• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 21
  • 18
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 338
  • 338
  • 124
  • 114
  • 84
  • 81
  • 81
  • 65
  • 64
  • 64
  • 58
  • 50
  • 48
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Mining High Impact Combinations of Conditions from the Medical Expenditure Panel Survey

Mohan, Arjun 14 November 2023 (has links) (PDF)
The condition of multimorbidity — the presence of two or more medical conditions in an individual — is a growing phenomenon worldwide. In the United States, multimorbid patients represent more than a third of the population and the trend is steadily increasing in an already aging population. There is thus a pressing need to understand the patterns in which multimorbidity occurs, and to better understand the nature of the care that is required to be provided to such patients. In this thesis, we use data from the Medical Expenditure Panel Survey (MEPS) from the years 2011 to 2015 to identify combinations of multiple chronic conditions (MCCs). We first quantify the significant heterogeneity observed in these combinations and how often they are observed across the five years. Next, using two criteria associated with each combination -- (a) the annual prevalence and (b) the annual median expenditure -- along with the concept of non-dominated Pareto fronts, we determine the degree of impact each combination has on the healthcare system. Our analysis reveals that combinations of four or more conditions are often mixtures of diseases that belong to different clinically meaningful groupings such as the metabolic disorders (diabetes, hypertension, hyperlipidemia); musculoskeletal conditions (osteoarthritis, spondylosis, back problems etc.); respiratory disorders (asthma, COPD etc.); heart conditions (atherosclerosis, myocardial infarction); and mental health conditions (anxiety disorders, depression etc.). Next, we use unsupervised learning techniques such as association rule mining and hierarchical clustering to visually explore the strength of the relationships/associations between different conditions and condition groupings. This interactive framework allows epidemiologists and clinicians (in particular primary care physicians) to have a systematic approach to understand the relationships between conditions and build a strategy with regards to screening, diagnosis and treatment over a longer term, especially for individuals at risk for more complications. The findings from this study aim to create a foundation for future work where a more holistic view of multimorbidity is possible.
232

Machine Learning implementation for Stress-Detection

Madjar, Nicole, Lindblom, Filip January 2020 (has links)
This project is about trying to apply machine learning theories on a selection of data points in order to see if an improvement of current methodology within stress detection and measure selecting could be applicable for the company Linkura AB. Linkura AB is a medical technology company based in Linköping and handles among other things stress measuring for different companies employees, as well as health coaching for selecting measures. In this report we experiment with different methods and algorithms under the collective name of Unsupervised Learning, to identify visible patterns and behaviour of data points and further on we analyze it with the quantity of data received. The methods that have been practiced on during the project are “K-means algorithm” and a dynamic hierarchical clustering algorithm. The correlation between the different data points parameters is analyzed to optimize the resource consumption, also experiments with different number of parameters are tested and discussed with an expert in stress coaching. The results stated that both algorithms can create clusters for the risk groups, however, the dynamic clustering method clearly demonstrate the optimal number of clusters that should be used. Having consulted with mentors and health coaches regarding the analysis of the produced clusters, a conclusion that the dynamic hierarchical cluster algorithm gives more accurate clusters to represent risk groups were done. The conclusion of this project is that the machine learning algorithms that have been used, can categorize data points with stress behavioral correlations, which is usable in measure testimonials. Further research should be done with a greater set of data for a more optimal result, where this project can form the basis for the implementations. / Detta projekt handlar om att försöka applicera maskininlärningsmodeller på ett urval av datapunkter för att ta reda på huruvida en förbättring av nuvarande praxis inom stressdetektering och  åtgärdshantering kan vara applicerbart för företaget Linkura AB. Linkura AB är ett medicintekniskt företag baserat i Linköping och hanterar bland annat stressmätning hos andra företags anställda, samt hälso-coachning för att ta fram åtgärdspunkter för förbättring. I denna rapport experimenterar vi med olika metoder under samlingsnamnet oövervakad maskininlärning för att identifiera synbara mönster och beteenden inom datapunkter, och vidare analyseras detta i förhållande till den mängden data vi fått tillgodosett. De modeller som har använts under projektets gång har varit “K-Means algoritm” samt en dynamisk hierarkisk klustermodell. Korrelationen mellan olika datapunktsparametrar analyseras för att optimera resurshantering, samt experimentering med olika antal parametrar inkluderade i datan testas och diskuteras med expertis inom hälso-coachning. Resultaten påvisade att båda algoritmerna kan generera kluster för riskgrupper, men där den dynamiska modellen tydligt påvisar antalet kluster som ska användas för optimalt resultat. Efter konsultering med mentorer samt expertis inom hälso-coachning så drogs en slutsats om att den dynamiska modellen levererar tydligare riskkluster för att representera riskgrupper för stress. Slutsatsen för projektet blev att maskininlärningsmodeller kan kategorisera datapunkter med stressrelaterade korrelationer, vilket är användbart för åtgärdsbestämmelser. Framtida arbeten bör göras med ett större mängd data för mer optimerade resultat, där detta projekt kan ses som en grund för dessa implementeringar.
233

Automated Multimodal Emotion Recognition / Automatiserad multimodal känsloigenkänning

Fernández Carbonell, Marcos January 2020 (has links)
Being able to read and interpret affective states plays a significant role in human society. However, this is difficult in some situations, especially when information is limited to either vocal or visual cues. Many researchers have investigated the so-called basic emotions in a supervised way. This thesis holds the results of a multimodal supervised and unsupervised study of a more realistic number of emotions. To that end, audio and video features are extracted from the GEMEP dataset employing openSMILE and OpenFace, respectively. The supervised approach includes the comparison of multiple solutions and proves that multimodal pipelines can outperform unimodal ones, even with a higher number of affective states. The unsupervised approach embraces a traditional and an exploratory method to find meaningful patterns in the multimodal dataset. It also contains an innovative procedure to better understand the output of clustering techniques. / Att kunna läsa och tolka affektiva tillstånd spelar en viktig roll i det mänskliga samhället. Detta är emellertid svårt i vissa situationer, särskilt när information är begränsad till antingen vokala eller visuella signaler. Många forskare har undersökt de så kallade grundläggande känslorna på ett övervakat sätt. Det här examensarbetet innehåller resultaten från en multimodal övervakad och oövervakad studie av ett mer realistiskt antal känslor. För detta ändamål extraheras ljud- och videoegenskaper från GEMEP-data med openSMILE respektive OpenFace. Det övervakade tillvägagångssättet inkluderar jämförelse av flera lösningar och visar att multimodala pipelines kan överträffa unimodala sådana, även med ett större antal affektiva tillstånd. Den oövervakade metoden omfattar en konservativ och en utforskande metod för att hitta meningsfulla mönster i det multimodala datat. Den innehåller också ett innovativt förfarande för att bättre förstå resultatet av klustringstekniker.
234

Connecting Unsupervised and Supervised Categorization Behavior from a Parainformative Perspective

Doan, Charles A. 12 June 2018 (has links)
No description available.
235

ON APPLICATIONS OF STATISTICAL LEARNING TO BIOPHYSICS

CAO, BAOQIANG 03 April 2007 (has links)
No description available.
236

Grouping Similar Bug Reports from Crash Dumps with Unsupervised Learning / Gruppering av liknande felrapporter med oövervakat lärande av kraschdumpar

Vestergren, Sara January 2021 (has links)
Quality software usually means high reliability, which in turn has two main components; the software should provide correctness, which means it should perform the specified task, and robustness in the sense that it should be able to manage unexpected situations. In other words, reliable systems are systems without bugs. Because of this, testing and debugging are recurrent and resource expensive tasks in software development, notably in large software systems. This thesis investigate the potential of using unsupervised machine learning on Ericsson bug reports to avoid unnecessary debugging by identifying duplicate bug reports. The bug report data that is considered are crash dumps from software crashes. The data is clustered using the clustering algorithms k-modes, k-prototypes and expectation maximization where-after the generated clusters are used to assign new incoming bug reports to the previously generated clusters, thus indicating whether an old bug report is similar to the newly submitted one. Due to the dataset only being partially labeled both internal and external validity indices are applied to evaluate the clustering. The results indicate that many, small clusters can be identified using the applied method. However, for the results to have high validity the methods could be applied on a larger data set. / Mjukvara av hög kvalitet innebär ofta hög tillförlitlighet, vilket i sin tur har två huvudkomponenter; mjukvaran bör vara korrekt, den ska alltså uppfylla dom specifierade kraven, och dessutom robust vilket innebär att den ska kunna hantera oväntade situationer. Med andra ord, tillförlitliga system är system utan buggar. På grund av detta är testning och felsökning återkommande och resurskrävande uppgifter inom mjukvaruutveckling, i synnerhet för stora mjukvarusystem. Detta arbete utforskar vilken potential oövervakad maskininlärning på Ericssons felrapporter har för att undvika onödig felsökning genom att identifiera felrapporter som är dubletter. Felrapporterna som används i detta arbete innehåller data som sparats i minnet vid en mjukvarukrasch. Data klustras sedan med klustringsalgoritmerna k-modes, k-prototypes och expectation maximization varpå dom genererade klustren används för att tilldela nya inkommande felrapporter till de tidigare generade klustren, för att på så sätt kunna identifiera om en gammal felrapport är lik en ny felrapport. Då de felrapporter som behandlas endast till viss del redan är märkta som dubletter används både externa och interna valideringsmått för att utvärdera klustringen. Resultaten tyder på att många, små kluster kunde identifieras med de använda metoderna. Dock skulle metoderna behöva appliceras på ett dataset med större antal felrapporter för att resultaten ska få hög validitet.
237

Machine Learning Based Failure Detection in Data Centers

Piran Nanekaran, Negin January 2020 (has links)
This work proposes a new approach to fast detection of abnormal behaviour of cooling, IT, and power distribution systems in micro data centers based on machine learning techniques. Conventional protection of micro data centers focuses on monitoring individual parameters such as temperature at different locations and when these parameters reach certain high values, then an alarm will be triggered. This research employs machine learning techniques to extract normal and abnormal behaviour of the cooling and IT systems. Developed data acquisition system together with unsupervised learning methods quickly learns the physical dynamics of normal operation and can detect deviations from such behaviours. This provides an efficient way for not only producing health index for the micro data center, but also a rich label logging system that will be used for the supervised learning methods. The effectiveness of the proposed detection technique is evaluated on an micro data center placed at Computing Infrastructure Research Center (CIRC) in McMaster Innovation Park (MIP), McMaster University. / Thesis / Master of Science (MSc)
238

Action Recognition with Knowledge Transfer

Choi, Jin-Woo 07 January 2021 (has links)
Recent progress on deep neural networks has shown remarkable action recognition performance from videos. The remarkable performance is often achieved by transfer learning: training a model on a large-scale labeled dataset (source) and then fine-tuning the model on the small-scale labeled datasets (targets). However, existing action recognition models do not always generalize well on new tasks or datasets because of the following two reasons. i) Current action recognition datasets have a spurious correlation between action types and background scene types. The models trained on these datasets are biased towards the scene instead of focusing on the actual action. This scene bias leads to poor generalization performance. ii) Directly testing the model trained on the source data on the target data leads to poor performance as the source, and target distributions are different. Fine-tuning the model on the target data can mitigate this issue. However, manual labeling small- scale target videos is labor-intensive. In this dissertation, I propose solutions to these two problems. For the first problem, I propose to learn scene-invariant action representations to mitigate the scene bias in action recognition models. Specifically, I augment the standard cross-entropy loss for action classification with 1) an adversarial loss for the scene types and 2) a human mask confusion loss for videos where the human actors are invisible. These two losses encourage learning representations unsuitable for predicting 1) the correct scene types and 2) the correct action types when there is no evidence. I validate the efficacy of the proposed method by transfer learning experiments. I trans- fer the pre-trained model to three different tasks, including action classification, temporal action localization, and spatio-temporal action detection. The results show consistent improvement over the baselines for every task and dataset. I formulate human action recognition as an unsupervised domain adaptation (UDA) problem to handle the second problem. In the UDA setting, we have many labeled videos as source data and unlabeled videos as target data. We can use already exist- ing labeled video datasets as source data in this setting. The task is to align the source and target feature distributions so that the learned model can generalize well on the target data. I propose 1) aligning the more important temporal part of each video and 2) encouraging the model to focus on action, not the background scene, to learn domain-invariant action representations. The proposed method is simple and intuitive while achieving state-of-the-art performance without training on a lot of labeled target videos. I relax the unsupervised target data setting to a sparsely labeled target data setting. Then I explore the semi-supervised video action recognition, where we have a lot of labeled videos as source data and sparsely labeled videos as target data. The semi-supervised setting is practical as sometimes we can afford a little bit of cost for labeling target data. I propose multiple video data augmentation methods to inject photometric, geometric, temporal, and scene invariances to the action recognition model in this setting. The resulting method shows favorable performance on the public benchmarks. / Doctor of Philosophy / Recent progress on deep learning has shown remarkable action recognition performance. The remarkable performance is often achieved by transferring the knowledge learned from existing large-scale data to the small-scale data specific to applications. However, existing action recog- nition models do not always work well on new tasks and datasets because of the following two problems. i) Current action recognition datasets have a spurious correlation between action types and background scene types. The models trained on these datasets are biased towards the scene instead of focusing on the actual action. This scene bias leads to poor performance on the new datasets and tasks. ii) Directly testing the model trained on the source data on the target data leads to poor performance as the source, and target distributions are different. Fine-tuning the model on the target data can mitigate this issue. However, manual labeling small-scale target videos is labor-intensive. In this dissertation, I propose solutions to these two problems. To tackle the first problem, I propose to learn scene-invariant action representations to mitigate background scene- biased human action recognition models for the first problem. Specifically, the proposed method learns representations that cannot predict the scene types and the correct actions when there is no evidence. I validate the proposed method's effectiveness by transferring the pre-trained model to multiple action understanding tasks. The results show consistent improvement over the baselines for every task and dataset. To handle the second problem, I formulate human action recognition as an unsupervised learning problem on the target data. In this setting, we have many labeled videos as source data and unlabeled videos as target data. We can use already existing labeled video datasets as source data in this setting. The task is to align the source and target feature distributions so that the learned model can generalize well on the target data. I propose 1) aligning the more important temporal part of each video and 2) encouraging the model to focus on action, not the background scene. The proposed method is simple and intuitive while achieving state-of-the-art performance without training on a lot of labeled target videos. I relax the unsupervised target data setting to a sparsely labeled target data setting. Here, we have many labeled videos as source data and sparsely labeled videos as target data. The setting is practical as sometimes we can afford a little bit of cost for labeling target data. I propose multiple video data augmentation methods to inject color, spatial, temporal, and scene invariances to the action recognition model in this setting. The resulting method shows favorable performance on the public benchmarks.
239

Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature

Juan Albarracín, Javier 02 September 2020 (has links)
[ES] El futuro de la imagen médica está ligado a la inteligencia artificial. El análisis manual de imágenes médicas es hoy en día una tarea ardua, propensa a errores y a menudo inasequible para los humanos, que ha llamado la atención de la comunidad de Aprendizaje Automático (AA). La Imagen por Resonancia Magnética (IRM) nos proporciona una rica variedad de representaciones de la morfología y el comportamiento de lesiones inaccesibles sin una intervención invasiva arriesgada. Sin embargo, explotar la potente pero a menudo latente información contenida en la IRM es una tarea muy complicada, que requiere técnicas de análisis computacional inteligente. Los tumores del sistema nervioso central son una de las enfermedades más críticas estudiadas a través de IRM. Específicamente, el glioblastoma representa un gran desafío, ya que, hasta la fecha, continua siendo un cáncer letal que carece de una terapia satisfactoria. Del conjunto de características que hacen del glioblastoma un tumor tan agresivo, un aspecto particular que ha sido ampliamente estudiado es su heterogeneidad vascular. La fuerte proliferación vascular del glioblastoma, así como su robusta angiogénesis han sido consideradas responsables de la alta letalidad de esta neoplasia. Esta tesis se centra en la investigación y desarrollo del método Hemodynamic Tissue Signature (HTS): un método de AA no supervisado para describir la heterogeneidad vascular de los glioblastomas mediante el análisis de perfusión por IRM. El método HTS se basa en el concepto de hábitat, que se define como una subregión de la lesión con un perfil de IRM que describe un comportamiento fisiológico concreto. El método HTS delinea cuatro hábitats en el glioblastoma: el hábitat HAT, como la región más perfundida del tumor con captación de contraste; el hábitat LAT, como la región del tumor con un perfil angiogénico más bajo; el hábitat IPE, como la región adyacente al tumor con índices de perfusión elevados; y el hábitat VPE, como el edema restante de la lesión con el perfil de perfusión más bajo. La investigación y desarrollo de este método ha originado una serie de contribuciones enmarcadas en esta tesis. Primero, para verificar la fiabilidad de los métodos de AA no supervisados en la extracción de patrones de IRM, se realizó una comparativa para la tarea de segmentación de gliomas de grado alto. Segundo, se propuso un algoritmo de AA no supervisado dentro de la familia de los Spatially Varying Finite Mixture Models. El algoritmo propone una densidad a priori basada en un Markov Random Field combinado con la función probabilística Non-Local Means, para codificar la idea de que píxeles vecinos tienden a pertenecer al mismo objeto. Tercero, se presenta el método HTS para describir la heterogeneidad vascular del glioblastoma. El método se ha aplicado a casos reales en una cohorte local de un solo centro y en una cohorte internacional de más de 180 pacientes de 7 centros europeos. Se llevó a cabo una evaluación exhaustiva del método para medir el potencial pronóstico de los hábitats HTS. Finalmente, la tecnología desarrollada en la tesis se ha integrado en la plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofrece dos servicios: 1) segmentación de tejidos de glioblastoma, y 2) evaluación de la heterogeneidad vascular del tumor mediante el método HTS. Los resultados de esta tesis han sido publicados en diez contribuciones científicas, incluyendo revistas y conferencias de alto impacto en las áreas de Informática Médica, Estadística y Probabilidad, Radiología y Medicina Nuclear y Aprendizaje Automático. También se emitió una patente industrial registrada en España, Europa y EEUU. Finalmente, las ideas originales concebidas en esta tesis dieron lugar a la creación de ONCOANALYTICS CDX, una empresa enmarcada en el modelo de negocio de los companion diagnostics de compuestos farmacéuticos. / [EN] The future of medical imaging is linked to Artificial Intelligence (AI). The manual analysis of medical images is nowadays an arduous, error-prone and often unaffordable task for humans, which has caught the attention of the Machine Learning (ML) community. Magnetic Resonance Imaging (MRI) provides us with a wide variety of rich representations of the morphology and behavior of lesions completely inaccessible without a risky invasive intervention. Nevertheless, harnessing the powerful but often latent information contained in MRI acquisitions is a very complicated task, which requires computational intelligent analysis techniques. Central nervous system tumors are one of the most critical diseases studied through MRI. Specifically, glioblastoma represents a major challenge, as it remains a lethal cancer that, to date, lacks a satisfactory therapy. Of the entire set of characteristics that make glioblastoma so aggressive, a particular aspect that has been widely studied is its vascular heterogeneity. The strong vascular proliferation of glioblastomas, as well as their robust angiogenesis and extensive microvasculature heterogeneity have been claimed responsible for the high lethality of the neoplasm. This thesis focuses on the research and development of the Hemodynamic Tissue Signature (HTS) method: an unsupervised ML approach to describe the vascular heterogeneity of glioblastomas by means of perfusion MRI analysis. The HTS builds on the concept of habitats. A habitat is defined as a sub-region of the lesion with a particular MRI profile describing a specific physiological behavior. The HTS method delineates four habitats within the glioblastoma: the HAT habitat, as the most perfused region of the enhancing tumor; the LAT habitat, as the region of the enhancing tumor with a lower angiogenic profile; the potentially IPE habitat, as the non-enhancing region adjacent to the tumor with elevated perfusion indexes; and the VPE habitat, as the remaining edema of the lesion with the lowest perfusion profile. The research and development of the HTS method has generated a number of contributions to this thesis. First, in order to verify that unsupervised learning methods are reliable to extract MRI patterns to describe the heterogeneity of a lesion, a comparison among several unsupervised learning methods was conducted for the task of high grade glioma segmentation. Second, a Bayesian unsupervised learning algorithm from the family of Spatially Varying Finite Mixture Models is proposed. The algorithm integrates a Markov Random Field prior density weighted by the probabilistic Non-Local Means function, to codify the idea that neighboring pixels tend to belong to the same semantic object. Third, the HTS method to describe the vascular heterogeneity of glioblastomas is presented. The HTS method has been applied to real cases, both in a local single-center cohort of patients, and in an international retrospective cohort of more than 180 patients from 7 European centers. A comprehensive evaluation of the method was conducted to measure the prognostic potential of the HTS habitats. Finally, the technology developed in this thesis has been integrated into an online open-access platform for its academic use. The ONCOhabitats platform is hosted at https://www.oncohabitats.upv.es, and provides two main services: 1) glioblastoma tissue segmentation, and 2) vascular heterogeneity assessment of glioblastomas by means of the HTS method. The results of this thesis have been published in ten scientific contributions, including top-ranked journals and conferences in the areas of Medical Informatics, Statistics and Probability, Radiology & Nuclear Medicine and Machine Learning. An industrial patent registered in Spain, Europe and EEUU was also issued. Finally, the original ideas conceived in this thesis led to the foundation of ONCOANALYTICS CDX, a company framed into the business model of companion diagnostics for pharmaceutical compounds. / [CA] El futur de la imatge mèdica està lligat a la intel·ligència artificial. L'anàlisi manual d'imatges mèdiques és hui dia una tasca àrdua, propensa a errors i sovint inassequible per als humans, que ha cridat l'atenció de la comunitat d'Aprenentatge Automàtic (AA). La Imatge per Ressonància Magnètica (IRM) ens proporciona una àmplia varietat de representacions de la morfologia i el comportament de lesions inaccessibles sense una intervenció invasiva arriscada. Tanmateix, explotar la potent però sovint latent informació continguda a les adquisicions de IRM esdevé una tasca molt complicada, que requereix tècniques d'anàlisi computacional intel·ligent. Els tumors del sistema nerviós central són una de les malalties més crítiques estudiades a través de IRM. Específicament, el glioblastoma representa un gran repte, ja que, fins hui, continua siguent un càncer letal que manca d'una teràpia satisfactòria. Del conjunt de característiques que fan del glioblastoma un tumor tan agressiu, un aspecte particular que ha sigut àmpliament estudiat és la seua heterogeneïtat vascular. La forta proliferació vascular dels glioblastomes, així com la seua robusta angiogènesi han sigut considerades responsables de l'alta letalitat d'aquesta neoplàsia. Aquesta tesi es centra en la recerca i desenvolupament del mètode Hemodynamic Tissue Signature (HTS): un mètode d'AA no supervisat per descriure l'heterogeneïtat vascular dels glioblastomas mitjançant l'anàlisi de perfusió per IRM. El mètode HTS es basa en el concepte d'hàbitat, que es defineix com una subregió de la lesió amb un perfil particular d'IRM, que descriu un comportament fisiològic concret. El mètode HTS delinea quatre hàbitats dins del glioblastoma: l'hàbitat HAT, com la regió més perfosa del tumor amb captació de contrast; l'hàbitat LAT, com la regió del tumor amb un perfil angiogènic més baix; l'hàbitat IPE, com la regió adjacent al tumor amb índexs de perfusió elevats, i l'hàbitat VPE, com l'edema restant de la lesió amb el perfil de perfusió més baix. La recerca i desenvolupament del mètode HTS ha originat una sèrie de contribucions emmarcades a aquesta tesi. Primer, per verificar la fiabilitat dels mètodes d'AA no supervisats en l'extracció de patrons d'IRM, es va realitzar una comparativa en la tasca de segmentació de gliomes de grau alt. Segon, s'ha proposat un algorisme d'AA no supervisat dintre de la família dels Spatially Varying Finite Mixture Models. L'algorisme proposa un densitat a priori basada en un Markov Random Field combinat amb la funció probabilística Non-Local Means, per a codificar la idea que els píxels veïns tendeixen a pertànyer al mateix objecte semàntic. Tercer, es presenta el mètode HTS per descriure l'heterogeneïtat vascular dels glioblastomas. El mètode HTS s'ha aplicat a casos reals en una cohort local d'un sol centre i en una cohort internacional de més de 180 pacients de 7 centres europeus. Es va dur a terme una avaluació exhaustiva del mètode per mesurar el potencial pronòstic dels hàbitats HTS. Finalment, la tecnologia desenvolupada en aquesta tesi s'ha integrat en una plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofereix dos serveis: 1) segmentació dels teixits del glioblastoma, i 2) avaluació de l'heterogeneïtat vascular dels glioblastomes mitjançant el mètode HTS. Els resultats d'aquesta tesi han sigut publicats en deu contribucions científiques, incloent revistes i conferències de primer nivell a les àrees d'Informàtica Mèdica, Estadística i Probabilitat, Radiologia i Medicina Nuclear i Aprenentatge Automàtic. També es va emetre una patent industrial registrada a Espanya, Europa i els EEUU. Finalment, les idees originals concebudes en aquesta tesi van donar lloc a la creació d'ONCOANALYTICS CDX, una empresa emmarcada en el model de negoci dels companion diagnostics de compostos farmacèutics. / En este sentido quiero agradecer a las diferentes instituciones y estructuras de financiación de investigación que han contribuido al desarrollo de esta tesis. En especial quiero agradecer a la Universitat Politècnica de València, donde he desarrollado toda mi carrera acadèmica y científica, así como al Ministerio de Ciencia e Innovación, al Ministerio de Economía y Competitividad, a la Comisión Europea, al EIT Health Programme y a la fundación Caixa Impulse / Juan Albarracín, J. (2020). Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149560
240

[pt] MONITORAMENTO DE VIBRAÇÃO EM SISTEMAS MECÂNICOS USANDO APRENDIZADO PROFUNDO E RASO EM COMPUTADORES NA PONTA / [en] VIBRATION MONITORING OF MECHANICAL SYSTEMS USING DEEP AND SHALLOW LEARNING ON EDGE-COMPUTERS

CAROLINA DE OLIVEIRA CONTENTE 30 June 2022 (has links)
[pt] O monitoramento de integridade estrutural tem sido o foco de desenvolvimentos recentes no campo da avaliação baseada em vibração e, mais recentemente, no escopo da internet das coisas à medida que medição e computação se tornam distribuídas. Os dados se tornaram abundantes, embora a transmissão nem sempre seja viável em frequências mais altas especialmente em aplicações remotas. Portanto, é importante conceber fluxos de trabalho de modelo orientados por dados que garantam a melhor relação entre a precisão do modelo para avaliação de condição e os recursos computacionais necessários para soluções incorporadas, tópico que não tem sido amplamente utilizado no contexto de medições baseadas em vibração. Neste contexto, a presente pesquisa propõe abordagens para duas aplicações: na primeira foi proposto um fluxo de trabalho de modelagem capaz de reduzir a dimensão dos parâmetros de modelos autorregressivos usando análise de componentes principais e classificar esses dados usando algumas técnicas de aprendizado de máquina como regressão logística, máquina de vetor de suporte, árvores de decisão, k-vizinhos próximos e floresta aleatória. O exemplo do prédio de três andares foi usado para demonstrar a eficácia do método. No segundo caso, é utilizado um equipamento de teste composto por inércias rotativas onde a solução de monitoramento foi testada em uma plataforma baseada em GPU embarcada. Os modelos implementados para distinguir eficazmente os diferentes estados de atrito foram análise de componentes principais, deep autoencoders e redes neurais artificiais. Modelos rasos têm melhor desempenho em tempo de execução e precisão na detecção de condições de falha. / [en] Structural health monitoring has been the focus of recent developments in vibration-based assessment and, more recently, in the scope of the internet of things as measurement and computation become distributed. Data has become abundant even though the transmission is not always feasible, especially in remote applications. It is thus essential to devise data-driven model workflows that ensure the best compromise between model accuracy for condition assessment and the computational resources needed for embedded solutions. This topic has not been widely used in the context of vibration-based measurements. In this context, the present research proposes two approaches for two applications, a static and a rotating one. In case one, a modeling workflow capable of reducing the dimension of autoregressive model features using principal component analysis and classifying this data using some of the main machine learning techniques such as logistic regression, support vector machines, decision tree classifier, k-nearest neighborhood and random forest classifier was proposed. The three-story building example was used to demonstrate the method s effectiveness, together with ways to assess the best compromise between accuracy and model size. In case two, a test rig composed of rotating inertias and slender connecting rods is used, and the monitoring solution was tested in an embedded GPU-based platform. The models implemented to effectively distinguish between different friction states were principal component analysis, deep autoencoder and artificial neural networks. Shallow models perform better concerning running time and accuracy in detecting faulty conditions.

Page generated in 0.1542 seconds