Chromophors aufbauen, Grenzen,
so zum Beispiel der Verwendung als Lumineszenzmarker in der medizinischen Diagnostik.
Weiterhin ist festzustellen, dass das Blinken kritisch von den äußeren Bedingungen und von den
Umgebungsparametern abhängt. Aus diesen und anderen Gründen ist ein fundamentales
Verständnis der physikalischen Ursachen und der Wechselwirkungsprozesse unerlässlich. Die
Forschung dazu steckt noch in den Kinderschuhen.
Basierend auf umfangreiche Messungen der Fluoreszenzzeitreihen einzelner Nanokristalle aus
CdSe und CdSe/ZnS in verschiedenen Umgebungen, zeigt diese Dissertation exemplarisch den
Einfluss der Dielektrizitätsparameter auf das Blinken. Zur Erklärung des Sachverhalts wird ein so
genanntes Self-Trapping-Modell zu Rate gezogen. Demnach kommt es zu einer Ionisation des
Quantenobjekts und anschließender Ladungstrennung, woraufhin die abgetrennte Ladung für eine
gewisse Zeit in der Umgebung lokalisiert bleibt. Die Dauer der Lokalisierung und damit der
emittierenden und nicht emittierenden Perioden hängt von der dielektrischen Funktion des
umgebenden Materials ab. Dies ist als direkter Nachweis für den photoinduzierten Ladungstransfer
als Ursache des Fluoreszenzblinkens zu deuten. Die Arbeit demonstriert, dass die experimentellen
Zeitreihen die charakteristischen Merkmale eines diffusionsgesteuerten Ladungstransferprozesses
besitzen und nimmt dabei den gegenwärtigen wissenschaftlichen Diskurs über geeignete
theoretische Modelle des Fluoreszenzblinkens auf.
|
34 |
Orts- und zeitaufgelöste optische Spektroskopie an Silizium-NanokristallenMartin, Jörg 01 December 2004 (has links)
Gegenstand der Dissertation sind Untersuchungen zur Photolumineszenz von Silizium-Nanokristallen. Den Schwerpunkt bilden dabei die Messungen an isolierten Partikeln mittels konfokaler Mikroskopie und optischer Spektroskopie. Von einzelnen Silizium-Partikeln konnten relativ schmale, strukturierte Photolumineszenzbanden detektiert werden, die die Aussagen des Quantum-Confinement-Modells bestätigen. Ein weiteres Merkmal der Photolumineszenz von einzelnen Halbleiter-Nanopartikeln ist das so genannte Blinken. Die Erstellung von Blinkstatistiken unter verschiedenen Anregungsbedingungen ermöglichte es, die zum Blinken führenden photophysikalischen Prozesse genauer zu charakterisieren. Es wird unter anderem gezeigt, dass das reversible Bleichen der Lumineszenz von Silizium-Nanokristall-Ensemblen und porösem Silizium auf ein instationäres Blinkverhalten zurückzuführen ist. Abschließend werden Bezüge zu den astrophysikalischen Beobachtungen von der Extended Red Emission hergestellt und verschiedene Tunnel- und Random-Walk-Modelle zur Beschreibung der photophysikalischen Prozesse diskutiert.
|
35 |
Quantum breathers in small networks: Dynamics, tunneling, correlations, and application to Josephson cellsPinto Rengifo, Ricardo Alberto 20 June 2008 (has links)
We address the excitation of quantum breathers in small nonlinear networks of two and three degrees of freedom, in order to study their properties. The invariance under permutation of two sites of these networks substitutes the translation invariance that is present in nonlinear lattices, where (classical) discrete breathers are time periodic space localized solutions of the underlying classical equations of motion. We do a systematic analysis of the spectrum and eigenstates of such small systems, characterizing quantum breather states by their tunnelling rate (energy splitting), site correlations, fluctuations of the number of quanta, and entanglement. We observe how these properties are reflected in the time evolution of initially localized excitations. Quantum breathers manifest as pairs of nearly degenerate eigenstates that show strong site correlation of quanta, and are characterized by a strong excitation of quanta on one site of the network which perform slow coherent tunnelling motion from one site to another. They enhance the fluctuations of quanta, and are the least entangled states among the group of eigenstates in the same range of the energy spectrum. We use our analysis methods to consider the excitation of quantum breathers in a cell of two coupled Josephson junctions, and study their properties as compared with those in the previous cases. We describe how quantum breathers could be experimentally observed by employing the already developed techniques for quantum information processing with Josephson junctions.
|
36 |
Asymptotic spectral analysis and tunnelling for a class of difference operatorsRosenberger, Elke January 2006 (has links)
We analyze the asymptotic behavior in the limit epsilon to zero for a wide class of difference operators H_epsilon = T_epsilon + V_epsilon with underlying multi-well potential. They act on the square summable functions on the lattice (epsilon Z)^d.<br>
We start showing the validity of an harmonic approximation and construct WKB-solutions at the wells. Then we construct a Finslerian distance d induced by H and show that short integral curves are geodesics and d gives the rate for the exponential decay of Dirichlet eigenfunctions. In terms of this distance, we give sharp estimates for the interaction between the wells and construct the interaction matrix. / Wir analysieren das asymptotische Verhalten im Grenzwert epsilon gegen null von einer weiten Klasse von Differenzen operatoren H_epsilon = T_epsilon + V_epsilon mit unterliegendem Potential. Sie wirken auf die quadrat-summierbaren Funktionen auf dem Gitter (epsilon Z)^d.<br>
Zunächst zeigen wir die Gültigkeit einer harmonischen Approximation und konstruieren WKB-Lösungen an den Töpfen. Dann konstruieren wir eine Finslersche Abstandsfunktion d, die durch H induziert wird und zeigen, daß kurze Integralkurven Geodäten sind und daß d die Rate des exponentiellen Abfallverhaltens von Dirichlet-Eigenfunktionen beschreibt. Bezügliche dieses Abstands geben wir scharfe Abschätzungen für die Wechselwirkung zwischen den Töpfen und konstruieren die Wechselwirkungs-Matrix.
|
37 |
Multiskalensimulation des Ladungstransports in Silizium-Nanodraht-Transistoren / Multiscale simulations of charge transport in silicon nanowire-based transistorsEckert, Hagen 13 November 2012 (has links) (PDF)
Durch Multiskalensimulationen wird der Ladungstransport in nanodrahtbasierten Schottky-Barrieren-Feldeffekt-Transistoren im Materialsystem Ni2Si/Si untersucht. Die Bedingungen an die Genauigkeit der verwendeten Eingangsparameter werden bestimmt und Vorhersagen über optimale Material- und Geräteparameter werden getroffen. Es wird die Frage beantwortet, ob die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinie möglich ist. Der Feldeffekt wird durch Berechnungen auf Basis der Finiten-Elemente-Methode und die resultierenden Stromflüsse durch ein quantenmechanisches Transportmodell ermittelt. In der Untersuchung der geometrischen Eingangsparameter wird gezeigt, dass bis auf den Radius des Nanodrahtes die in einem Experiment zu erwartenden Messfehler keinen drastischen Einfluss auf die Strom-Spannungs-Kennlinie haben. Signifikant ist hingegen der Einfluss der Temperatur, der effektiven Ladungsträgermassen und der Höhe der Schottky-Barriere. Da diese drei Eingangsparameter des betrachteten Systems mit relativ großen Ungenauigkeiten behaftet sind, ist die Bestimmung von physikalischen Parametern aus einzelnen gemessenen Strom-Spannungs-Kennlinien auf die erhoffte Weise nicht möglich. Die Arbeit zeigt auch, dass bereits moderate Veränderungen der Arbeitstemperatur einen bedeutenden Einfluss auf die Strom-Spannungs-Kennlinie haben. Für die Konstruktion von Transistoren mit hoher Stromdichte kann anhand der ermittelten Daten die Verkleinerung der aktiven Region durch Oxidation vorgeschlagen werden. / Charge transport in nanowire-based Schottky-barrier field-effect transistors in the material system Ni2Si/Si is examined by multi-scale simulations. The requirements for the accuracy of the input parameters are determined and predictions about optimum material and device parameters are made. The question is answered, whether the determination of physical parameters from individual measured current-voltage curves is possible? The field effect is described by calculations based on the finite element method and the resulting currents are calculated with a quantum mechanical transport model. In the study of the geometric input parameters it is shown that experimental uncertainties do not drastically affect the current-voltage characteristic, except from the nanowire radius. However, significant is the influence of the temperature, the effective charge carrier mass and the height of the Schottky-barrier. Since these three input parameters are known only with low experimental accuracy for the considered system, the determination of physical parameters from individual measured current-voltage curves is not possible in the expected way. The results also show that moderate changes of the working temperature have a significant influence on the current-voltage characteristic. For the construction of transistors with high current density the reduction of the active region by oxidation is proposed.
|
38 |
Tunneling spectroscopy of highly ordered organic thin filmsTörker, Michael 23 April 2003 (has links)
In this work, a Au(100) single crystal was used as substrate for organic molecular beam epitaxy. Highly ordered organic thin films of the molecules 3,4,9,10-perylenetetracarboxylic-3,4,9,10-dianhydrid (PTCDA) and hexa-peri-hexabenzo-coronene (HBC) as well as organic-organic heterostructures on reconstructed Au(100) were prepared. The molecular arrangement was characterized in Scanning Tunneling Microscopy and Low Energy Electron Diffraction investigations. Scanning Tunneling Spectroscopy data were recorded on monolayer and submonolayer PTCDA films. Measurements on closed PTCDA layers at different fixed tip sample separations revealed a peak +0.95V. Other measurements performed consecutively on a PTCDA island and on uncovered Au(100) areas showed that this peak is indeed caused by the PTCDA molecules. Another set of consecutive measurements on herringbone and square phase PTCDA islands indicates that in the normalized differential conductivity the peak shape and peak position depend on the molecular arrangement. The STS data are compared to UPS and IPES results, already published. In the case of highly ordered films of HBC on Au(100) it was possible to derive the energetic positions of the HBC frontier orbitals and the energies of the molecular states next to these frontier orbitals from Tunneling Spectroscopy measurements. These measurements were performed using two different tip materials. The results are compared to UPS measurements, to theoretical calculations of the electronic conductance based on a combination of the Landauer transport formalism with a density-functional-parametrized tight-binding scheme within the Local Density Approximation (LDA) as well as semiempirical quantum chemistry calculations. / Für die hier dargestelleten Arbeiten wurde ein Au(100) Einkristall als Substrat für die organische Molekularstrahlepitaxie verwendet. Hochgeordnete organische Dünnschichten der Moleküle 3,4,9,10-Perylen-tetracarbonsäure-3,4,9,10-dianhydrid (PTCDA) und Hexa-peri-hexabenzo-coronen (HBC) sowie organisch-organische Heteroschichten wurden auf der Au(100) Oberfläche abgeschieden. Die Struktur der Schichten wurde mittels Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) untersucht. Tunnelspektroskopiedaten wurden für Monolagen sowie Submonolagen von PTCDA aufgenommen. Messungen an geschlossenen PTCDA Filmen zeigen für verschiedene Probe-Spitze-Abstände ein Maximum in der normierten differentiellen Leitfähigkeit bei +0.95V. Aufeinanderfolgende Messungen auf PTCDA-Inseln und unbedeckten Gebieten der Au(100) Oberfläche zeigen eindeutig, dass dieses Maximum auf die PTCDA Moleküle zurückzuführen ist. Weitere Messungen an PTCDA Inseln unterschiedlicher Struktur (Fischgrätenstruktur bzw. quadratische Struktur) belegen einen Zusammenhang zwischen der Anordnung der Moleküle und der Peakposition bzw. Peakform in der normierten differentiellen Leitfähigkeit. Die STS Daten werden mit UPS und IPES Ergebnissen aus der Literatur verglichen. Im Falle hochgeordneter HBC Schichten auf Au(100) war es möglich, neben dem höchsten besetzten und niedrigsten unbesetzten Molekülorbital auch die energetische Position der jeweils nächsten Orbitale zu bestimmen. Diese Messungen wurden mit zwei unterschiedlichen Spitzenmaterialien durchgeführt. Die Ergebnisse für HBC auf Au(100) werden mit UPS Daten sowie mit theoretischen Rechnungen verglichen.
|
39 |
Self organized formation of Ge nanocrystals in multilayersZschintzsch-Dias, Manuel 05 June 2012 (has links) (PDF)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation.
In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated.
Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure.
A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively.
The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2.
The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range.
The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.
|
40 |
Self organized formation of Ge nanocrystals in multilayersZschintzsch-Dias, Manuel 27 April 2012 (has links)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation.
In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated.
Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure.
A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively.
The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2.
The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range.
The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.:Contents
1 Introduction and motivation 1
2 Basic aspects 6
2.1 Microstructure of sub-stoichiometric oxides (SiOx, GeOx) 6
2.2 Phase transformations 9
2.3 Quantum confinement effect in nanocrystals 12
2.4 Applications of nanostructures in 3rd generation photovoltaics 17
3 Experimental setup 21
3.1 The magnetron deposition chamber 21
3.2 (Reactive) dc sputtering 22
3.3 Annealing processing 26
3.4 X-ray facilities 26
4 Analytical methods 30
4.1 Rutherford backscattering spectrometry (RBS) 30
4.2 Raman scattering 33
4.3 (Grazing incidence) X-ray diffraction (GIXRD) 35
4.4 X-ray reflectivity (XRR) 39
4.5 X-ray absorption near edge structure (XANES) 41
4.6 Transmission electron microscopy (TEM) 42
5 Properties of reactive dc magnetron sputtered Si-Ge-O (multi)layers 44
5.1 Deposition rate and film stoichiometry investigations 44
5.2 Stoichiometry dependent properties of GeOx/SiO2 multilayers 47
5.3 Lateral intercluster distance of the Ge nanocrystals in multilayers 51
6 Confined Ge nanocrystal growth in GeOx/SiO2 multilayers 54
6.1 Phase separation in GeOx single layers and GeOx/SiO2 multilayers 54
6.2 Crystallization in GeOx single layers and GeOx/SiO2 multilayers 58
6.3 Multilayer stability and smallest possible Ge nanocrystal size 60
6.4 Stacked Ge NC films with ultra thin SiO2 separation layers 66
7 Confined Ge nanocrystal growth in Ge:SiOx/SiO2 multilayers 71
7.1 Phase separation in Ge:SiOx/SiO2 multilayers 72
7.2 Crystallisation in Ge:SiOx/SiO2 multilayers 76
8 Summary and conclusions 79
List of Figures 83
List of Tables 85
Bibliography 86
|
Page generated in 0.4015 seconds