• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 14
  • 13
  • 12
  • 10
  • 10
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Pulse Shaping Based on Integrated Waveguide Gratings

Kultavewuti, Pisek 25 July 2012 (has links)
Temporal pulse shaping based on integrated Bragg gratings is investigated in this work to achieve arbitrary output waveforms. The grating structure is simulated based on the sidewall-etching geometry in an AlGaAs platform. The inverse scattering employin the Gel'fan-Levithan-Marchenko theorem and the layer peeling method provides a tool to determine grating structures from a desired spectral reflection response. Simulations of pulse shaping considered flat-top and triangular pulses as well as one-to-one and one-to-many pulse shaping. The suggested grating profiles revealed a compromise between performance and grating length. The integrated grating, a few hundred microns in length, could generate flat-top pulses with pulse durations as short as 500 fs with rise/fall times of 200 fs; the results are comparable to previous work in free-space optics and fiber optics. The theories and the devised algorithms could serve as a design station for advanced grating devices for, but not restricted to, optical pulse shaping.
32

Propagation and Control of Broadband Optical and Radio Frequency Signals in Complex Environments

Bohao Liu (6407975) 15 May 2019 (has links)
A complex environment causes strong distortion of the field, inhibiting tasks such as imaging and communications in both the optical and radio-frequency (RF) region. In the optical regime, strong modal dispersion in highly multimode fiber (MMF) results in a scrambled output field in both space (intensity speckles) and time (spectral and temporal speckles). Taking advantage of the pulse shaping technique, spatial and temporal focusing has been achieved in this thesis, offering potential opportunities for nonlinear microscopy and imaging or space-division multiplexed optical communication through MMF. In the RF regime, multipath effect in wireless RF channel gives multiple echoes with random delay and amplitude attenuation at the receiver end. Static channel sounding and compensation with ultra-broadband spread spectrum technique resolves the issue by generating a peaking signal at the receiver, significantly improving the signal-to-noise/interference performance. However, the limited communication speed in the static approach makes it challenging for sounding and compensation in a dynamic channel. Here, we achieve real-time channel sounding and compensation for dynamic wireless multipath channel with 40 micro-seconds refresh rate by using a fast processing field programmable gate array (FPGA) unit, providing potential opportunities for mobile communications in indoor, urban, and other complex environments. Furthermore, by combining broadband photonics and RF radar technologies, a high depth and transverse resolution wide bandwidth (15 GHz) W-band (75 - 110 GHz) photonic monopulse-like radar system for remote target sensing is demonstrated, offering prospects for millimeter wave 3-D sensing and imaging.
33

Étude de semi-conducteurs par spectroscopie d'excitation cohérente multidimensionnelle

Grégoire, Pascal 07 1900 (has links)
No description available.
34

MICROWAVE SCATTERING FOR DIAGNOSTICS OF LASER-INDUCED PLASMAS AND DENSITIES OF SPECIES IN COMBUSTION MIXTURES

Animesh Sharma (8911772) 16 June 2020 (has links)
<p>Laser-induced plasmas since their discovery in the 1960’s have found numerous applications in laboratories and industries. Their uses range from soft ionization source in mass spectroscopy, development of compact particle accelerator, and X-ray and deep UV radiation sources to diagnostic techniques such as laser-induced breakdown spectroscopy and laser electronic excitation tagging. In addition, the laser-induced plasma is important for studying of various nonlinear effects at beam propagation, such as laser pulse filamentation.</p> <p>This work deals with two challenging aspects associated with laser-induced plasmas. First is the study of Multi-Photon Ionization (MPI) as a fundamental first step in high-energy laser-matter interaction critical for understanding of the mechanism of plasma formation. The second is application of laser induced plasma for diagnostics of combustion systems.</p> <p>Numerous attempts to determine the basic physical constants of MPI process in direct experiments, namely photoionization rates and cross-sections of the MPI, were made; however, no reliable data was available until now, and the spread in the literature values often reached 2–3 orders of magnitude. This work presents the use of microwave scattering in quasi-Rayleigh regime off the electrons in the laser-induced plasma as method to measure the total number of electrons created due to the photoionization process and subsequently determine the cross-sections and rates of MPI. Experiments were done in air,<i> O<sub>2</sub>, Xe, Ar, N<sub>2</sub>, Kr</i>, and <i>CO</i> at room temperature and atmospheric pressure and femtosecond-laser pulse at 800 nm wavelength was utilized. Rayleigh microwave scattering (RMS) technique was used to obtain temporally resolved measurements of the electron numbers created by the laser. Numbers of electrons in the range 3 × 10<sup>8</sup>–3 × 10<sup>12</sup> were produced by the laser pulse energies 100–700 <i>μ</i>J and corresponding electron number densities down to about 10<sup>14</sup> cm<sup>-3</sup> in the center of laser-induced spark were observed. After the laser pulse, plasma decayed on the time scale from 1 to 40 ns depending on the gas type and governed by two competing processes, namely, the creation of new electrons from ionization of the metastable atoms and loss of the electrons due to dissociative recombination and attachment to oxygen. </p> <p>Diagnostics of combustion at high pressures are challenging due to increased collisional quenching and associated loss of acquired signal. In this work, resonance enhanced multiphoton photon ionization (REMPI) in conjunction with measurement of generated electrons by RMS technique were used to develop diagnostics method for measuring concentration of a component in gaseous mixture at elected pressure. Specifically, the REMPI-RMS diagnostics was developed and tested in the measurements of number density of carbon monoxide (<i>CO</i>) in mixtures with nitrogen (<i>N<sub>2</sub></i>) at pressures up to 5 bars. Number of REMPI-induced electrons scaled linearly with <i>CO</i> number density up to about 5×10<sup>18</sup> cm<sup>-3</sup> independently of buffer gas pressure up to 5 bar, and this linear scaling region can be readily used for diagnostics purposes. Higher <i>CO</i> number densities were associated laser beam energy loss while travelling through the gaseous mixture. Four (4) energy level model of <i>CO</i> molecule was developed and direct measurements of the laser pulse energy absorbed in the two-photon process during the passage through the <i>CO</i>/<i>N<sub>2</sub></i> mixture were conducted in order to analyze the observed trends of number of REMPI-generated electrons with <i>CO</i> number density and laser energy.</p>
35

CONSTRUCTIVE (COHERENT) ELASTIC MICROWAVE SCATTERING-BASED PLASMA DIAGNOSTICS AND APPLICATIONS TO PHOTOIONIZATION

Adam Robert Patel (13171986) 29 July 2022 (has links)
<p>Constructive elastic microwave scattering, or, historically, coherent microwave scattering (CMS), refers to the inference of small plasma object characteristics via in-phase electromagnetic scattering – and has become a valuable technique in applications ranging from photoionization and electron-loss rate measurements to trace species detection, gaseous mixture and reaction characterization, molecular spectroscopy, and standoff measurement of local vector magnetic fields in gases through magnetically-induced depolarization. Notable advantages of the technique include a high sensitivity, good temporal resolution, low shot noise, non-intrusive probing, species-selectivity when coupled with resonance-enhanced multiphoton ionization (REMPI), single-shot acquisition, and the capability of time gating due to continuous scanning.</p> <p>Originally, the diagnostic was used for the measurement of electron total populations and number densities in collisional, weakly-ionized, and unmagnetized small plasma objects – so called collisional scattering. However, despite increased interest in recent years, the technique’s applicability to collisionless plasmas has remained relatively unexplored. This dissertation intends to expand upon the theoretical, mathematical, and experimental basis for CMS and demonstrate the constructive Thomson & Rayleigh scattering regimes for the first time. Furthermore, this work seeks to explore other novel and relevant capabilities of CMS including electron momentum-transfer collision frequency measurements via scattered phase information and spatially-resolved electron number characterizations of elongated plasma filament structures.</p> <p>This dissertation additionally leverages the technique to diagnose microplasmas and situations of particular interest. Primarily, photoionization (PI) – including UV resonance-enhanced multiphoton ionization, non-resonant visible PI, and mid-IR tunneling ionization in gaseous media. Such processes bear importance to studies on nonequilibrium plasmas, soft ionization in mass spectrometry, the development of compact particle accelerators, X-ray and deep UV radiation sources, laser-assisted combustion, laser-induced breakdown spectroscopy, species detection, mixture characterization and spectroscopy, studies on nonlinear beam propagation (filamentation, self-trapping and pulse splitting, dispersion, modulation instabilities), and so on. Finally, the application of CMS to ion thrusters is demonstrated.</p>
36

Ultrafast Emission Spectroscopy and Nonlinear Laser Diagnostics for Nanosecond Pulsed Plasmas

Karna S Patel (9380432) 24 April 2024 (has links)
<p dir="ltr">In recent years, nanosecond repetitively pulsed (NRP) plasma discharges have garnered significant interest due to their rapid generation of reactive excited-state species, reactive radicals, and localized heat release within nanosecond (ns) timescale. To effectively harness these plasmas for altering system-level thermal and chemical behavior, a thorough understanding of their governing physics is crucial. This knowledge enables the development of predictive plasma kinetic models for tailoring NRP plasmas to specific applications. However, achieving this requires high-fidelity experimental data to validate models and deepen our understanding of fundamental plasma physics. Advancing experimental spectroscopy and laser diagnostics methods is essential for probing such temporally highly dynamic and optically complex nonequilibrium environments. This includes developing novel <i>test platforms</i>, conducting <i>fundamental research</i> to address existing knowledge gaps, and constructing custom <i>ultrafast laser architectures</i> for probing plasma properties. </p><p dir="ltr">The pioneering development of Streak-based <i>test platform</i> in the diagnostics field of nanosecond pulsed plasmas and its successful application towards inferring the underlying ultrafast spatio-temporal evolution of nanosecond pulsed plasma discharges with an unprecedented time-resolution as short as ~25 ps is presented for the first time. Spectrally filtered, 1D line-imaging of nanosecond pulsed plasma discharges in a single-shot, jitter-free, continuously sweeping manner is obtained, and differences in discharge dynamics of air and N2 plasma environments are studied. Successive <i>test platform</i> advancement includes spectrally resolved Streak-spectroscopy measurements of thermal regime-transition evolution from early-nonequilibrium to local-thermal-equilibrium (LTE) to attain time-resolved quantitative insights into N2(C) state rotational/vibrational nonequilibrium temperatures, electron temperature/density, and spectral lifetime dynamics. </p><p dir="ltr">Ultrafast laser-based progression includes detailed <i>fundamental</i> investigation of higher-order optical nonlinearity perturbations of fs-EFISH by considering of – self-phase modulation induced spectral characteristic of fs-EFISH signal, calibration mapping during-below-and-beyond optical breakdown regime, optical Kerr effect consequences, impact of femtosecond (fs) laser seeding on the noninvasiveness of fs-EFISH, and spectral emission characteristics of fs laser filaments. To infer N2(X) state nonequilibrium of NRP pulsed plasmas, two hybrid fs/ps ro-vibrational coherent anti-Stokes Raman scattering (CARS) <i>ultrafast laser architectures</i> are developed. First architecture, single-laser-solution, reduces system’s energy budget by ~3 mJ/pulse for generating narrowband (~21 ps), high-energy (~420 μJ/pulse), 532 nm probe pulses through incorporation of custom built visible fs optical parametric amplifier (OPA) coupled with an Nd:YAG power amplifier module. The second architecture, two-laser-solution, improves system’s robustness through the development of a 1 kHz, 532 nm, high-energy (~600 μJ/pulse), low-jitter (<1 ps), narrowband (~27 ps), master-oscillator-power-amplification (MOPA) based picosecond probe pulse laser time-synchronized with fs master-oscillator. Single-shot, hybrid fs/ps narrowband ro-vibrational CARS demonstration in a combusting flame up to temperatures of ~2400 K is demonstrated. Experimental ro-vibrational CARS investigation includes polarization based nonresonant background suppression and demonstration of preferential Raman coherence excitation shift, a temperature sensitivity enhancing strategy for vibrationally hot mediums like nanosecond pulsed plasmas. Lastly, an ultrafast pulse-friendly optically accessible vacuum cell is designed and fabricated for controlled experiments of NRP fs/ps CARS. Special care is taken to prevent self-focusing and spectral-temporal chirp of fs CARS beams while maintaining Gaussian focusing beam caustic.</p>
37

Ultrafast Exciton Dynamics and Optical Control in Semiconductor Quantum Dots

Wijesundara, Kushal Chinthaka 26 July 2012 (has links)
No description available.

Page generated in 0.0757 seconds