Spelling suggestions: "subject:"ubiquitin ligase""
11 |
Contrôle de la stabilité de TIMELESS par un complexe ubiquitine ligase de type Culline-3 dans l'horloge circadienne de Drosophila melanogasterDognon, Alexandre 16 March 2011 (has links) (PDF)
La plupart des êtres vivants possèdent une horloge circadienne (période de 24heures). Elle leur permet notamment d'anticiper les changements quotidiens (lumière,température) imposés par la rotation de la terre et d'y adapter leur comportement et leurphysiologie. L'horloge est présente dans la plupart des cellules et repose sur deux boucles derégulation transcriptionnelle négative qui génèrent des oscillations d'ARNm des gènesd'horloge. Un délai entre l'accumulation des ARNm et celle des protéines assure lefonctionnement de la boucle de rétroaction. Ce délai est dû à des modifications posttraductionnellesdes protéines PERIOD et TIMELESS. Les oscillations protéiques sontnotamment contrôlées par leur phosphorylation, l'ubiquitination et la dégradation via leprotéasome. L'ubiquitine ligase SCFSlmb induit la dégradation circadienne de PER et de TIM.SCFJetlag contrôle la dégradation de TIM par la lumière, cette dernière intervenant dans lasynchronisation de l'oscillateur.Au cours de notre étude, nous avons identifié une nouvelle ubiquitine ligase, uncomplexe Cul-3, qui contrôle principalement la stabilité de TIM. Nos résultats indiquent queCul-3 contrôle surtout la stabilité de TIM peu phosphorylé, de façon indépendante de PER,tandis que Slmb contrôle principalement la stabilité de TIM phosphorylé. Nous proposons unmodèle dans l'oscillation de TIM régie par deux systèmes d'ubiquitination: Cul-3 pourretarder l'accumulation nocturne de la protéine, et Slmb pour précipiter sa disparition en finde nuit.
|
12 |
Manipulation of the ubiquitin-proteasome system by HIV-1 : role of the accessory protein VprBelzile, Jean-Philippe 02 1900 (has links)
Le virus de l’immunodéficience humaine de type 1 (VIH-1), l’agent étiologique du SIDA, est un rétrovirus complexe arborant plusieurs protéines accessoires : Nef, Vif, Vpr, et Vpu. Celles-ci sont impliquées dans la modulation de la réplication virale, dans l’évasion immunitaire et dans la progression de la pathogenèse du SIDA. Dans ce contexte, il a été démontré que la protéine virale R (Vpr) induit un arrêt de cycle cellulaire en phase G2. Le mécanisme par lequel Vpr exerce cette fonction est l’activation, ATR (Ataxia telangiectasia and Rad3 related)-dépendante, du point de contrôle de dommage à l’ADN, mais les facteurs et mécanismes moléculaires directement impliqués dans cette activité demeurent inconnus. Afin d’identifier de nouveaux facteurs cellulaires interagissant avec Vpr, nous avons utilisé une purification d’affinité en tandem (TAP) pour isoler des complexes protéiques natifs contenant Vpr. Nous avons découvert que Vpr s’associait avec CRL4A(VprBP), un complexe cellulaire d’E3 ubiquitine ligase, comprenant les protéines Cullin 4A, DDB1 (DNA damage-binding protein 1) et VprBP (Vpr-binding protein). Nos études ont mis en évidence que le recrutement de la E3 ligase par Vpr était nécessaire mais non suffisant pour l’induction de l’arrêt de cycle cellulaire en G2, suggérant ainsi que des événements additionnels seraient impliqués dans ce processus. À cet égard, nous apportons des preuves directes que Vpr détourne les fonctions de CRL4A(VprBP) pour induire la polyubiquitination de type K48 et la dégradation protéosomale de protéines cellulaires encore inconnues. Ces événements d’ubiquitination induits par Vpr ont été démontrés comme étant nécessaire à l’activation d’ATR. Finalement, nous montrons que Vpr forme des foyers ancrés à la chromatine co-localisant avec VprBP ainsi qu’avec des facteurs impliqués dans la réparation de l’ADN. La formation de ces foyers représente un événement essentiel et précoce dans l’induction de l’arrêt de cycle cellulaire en G2. Enfin, nous démontrons que Vpr est capable de recruter CRL4A(VprBP) au niveau de la chromatine et nous apportons des preuves indiquant que le substrat inconnu ciblé par Vpr est une protéine associée à la chromatine. Globalement, nos résultats révèlent certains des ménanismes par lesquels Vpr induit des perturbations du cycle cellulaire. En outre, cette étude contribue à notre compréhension de la modulation du système ubiquitine-protéasome par le VIH-1 et son implication fonctionnelle dans la manipulation de l’environnement cellulaire de l’hôte. / Human immunodeficiency virus 1 (HIV-1), the etiologic agent of AIDS, is a complex retrovirus with several accessory proteins. HIV-1 accessory proteins Nef, Vif, Vpr, and Vpu have been implicated in the modulation of viral replication, enhancement of viral fitness, immune evasion, and progression of AIDS pathogenesis. In that regard, viral protein R (Vpr) induces a cell cycle arrest in the G2 phase by activating the canonical ATR (Ataxia telangiectasia and Rad3 related)-mediated DNA damage checkpoint, but cellular factors and mechanisms directly engaged in this process remain unknown. To identify novel Vpr-interacting cellular factors, we used tandem affinity purification (TAP) to isolate native Vpr-containing complexes. We found that Vpr hijacks a cellular E3 ubiquitin ligase complex, CRL4A(VprBP), composed of Cullin 4A, DDB1 (DNA damage-binding protein 1) and VprBP (Vpr-binding protein). Moreover, we observed that recruitment of the E3 ligase by Vpr was necessary but not sufficient for the induction of G2 cell cycle arrest, suggesting that additional events are involved. In this context, we provide direct evidence that Vpr usurps the function of CRL4A(VprBP) to induce the K48-linked polyubiquitination and proteasomal degradation of as-yet-unknown cellular proteins. These ubiquitination events mediated by Vpr were necessary for the activation of ATR. Moreover, we show that Vpr forms chromatin-associated foci that co-localize with VprBP and DNA repair factors. Our data indicate that formation of these foci represent a critical early event in the induction of G2 arrest. Finally, we show that Vpr is able to recruit CRL4A(VprBP) on chromatin and we provide evidence that the unknown substrate targeted by Vpr is a chromatin-associated protein.
Overall, our results reveal some of the mechanisms by which Vpr induces cell cycle perturbations. Furthermore, this study contributes to our understanding of the modulation of the ubiquitin-proteasome system by HIV-1 and its functional implication in the manipulation of the host cellular environment.
|
13 |
Caractérisation biochimique et moléculaire du complexe SCF (SKP1-CULLIN-FBOX) chez le blé tendreEl Beji, Imen 18 July 2011 (has links) (PDF)
Les modifications post-traductionnelles des protéines constituent un niveau crucial de régulation de l'expression des gènes. Parmi elles, la conjugaison peptidique impliquant l'ubiquitine intervient entre autre dans la régulation de la stabilité protéique. La fixation de ce peptide de 76 acides aminés, extrêmement conservé, sous forme de chaîne de polyubiquitine, nécessite l'intervention de trois enzymes (E1, E2 et E3) et constitue un signal de dégradation de la protéine ainsi modifiée. Cette voie de régulation intervient dans de très nombreux processus biologiques. Les complexes SCF sont impliqués dans la voie de protéolyse ciblée. Ils représentent l' une des classes les plus fréquentes d'ubiquitine ligase E3 et ils sont composés de quatre sous-unités (Rbx, Cullin, SKP1, et F-box). La structure et la fonction des complexes SCF, ont été étudiées chez la levure, l'Homme et la plante modèle A. thaliana. Cependant, peu de travaux ont été réalisés chez des plantes cultivées, en particulier les céréales, telles que le blé. Cinq gènes codant pour la sous-unité Skp1 (TSK1, TSK3, TSK6, TSK11 et TSK16), cinq gènes codant pour la sous-unité F-box (ZTL, ATFBL5, EBF, TIR1 et ABA-T), un gène codant pour la sous-unité Cullin1 et un gène codant pour la protéine RBX du complexe SCF du blé, ont été isolés et clonés. Les différents tests d'interaction entre les quatre sous-unités du complexe SCF ont été réalisés par la méthode du double-hybride dans la levure en utilisant la technologie Gateway. Ces études ont montré que les deux protéines, TSK1 et TSK3, fixent spécifiquement différentes sous-unités F-box. Parallèlement, nous avons montré que la protéine TSK11 représente une structure particulière. Des études d'insertion/délétion sur la protéine TSK11 ont permis d'identifier un nouveau domaine indispensable à l'interaction. Les analyses par PCR semi-quantitative des différents gènes codant pour la sous-unité Skp1, dans trois tissus différents (feuille tige et racine), ont mis en évidence une expression constitutive des gènes TSK3, TSK6 et TSK11. Tandis que les gènes TSK1 et TSK16 sont exprimés préférentiellement dans les racines. Les analyses par PCR semi-quantitative sur des plantules de blé à différents stades de développement, ont mis en évidence une surexpression du gène TSK11 au moment de la floraison. Ce qui suggère que TSK11 est probablement un équivalent fonctionnel d'ASK1 chez Arabidopsis thaliana.
|
14 |
Identification des composantes du système ubiquitine-protéasome régulant la stabilité de la MAPK atypique ERK3Mathien, Simon 12 1900 (has links)
No description available.
|
15 |
Caractérisation biochimique et moléculaire du complexe SCF (SKP1-CULLIN-FBOX) chez le blé tendre / Biochemical and molecular characterization of the SCF complex (SKP1-CULLIN-FBOX) in soft wheatEl Beji, Imen 18 July 2011 (has links)
Les modifications post-traductionnelles des protéines constituent un niveau crucial de régulation de l’expression des gènes. Parmi elles, la conjugaison peptidique impliquant l’ubiquitine intervient entre autre dans la régulation de la stabilité protéique. La fixation de ce peptide de 76 acides aminés, extrêmement conservé, sous forme de chaîne de polyubiquitine, nécessite l’intervention de trois enzymes (E1, E2 et E3) et constitue un signal de dégradation de la protéine ainsi modifiée. Cette voie de régulation intervient dans de très nombreux processus biologiques. Les complexes SCF sont impliqués dans la voie de protéolyse ciblée. Ils représentent l' une des classes les plus fréquentes d'ubiquitine ligase E3 et ils sont composés de quatre sous-unités (Rbx, Cullin, SKP1, et F-box). La structure et la fonction des complexes SCF, ont été étudiées chez la levure, l’Homme et la plante modèle A. thaliana. Cependant, peu de travaux ont été réalisés chez des plantes cultivées, en particulier les céréales, telles que le blé. Cinq gènes codant pour la sous-unité Skp1 (TSK1, TSK3, TSK6, TSK11 et TSK16), cinq gènes codant pour la sous-unité F-box (ZTL, ATFBL5, EBF, TIR1 et ABA-T), un gène codant pour la sous-unité Cullin1 et un gène codant pour la protéine RBX du complexe SCF du blé, ont été isolés et clonés. Les différents tests d’interaction entre les quatre sous-unités du complexe SCF ont été réalisés par la méthode du double-hybride dans la levure en utilisant la technologie Gateway. Ces études ont montré que les deux protéines, TSK1 et TSK3, fixent spécifiquement différentes sous-unités F-box. Parallèlement, nous avons montré que la protéine TSK11 représente une structure particulière. Des études d’insertion/délétion sur la protéine TSK11 ont permis d’identifier un nouveau domaine indispensable à l’interaction. Les analyses par PCR semi-quantitative des différents gènes codant pour la sous-unité Skp1, dans trois tissus différents (feuille tige et racine), ont mis en évidence une expression constitutive des gènes TSK3, TSK6 et TSK11. Tandis que les gènes TSK1 et TSK16 sont exprimés préférentiellement dans les racines. Les analyses par PCR semi-quantitative sur des plantules de blé à différents stades de développement, ont mis en évidence une surexpression du gène TSK11 au moment de la floraison. Ce qui suggère que TSK11 est probablement un équivalent fonctionnel d’ASK1 chez Arabidopsis thaliana. / The selective degradation of proteins is an important means of regulating gene expression and plays crucial roles in the control of various cellular processes. The Ubiquitin (Ub)–Proteasome System (UPS) is the principal non-lysosomal proteolytic pathway in eukaryotic cells and is required for the degradation of key regulatory proteins. Ubiquitin is a 76-residue protein that can be attached covalently to target proteins through an enzymatic conjugation cascade involving three enzymes denoted, E1, E2 and E3.The SCF complex is a type of ubiquitin-protein ligase (E3) that acts as the specific factor responsible for substrate recognition and ubiquitination. Some polyubiquitinated proteins are then targeted to the 26S proteasome for degradation. The SCF complex consists of four components including SKP1, Cullin1, Rbx1 and a large gene family of F-box proteins. Twenty one SKP1-related genes have been described in the Arabidopsis genome and some of these genes have been analyzed genetically. By contrast, little is known about the function and structure of SKP1 homologues in wheat. Some of the Triticum SKP1-related protein (TSKs) have been characterized in this study. Five complete sequences of SKP1 (TSK1, TSK3, TSK6, TSK11 and TSK16), five F-box (ZTL, ATFBL5, EBF, TIR1 and ABA-T), one Cullin1 and one Rbx, were successfully cloned and biochemically characterized. Yeast two-hybrid analysis showed that TSK1 and TSK3 are capable of interacting with different F-box proteins. Furthermore, TSK11 contains an additional domain that changed its interaction capabilities. In vitro analysis using a chimeric protein showed that this additional domain could modify the interaction between a SKP-like protein and two F-box proteins. Expression analyses revealed that TSK1 and TSK16 were expressed predominantly in roots. While, TSK3, TSK6 and TSK11 were expressed in several wheat organs. In addition, the TSK11 was up-regulated in the leaves at the flowering stage.
|
16 |
Régulation du suppresseur de tumeur : la protéine F-box Fbw7 / Regulation of the tumor suppressor : the F-box Fbw7Zitouni, Sihem 02 December 2011 (has links)
Le système ubiquitine-protéasome joue un rôle central dans le contrôle de la progression du cycle cellulaire par la dégradation régulée de nombreuses protéines. Dans ce système, Fbw7 (aussi appelée Fbxw7, hCdc4, hAgo, Sel-10), est l'une des protéines F-box qui sert d'adaptateur de substrats pour l'une des plus importantes familles d'ubiquitine ligases : les complexes SCF (Skp1/Cullin/ F-box). Fbw7 assure la dégradation de plusieurs régulateurs positifs du cycle cellulaire : la cycline E, cMyc, c-Jun, Notch, Aurora A, mTOR, MCL1. En conséquence, l'altération des fonctions de Fbw7 conduit à des défauts de prolifération cellulaire, de différenciation et à de l'instabilité génomique. La mutation de Fbw7 dans les cancers entraîne une dérégulation de l'expression périodique cycline E qui n'est alors plus restreinte à la transition G1/S du cycle cellulaire. Nos résultats montrent qu'une isoforme, Fbw7, est exprimée dans les œufs de xénope matures arrêtés en métaphase II mais n'est pas fonctionnelle, expliquant la présence de grande quantité de cycline E dans les œufs à cette phase mitotique. Nous montrons que Fbw7 est maintenue inactive sous forme poly-ubiquitylée suite à sa phosphorylation par une PKC jusqu'à la fin des cycles embryonnaires rapides, au moment où la cycline E est brutalement dégradée. Nous montrons que la régulation négative de Fbw7 par PKC est conservée au cours des cycles cellulaires somatiques des cellules humaines, et contribue à l'expression périodique de la cycline E. Ces résultats mettent en évidence un nouveau mécanisme critique pour la régulation de Fbw7 au cours du cycle cellulaire et suggèrent que les fonctions de Fbw7 peuvent être altérées par une dérégulation de PKC, un phénomène observé dans de nombreux types de tumeurs humaines. / The ubiquitin-proteasome system plays a central role in the control of cell cycle progression through the regulated degradation of numerous critical proteins. In this process, one key family of ubiquitin ligases are the SCF (Skp1/Cul-1/F-box) complexes, in which F-box-bearing proteins act as substrate-recruiting factors. Fbw7 (also known as Fbxw7, hCdc4, hAgo, Sel-10) is one such F-box protein. It controls the stability and thus the levels of several positive regulators of the cell cycle, including cyclin E, cMyc, c-Jun, Notch, Aurora A, mTOR, Mcl1. As a consequence of its biological roles, alterations of the functions of Fbw7 lead to defects in cellular proliferation, differentiation and genetic instability. As seen in cancers, mutation of Fbw7 leads to deregulation of cyclin E expression, which is no more restricted to the G1-S phase boundary of the cell cycle. Here we report that Fbw7, although expressed in mature Xenopus eggs arrested in metaphase II, is not functional, explaining why cyclin E can be stockpiled in this mitotic-like phase. We found that, in these eggs as well as in early Xenopus embryos, Fbw7 is maintained under a PKC-dependent poly-ubiquitylated state until the end of the early rapid cleavage cycles where cyclin E is abruptly degraded. Importantly, we show that this PKC-dependent negative regulation of Fbw7 is conserved during human somatic cell cycles, resulting into the periodic expression of cyclin E. These findings reveal a novel mechanism critical for the temporal regulation of Fbw7 and suggest that the key functions of Fbw7 can be altered by PKC dysregulation, a mechanism known to occur in many types of human tumours.
|
17 |
Régulation des chaperons de la présentation antigénique par ubiquitinationLadouceur, Annie 05 1900 (has links)
La chaîne invariante forme un complexe nonamérique avec les molécules classiques du CMH de classe II. HLA-DM et HLA-DO, des molécules non-classiques de classe II, sont aussi impliquées dans la présentation des peptides antigéniques aux lymphocytes T. Ces molécules chaperones de la présentation antigénique modulent la capacité d’une cellule à présenter des antigènes par les moloécules classiques du CMH de classe II. La régulation transcriptionnelle des molécules chaperones, tout comme celle des autres molécules du CMH de classe II, est assurée par le transactivateur CIITA. La molécule HLA-DR peut être régulée négativement de manière post-traductionnelle par ubiquitination grâce à l’enzyme E3 ubiquitine ligase MARCH1. Celle-ci est induite par l’interleukine-10 dans les monocytes. L’objectif de ce projet était de déterminer si l’ubiquitination par MARCH1 peut aussi réguler l’expression des molécules chaperones de la présentation antigénique. Les expériences furent réalisées dans le contexte de co-transfections en cellules HEK293T. L’expression des molécules fut évaluée par immunomarquages et cytométrie de flux. Il a été montré que l’isoforme p33 de la chaîne invariante est régulé négativement en présence de MARCH1 à partir de la surface cellulaire, causant ainsi sa dégradation. Tel que démontré par l’utilisation d’un mutant dépourvu de queue cytoplasmique, cette dernière région n’est pas indispensable à ce phénomène. Une hypothèse est qu’une molécule non-identifiée, associée à Ii, serait ubiquitinée par MARCH1, l’entraînant dans sa régulation négative. Il fut déterminer que cette molécule n’était pas CXCR2, un récepteur pouvant être impliqué, avec la chaîne invariante et CD44, en tant que récepteur de MIF (Macrophage Inhibitory Factor). Il fut aussi montré que HLA-DO peut être ciblé par MARCH1 mais ceci ne semble pas être un phénomène dominant; l’expression des complexes DO/DM n’étant pas affectée bien qu’ils entrent en interaction avec MARCH1. L’expression de HLA-DM n’est pas affectée par MARCH1. Il n’a toutefois pas été déterminé hors de tout doute si MARCH1 peut modifier DM; des résultats obtenus avec une queue cytoplasmique de DM possédant une lysine laissant suggérer qu’il est possible que MARCH1 interagisse avec DM. Dans l’ensemble, les travaux démontrent que l’ubiquitination par MARCH1 joue un rôle dans la régulation post-transcriptionnelle de la chaîne invariante p33 mais pas HLA-DO et HLA-DM. / The invariant chain, which form a nonameric complex with the classical MHC class II molecules. HLA-DM and HLA-DO (non-classical class II molecules) are involved in the presentation of antigens to T lymphocytes. The chaperons molecules of the antigenic presentation can modulate the capacity of the cells to present antigens. The transcriptional regulation of the chaperons and all of the other molecules linked to the MHC is assured by the CIITA transactivator. Little is know of the post-transcriptional mechanisms, other than the fact that HLA-DR molecule can be down-regulated by ubiquitination due to E3 ubiquitin ligase MARCH1. MARCH1 is induce by interleukin-10 in monocytes. The goal of this project is to figure out if ubiquitination by MARCH1 can also regulate the expression of the antigenic presentation chaperons. The experiences were performed in the context of co-transfections in HEK293T cells and the expression of the diverses molecules was evaluated by cell stainings and FACS analysis. The p33 isoform of the invariant chain was found to be down-regulated and degraded in the presence of MARCH1. The invariant chain cytoplasmic tail is not completely essential to this phenomenon; a non-identified molecule, associated with Ii, is probably ubiquitinated by MARCH1 and is then down-regulated, together with Ii. It was shown tha CXCR2, a reeptor involved with the invariant chain and CD44 in the reception of the MIF signal, is not that molecule. HLA-DO can ben targetd by MARCH1 but this does not seem to be a general phenomenon; the expression of the DO/DM complexes remaning unaffected even with the interaction of those complexes with MARCH1. Therefore, a certain protection seem to be provided by HLA-DM to HLA-DO. The expression of HLA-DM itself is not affected by the presence of MARCH1. However, it was not cleary demonstrated if MARCH1 can modify DM. Some results obtained with a cytoplasmic tail of DM comprising an additional lysine suggest that there is a possibility that MARCH1 interact with DM. Generally, the work presented here show that ubiquitination by MARCH1 is involved in post-transcriptionnal regulation of the p33 isoform of the invariant chain but not in the regulation of HLA-DO and HLA-DM.
|
18 |
Régulation des chaperons de la présentation antigénique par ubiquitinationLadouceur, Annie 05 1900 (has links)
La chaîne invariante forme un complexe nonamérique avec les molécules classiques du CMH de classe II. HLA-DM et HLA-DO, des molécules non-classiques de classe II, sont aussi impliquées dans la présentation des peptides antigéniques aux lymphocytes T. Ces molécules chaperones de la présentation antigénique modulent la capacité d’une cellule à présenter des antigènes par les moloécules classiques du CMH de classe II. La régulation transcriptionnelle des molécules chaperones, tout comme celle des autres molécules du CMH de classe II, est assurée par le transactivateur CIITA. La molécule HLA-DR peut être régulée négativement de manière post-traductionnelle par ubiquitination grâce à l’enzyme E3 ubiquitine ligase MARCH1. Celle-ci est induite par l’interleukine-10 dans les monocytes. L’objectif de ce projet était de déterminer si l’ubiquitination par MARCH1 peut aussi réguler l’expression des molécules chaperones de la présentation antigénique. Les expériences furent réalisées dans le contexte de co-transfections en cellules HEK293T. L’expression des molécules fut évaluée par immunomarquages et cytométrie de flux. Il a été montré que l’isoforme p33 de la chaîne invariante est régulé négativement en présence de MARCH1 à partir de la surface cellulaire, causant ainsi sa dégradation. Tel que démontré par l’utilisation d’un mutant dépourvu de queue cytoplasmique, cette dernière région n’est pas indispensable à ce phénomène. Une hypothèse est qu’une molécule non-identifiée, associée à Ii, serait ubiquitinée par MARCH1, l’entraînant dans sa régulation négative. Il fut déterminer que cette molécule n’était pas CXCR2, un récepteur pouvant être impliqué, avec la chaîne invariante et CD44, en tant que récepteur de MIF (Macrophage Inhibitory Factor). Il fut aussi montré que HLA-DO peut être ciblé par MARCH1 mais ceci ne semble pas être un phénomène dominant; l’expression des complexes DO/DM n’étant pas affectée bien qu’ils entrent en interaction avec MARCH1. L’expression de HLA-DM n’est pas affectée par MARCH1. Il n’a toutefois pas été déterminé hors de tout doute si MARCH1 peut modifier DM; des résultats obtenus avec une queue cytoplasmique de DM possédant une lysine laissant suggérer qu’il est possible que MARCH1 interagisse avec DM. Dans l’ensemble, les travaux démontrent que l’ubiquitination par MARCH1 joue un rôle dans la régulation post-transcriptionnelle de la chaîne invariante p33 mais pas HLA-DO et HLA-DM. / The invariant chain, which form a nonameric complex with the classical MHC class II molecules. HLA-DM and HLA-DO (non-classical class II molecules) are involved in the presentation of antigens to T lymphocytes. The chaperons molecules of the antigenic presentation can modulate the capacity of the cells to present antigens. The transcriptional regulation of the chaperons and all of the other molecules linked to the MHC is assured by the CIITA transactivator. Little is know of the post-transcriptional mechanisms, other than the fact that HLA-DR molecule can be down-regulated by ubiquitination due to E3 ubiquitin ligase MARCH1. MARCH1 is induce by interleukin-10 in monocytes. The goal of this project is to figure out if ubiquitination by MARCH1 can also regulate the expression of the antigenic presentation chaperons. The experiences were performed in the context of co-transfections in HEK293T cells and the expression of the diverses molecules was evaluated by cell stainings and FACS analysis. The p33 isoform of the invariant chain was found to be down-regulated and degraded in the presence of MARCH1. The invariant chain cytoplasmic tail is not completely essential to this phenomenon; a non-identified molecule, associated with Ii, is probably ubiquitinated by MARCH1 and is then down-regulated, together with Ii. It was shown tha CXCR2, a reeptor involved with the invariant chain and CD44 in the reception of the MIF signal, is not that molecule. HLA-DO can ben targetd by MARCH1 but this does not seem to be a general phenomenon; the expression of the DO/DM complexes remaning unaffected even with the interaction of those complexes with MARCH1. Therefore, a certain protection seem to be provided by HLA-DM to HLA-DO. The expression of HLA-DM itself is not affected by the presence of MARCH1. However, it was not cleary demonstrated if MARCH1 can modify DM. Some results obtained with a cytoplasmic tail of DM comprising an additional lysine suggest that there is a possibility that MARCH1 interact with DM. Generally, the work presented here show that ubiquitination by MARCH1 is involved in post-transcriptionnal regulation of the p33 isoform of the invariant chain but not in the regulation of HLA-DO and HLA-DM.
|
19 |
La régulation de Staufen1 dans le cycle et la prolifération cellulairesGonzalez Quesada, Yulemi 02 1900 (has links)
Staufen1 (STAU1) est une protéine de liaison à l’ARN essentielle dans les cellules non-transformées. Dans les cellules cancéreuses, le niveau d’expression de la protéine est critique et étroitement lié à des évènements d’apoptose et des altérations dans la prolifération cellulaire. Le dsRBD2 de STAU1 lie des facteurs protéiques qui sont fondamentaux pour les fonctions de la protéine, telles que la liaison aux microtubules qui garantit sa localisation au fuseau mitotique et l’interaction avec les coactivateurs de l’E3 ubiquitine-ligase APC/C, ce qui garantit la dégradation partielle de STAU1 en mitose.
Nous avons cartographié un nouveau motif F39PxPxxLxxxxL50 (motif FPL) dans le dsRBD2 de STAU1. Ce motif est fondamental pour l’interaction de la protéine avec les co-activateurs de l’APC/C, CDC20 et CDH1, et sa dégradation subséquente. Nous avons ensuite identifié un total de 15 protéines impliquées dans le processus inflammatoire qui partagent cette séquence avec STAU1. Nous avons prouvé, par des essais de co-transfection et de dégradation, que MAP4K1, l’une des protéines qui partagent ce motif, est aussi dégradé via ce motif FPL. Cependant, le motif de MAP4K1 n’est pas la cible de l’APC/C. Des techniques de biotinylation des protéines à proximité de STAU1 nous ont permis d’identifier TRIM25, une E3 ubiquitine ligase impliquée dans la régulation immunitaire et l’inflammation, comme protéine impliquée dans la dégradation de STAU1 et de MAP4K1 via le motif FPL. Ceci suggère des rôles de STAU1 dans la régulation du processus inflammatoire, ce qui est consistent avec des études récentes qui associent STAU1 à ce processus. Nous considérons que le motif FPL pourrait être à la base de la coordination de la régulation des protéines impliquées dans l’inflammation et la régulation de la réponse immune.
Nos études sur l’effet anti-prolifératif de STAU1 lorsque surexprimé dans les cellules transformées ont identifié le domaine dsRBD2 de STAU1 comme responsable de ce phénotype. Des mutants qui miment les différents états de phosphorylation de la serine 20, située dans le domaine dsRBD2, sont à la base des changements dans la régulation de la traduction et la dégradation des ARNm liés à STAU1. Ces changements dans la régulation des ARNm par STAU1 sont associés aux altérations dans la prolifération des cellules transformées observées lors de la surexpression de STAU1. Nous avons aussi découvert que, après la transfection de STAU1, la cellule déclenche rapidement des évènements d’apoptose, et que ces évènements sont aussi dépendants de l’état de phosphorylation de la sérine 20 dans dsRBD2 de STAU1. Ces résultats suggèrent que STAU1 est un senseur qui contrôle la balance entre la survie et la prolifération cellulaire et que l’état de phosphorylation de son dsRBD2 est à la base de ce contrôle.
Nos résultats indiquent que le dsRBD2 de STAU1 est le domaine de régulation du niveau d’expression protéique et un modulateurs des rôles de la protéine comme facteur post-transcriptionnel. Nous pensons que cibler la régulation de STAU1 et ses fonctions situées dans son domaine dsRBD2, serait important dans l’étude des maladies qui impliquent des événements d’apoptose, d’inflammation et de prolifération cellulaire telles que le cancer. / Staufen1 (STAU1) is an RNA-binding protein essential in untransformed cells. In cancer cells, the level of expression of the STAU1 protein is critical and it has been closely linked to events of apoptosis and to cell proliferation impairments. STAU1's dsRBD2 binds protein factors that are fundamental for the protein's functions, such as microtubules components that ensure the protein localization to the mitotic spindle and its interaction with E3 ubiquitin-ligase APC/C coactivators, which guarantees the partial degradation of STAU1 during mitosis.
By mapping a novel F39PxPxxLxxxxL50 motif (FPL motif) in the dsRBD2 of STAU1, responsible of the interaction with the co-activators of APC/C, CDC20 and CDH1, and its subsequent degradation, we were able to identify a total of 15 proteins mostly involved in the inflammatory process that share this sequence with STAU1. We proved, by co-transfection and degradation assays that, MAP4K1, one of the proteins that shares this motif, is also degraded via this FPL motif. However, we demonstrated that this motif on MAP4K1 is not the target of APC/C. Biotinylation techniques of proteins near STAU1 allowed us to identify TRIM25, an E3 ubiquitin ligase involved in immune regulation and inflammation, as a protein involved in the degradation of STAU1 and MAP4K1 via the FPL motif. This suggests roles of STAU1 in the regulation of the inflammatory events, which is consistent with recent studies that associate STAU1 with this process. We consider that the FPL motif could be at the basis of the coordination of the regulation of proteins involved in inflammation and the regulation of the immune response.
Our studies on the anti-proliferative effect of STAU1 when overexpressed in transformed cells identified the domain dsRBD2 of STAU1 as responsible for this phenotype. Mutants
8
that mimic different phosphorylation states of serine 20, located in dsRBD2, underlie changes in the regulation of translation and degradation of STAU1-linked mRNAs. These STAU1-dependent changes in mRNA regulation are associated with the proliferation impairment of transformed cells that is observed upon overexpression of STAU1. We also discovered that, after STAU1 transfection, the cell rapidly triggers apoptotic events, and that these events are also dependent on the phosphorylation state of serine 20 in dsRBD2 of STAU1. These results suggest that STAU1 is a sensor that controls the balance between cell survival and cell proliferation and that the state of phosphorylation of its dsRBD2 is the basis of this control.
Our results indicate that the dsRBD2 of STAU1 is the regulatory domain of the level of protein expression and a modulator of the protein roles as a post-transcriptional factor. We believe that targeting the regulation of STAU1 and its functions located in its dsRBD2 domain, would be important in the study of diseases that involve apoptosis, inflammation and cell proliferation events such as cancer.
|
20 |
Regulation of BAP1 tumor suppressor complex by post-translational modificationsMashtalir, Nazar 04 1900 (has links)
Le régulateur transcriptionnel BAP1 est une déubiquitinase nucléaire (DUB) dont le substrat est l’histone H2A modifiée par monoubiquitination au niveau des residus lysines 118 et 119 (K118/K119). Depuis les dernières années, BAP1 emerge comme un gene suppresseur de tumeur majeur. En effet, BAP1 est inactivé dans un plethore de maladies humaines héréditaires et sporadiques. Cependant, malgré l’accumulation significative des connaissances concernant l’occurrence, la pénétrance et l’impact des défauts de BAP1 sur le développement de cancers, ses mécanismes d’action et de régulation restent très peu compris. Cette étude est dédiée à la caractérisation moléculaire et fonctionnelle du complexe multi-protéique de BAP1 et se présente parmi les premiers travaux décrivant sa régulation par des modifications post-traductionnelles.
D’abord, nous avons défini la composition du corps du complexe BAP1 ainsi que ses principaux partenaires d’interaction. Ensuite, nous nous sommes spécifiquement intéressés a investiguer d’avantage deux principaux aspects de la régulation de BAP1. Nous avons d’abord décrit l’inter-régulation entre deux composantes majeures du complexe BAP1, soit HCF-1 et OGT. D’une manière très intéressante, nous avons trouvé que le cofacteur HCF-1 est un important régulateur des niveaux protéiques d’OGT. En retour, OGT est requise pour la maturation protéolytique de HCF-1 en promouvant sa protéolyse par O-GlcNAcylation, un processus de régulation très important pour le bon fonctionnement de HCF-1. D’autre part, nous avons découvert un mécanisme unique de régulation de BAP1 médiée par l’ubiquitine ligase atypique UBE2O. en effet, UBE2O se caractérise par le fait qu’il s’agit aussi bien d’une ubiquitine conjuratrice et d’une ubiquitine ligase. UBE2O, multi-monoubiquitine BAP1 au niveau de son domaine NLS et promeut son exclusion du noyau, le séquestrant ainsi dans le cytoplasme. De façon importante, nos travaux ont permis de mettre de l’emphase sur le rôle de l’activité auto-catalytique de chacune de ces enzymes, soit l’activité d’auto-déubiquitination de BAP1 qui est requise pour la maintenance de sa localisation nucléaire ainsi que l’activité d’auto-ubiquitination d’UBE2O impliquée dans son transport nucléo-cytoplasmique. De manière significative, nous avons trouvé que des défauts au niveau de l’auto-déubiquitination de BAP1 due à des mutations associées à certains cancers indiquent l’importance d’une propre regulation de cette déubiquitinase pour les processus associés à la suppression de tumeurs. / BAP1 is a nuclear deubiquitinating enzyme (DUB) that acts as a transcription regulator and a DUB of nucleosomal histone H2AK119. In the recent years, it has become clear that BAP1 is a major tumor suppressor, inactivated in a plethora of hereditary and sporadic human malignancies. Although, we now accumulated a significant body of knowledge in respect to the occurrence, penetrance and impact of BAP1 disruption in cancer, its mechanism of action and regulation remained poorly defined. This work is dedicated to the biochemical and functional characterization of the BAP1 multiprotein complex and presents one of the first cases regarding its regulation by post-translational modifications.
First, we defined the initial composition of the BAP1 complex and its main interacting components. Second, we specifically focused on two aspects of BAP1 regulation. We described the cross regulation between the two major components of the complex namely HCF-1 and OGT. We found that HCF-1 is important for the maintenance of the cellular levels of OGT. OGT, in turn, is required for the proper maturation of HCF-1 by promoting O-GlcNAcylation-mediated limited proteolysis of its precursor. Third, we discovered an intricate regulatory mechanism of BAP1 mediated by the atypical ubiquitin ligase UBE2O. UBE2O multi-monoubiquitinates BAP1 on its NLS and promotes its exclusion from the nucleus. Importantly, our work emphasises the role of the autocatalytic activity of both enzymes namely the auto-deubiquitination activity of BAP1, required for the maintenance of nuclear BAP1 and the auto-ubiquitination of UBE2O implicated in its nucleocytoplasmic transport. Significantly, we found that auto-deubiquitination of BAP1 is disrupted by cancer-associated mutations, indicating the involvement of this process in tumor suppression.
|
Page generated in 0.0528 seconds