• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 878
  • 651
  • 315
  • 135
  • 111
  • 86
  • 30
  • 24
  • 15
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • Tagged with
  • 2484
  • 931
  • 839
  • 346
  • 222
  • 199
  • 188
  • 182
  • 170
  • 169
  • 163
  • 145
  • 143
  • 142
  • 142
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Geochemie plášťových xenolitů Českého středohoří / Geochemistry of mantle xenoliths of the České středohoří Mts.

Kohoutová, Iveta January 2012 (has links)
The České středohoří Mts. forming the most important and active part of Ohře/Eger rift are formed by volcanic rocks of Tertiary age containing upper mantle xenoliths which can provide us information about internal structure of upper mantle. This diploma thesis is focused on the study of mantle xenoliths from this part of Bohemian massif close to the city Litoměřice (4 locations: Dobkovičky, Prackovice, Kuzov, Medvědí hill) and for comparison another 4 locations of mantle xenoliths from the northern Bohemia locaties Brtníky in Šluknovský ledge, Kraslice and Zámeček at Fláje in Krušné Mts. and Venuše volcano in Nízký Jeseník at Bruntálská Highlands. Almost all studied xenoliths are spinel harzburgites or lherzolites with mineral association olivine + orthopyroxene + clinopyroxene + spinel (the most often Cr-spinel). They have usually protogranular texture followed by porfyroclastic texture (porfyroclasts are represented by olivine, orthopyroxene and in some cases also by clinopyroxene, and fine-grained matrix of all these minerals with olivine showing undulose extinguishes). An equigranular texture is the least common. Host rock of the xenoliths is always basanite. The most abundant mineral in peridotite xenoliths is olivine with #Mg value 89,4-91,5; followed by orthopyroxene with #Mg value 90,8-92,1...
182

Implementação de um modelo para cálculo das forças proximais e momentos proximais resultantes para o membro superior

Ribeiro, Daniel Cury January 2006 (has links)
Este estudo teve como objetivo implementar um modelo biomecânico, de segmentos articulados, associado à solução inversa que permita a análise em três dimensões das forças de reação proximais e momentos proximais resultantes para diferentes gestos do membro superior. O modelo implementado é composto por cinco segmentos rígidos (mão, antebraço, braço, escápula e tronco) conectados. A resolução das equações de movimento de Newton-Euler é feita através da solução inversa. Para registro cinemático foram utilizadas cinco câmeras digitais, com freqüência de amostragem de 50 campos/seg. O modelo implementado foi avaliado de quatro formas: estimativa da acurácia da medida tridimensional obtida pela cinemetria, comparação quantitativa e qualitativa dos resultados parciais oferecidos pelo modelo implementado com resultados obtidos por instrumentos de mensuração direta (eletrogoniômetro e eletromiografia) e cálculo da propagação do erro nos valores de força de reação resultante e momento proximal líquido. Os resultados sugerem que o modelo apresenta resultados coerentes. A acurácia do sistema de videogrametria estimada foi, em média, de 1,7 (± 1,5) mm. As medidas angulares da cinemetria e eletrogoniometria divergiram em até 36°. O erro propagado no cálculo da força de reação proximal pode chegar até 25% e até 100% no cálculo do momento proximal. O sinal eletromiográfico e o momento proximal apresentaram sincronismo temporal. O modelo foi capaz de avaliar as forças de reação proximal resultantes e momentos proximais líquidos nos diferentes gestos. / The goal of this study was to implement a link segments biomechanical model, associate to the inverse solution for three dimensions analysis of proximal reaction force and proximal net moments during upper limb movement. The implemented model is composed by five connected rigid segments (hand, forearm, arm, scapula and trunk). The resolution of Newton-Euler movement equations is done through the inverse solution. For kinematics acquisition five digital cameras were used, with a frequency sample of 50 fields/sec. The implemented model was evaluated in four ways: accuracy estimation of the three-dimensional measurements, quantitative and qualitative comparison of the partial results offered by the implemented model with results obtained by instruments of direct measurements (electrogoniometer and electromyography) and calculation of the error propagation in proximal reaction force and proximal net moment values. The results suggest that the model presents coherent results. The estimated accuracy videogrammetry system was, on average, of 1.7 (± 1.5) mm. The joint angular values obtained by kinematics system and electrogoniometer diverged in 36°. The error propagation in proximal reaction force values can arrive up to 25% and up to 100% for proximal net moment. The electromyographic sign and the proximal moment presented temporary synchronism. The model was able to evaluate the proximal reaction force and proximal net moment during upper limb movement.
183

Smart dampers applied to upper-limb rehabilitation training systems

Balkhoyor, Loaie B. January 2017 (has links)
There are several ways in which a disability can occur. Strokes are a leading cause, affecting older people in particular, with an estimated annual incidence rate of 180, 125, 200, and 280 per 100,000 citizens in the USA, Europe, England, and Scotland, respectively. Muscle strengthening through resistance training has been reported to have a positive effect on the recovery of normal physiological functions after the occurrence of a neurological or traumatic injury. A number of studies have shown that resistance training results in improved mobility, a reduction in pain, and improved stability. Several rehabilitation devices have been developed and introduced for use in the healthcare sector, but a new generation of intelligent therapy-assisted machines is needed if there is to be a significant impact on the numbers of patients that can be treated under current staffing level. In this project, the design and performance of multi-degree-of-freedom smart balland-socket dampers and their application to fully-controllable rehabilitation training systems were investigated. A key feature of these dampers is the use of magnetorheological (MR) fluids which can exhibit dramatic changes in their rheological properties, such as yield stress, when subjected to external magnetic fields. These fast and reversible fluid rheological changes would permit the smart damper to provide the required impedance at orthotic arm joints, which are aimed for upper-limb rehabilitations and in accord with the exercise specifications prescribed by the physiotherapist. An exemplar upper-limb orthotic arm incorporating smart ball-and-socket dampers at its joints was assessed using SolidWorks software and the results confirmed the response of the dampers to variable excitation inputs under an input simulating a wheelchair driving motion. This study also enabled the estimation of the orthotic arm reach envelope, task performance and limitations in which important device design factors such as the angle of rotation of the smart dampers were taken into account. Although, three smart dampers with variable torque resistance capability are required at the shoulder, elbow and wrist joints of upper-limb rehabilitation orthoses, this project was focused on the development of a smart ball-and-socket damper aimed for the shoulder joint only. The target was to produce a compact smart electromagnetic damper that is capable to deliver the required torque resistance with the least power consumption. The efficient excitation of MR fluids requires a magnetic circuit, which consists of a source of magnetic flux and a path to deliver it to the fluid. Electromagnetic finite element analysis using Ansys software were carried out to achieve the optimum design of the damper’s electromagnetic circuit. The effects of the relative permeability of the damper’s materials on the generation of the magnetic field and its delivery to the MR fluid were examined. Other factors such as the coil shape, size, orientation and location in addition to the utilisation of non-magnetic materials in the electromagnetic circuit design were also investigated with the aim to optimise the performance of the smart damper. Furthermore, 3-D electromagnetic analyses were conducted, which confirmed the validity of the 2-D magnetic trials. Accordingly, the size of the MR fluid ball-and-socket damper was estimated with a ball diameter of 100 mm, which was found to produce a braking torque of about 50 N.m when the MR fluid is energised by about 1 Tesla. The performance of the ball-and-socket damper was estimated using theoretical, and numerical approaches. The theoretical model combines the viscous-friction and the controllable field-dependent characteristics of the MR fluid in which a Bingham plastic model was used to simulate the shear stress of the fluid under various input conditions. The numerical approach involved a special procedure to simulate the device performance using computational fluid dynamics techniques, which were performed using Ansys CFX code. Three commercial MR fluids were assessed and it was found that the simulated device torque compared well with the theoretical values. The mechanical design of the optimised ball-and-socket damper was accomplished using SolidWorks software when several important design and manufacturing factors were taken into account. These factors included the assembly of the ball and socket parts, the sealing of the MR fluid inside its designated gap, winding of the coil inside the socket part, maintaining a uniform MR fluid gap, and insertion of the nonmagnetic rings at their predesigned locations. Finally, a dedicated experimental rig was constructed which facilitated the assessment of the smart damper under both static and dynamic testing conditions. It was found that agreement between model predictions and experimental observations was excellent. Furthermore, this device performance was found to meet torque requirements expected in most upper-limb rehabilitation regimes.
184

Upper Elementary Teachers' Use of Pedagogical Content Knowledge With Nonfiction Reading Instruction

Piper, Silke 01 January 2019 (has links)
After a shift in upper elementary reading instruction that emphasized complex learning using nonfiction text, Texas schools showed low reading comprehension scores among upper elementary students. The purpose of this exploratory single case study was to examine the pedagogical content knowledge of Texas upper elementary teachers who teach nonfiction reading comprehension strategies to at-risk students who do not qualify for special education services. The central research question focused on how teachers view their pedagogical content knowledge while instructing students. The conceptual framework for this study was a combined Shulman's (1986) pedagogical content knowledge model and Thomlinson's (2000) differentiated instruction learning model. Data sources included online questionnaires (N=161), open-ended scenario-based phone or Skype interviews (N=10), and public documents on reading professional development in the state of Texas. Findings from open coding and inductive analysis indicated that the paradigm shift from reading to learn to learning to read is a challenge in the upper elementary classroom, teachers are relying on inadequate professional development to develop their pedagogy and content knowledge, and teachers may be rescuing struggling students rather than differentiating them. Findings may help Texas educators make more informed decisions on pedagogy to promote expository reading comprehension among upper elementary at-risk students and to increase their opportunities for success.
185

Climatology of Upper Thermospheric Daytime Neutral Winds from Satellite Observations

Emmert, John T. 01 May 2001 (has links)
We studied the global climatology of mid- and low-latitude F region daytime neutral winds using extensive measurements by the Wind Imaging Interferometer (WINDII) instrument on board the Upper Atmosphere Research Satellite (UARS). Quiet-time winds are mostly poleward and westward during the day, and are generally 5-20 m/s smaller in the longitudinal sector closest to the magnetic pole, compared to longitudinally averaged winds. The pre-noon zonal winds are less westward with increasing solar flux, while the post-noon meridional winds are less poleward . Our quiet-time results are in good agreement with the NCAR ThermosphereIonosphere- Electrodynamics General Circulation Model (TIEGCM). We computed residual winds by subtracting quiet-time values calculated along the satellite orbit, which effectively removes average measurement bias. Using these residuals, we studied the average change in the winds under disturbed conditions. The zonal disturbance winds are mostly westward, increase with latitude, and have largest values in the late afternoon sector. In general, the meridional perturbation winds are equatorward, increase linearly with latitude, and decrease from morning to afternoon hours. The zonal and meridional perturbations increase roughly linearly with Kp. We developed empirical analytical models for the disturbance winds from 60° to the equator; these model winds are in poor agreement with results from the empirical Horizontal Wind Model. There are also important discrepancies between the average perturbations winds from WINDII and TIEGCM. We studied the average time-dependent development of disturbance winds during geomagnetic storms. The onset of a storm is characterized by equatorward surges, mostly in the morning sector, that reach the equator in about 2 h. These surges lessen 5-6 h after the onset of a storm, but subsequently increase, reaching their largest values about 15 h after the start of the storm before leveling off or diminishing. Following the end of typical storms, the disturbance winds decrease quickly but oscillate for at least one 8-9 h cycle. We developed time-dependent analytical models of the disturbance winds as a function of the polar cap index at key storm time lags. Our results are consistent with predictions from theoretical models. (146 pages)
186

Dynamic Stability of the Upper Body During Walking

Kavanagh, Justin, n/a January 2006 (has links)
The general purpose of this study was to examine factors that may influence acceleration characteristics of the upper body during walking, thereby clarifying the means by which the postural system facilitates dynamic stability of the upper body during walking. Upper body accelerations were measured during a range of straight-line walking tasks. Time domain, frequency domain, signal regularity and coupling analyses were used to 1) provide new insight into gait-related upper body accelerations during walking in normal healthy adults, and 2) determine how the postural system accommodates to perturbations that challenge upper body stability during walking. The specific perturbations to the postural system that were examined in the present study were the normal ageing process, changes in walking speed, and fatigue of the cervical and lumbar erector spinae. In general, the patterns of accelerations measured at the level of the head were an attenuated version of those at the lower trunk during normal walking. Power spectral analysis revealed that both the head and lower trunk in the anterior-posterior (AP) and vertical directions (VT) directions were characterised by a single peak frequency corresponding the step frequency during normal walking. However, the most notable of all attenuation profiles was the difference between accelerations of the head and lower trunk in the mediolateral (ML) direction. ML trunk accelerations were characterised by multiple low amplitude frequency peaks, which were attenuated to a single peak at the head corresponding to stride frequency. The coupling between acceleration directions was greater for the head than the lower trunk, suggesting that the postural system promotes a coordination strategy which enhances global stability of the head. Subdividing the upper body into neck and trunk segments facilitated a more comprehensive description how the gait-related oscillations are prevented from impacting on the motion of the head. Overall, acceleration amplitude, power content, and regularity were predominantly regulated by the trunk segment, especially for the AP and ML directions. This suggests that the trunk segment plays a critical role in modulating the amplitude and structure of gait-related oscillations prior to reaching the neck segment and thus the head. It was envisaged that examining factors that may challenge the individual (the normal ageing process), and the walking task (changes in walking speed, and induced fatigue of the upper body), would provide new insight into the extent to which the postural system prioritises head stability during walking. Regardless of the challenges imposed on the postural system due to the ageing process, upper body movement was organised in a manner which assisted in maintaining a degree of head stability comparable to those observed under normal walking conditions. Similarly, the importance that the postural system places on maintaining head stability was evident in the attenuation characteristics of the trunk and neck segments when walking speed was manipulated, and neuromuscular fatigue induced. Manipulating walking speed highlighted the critical role that the trunk segment has in regulating upper body accelerations arising from gait-related events. Aside from a minor contribution from the neck segment in the direction of travel at preferred and fast walking speeds, regulation of accelerations occurred due to the dynamics of the trunk segment. Inducing neuromuscular fatigue of the cervical and lumbar erector spinae groups (CES and LES) revealed compensatory movement strategies of the upper body, with a view of enhancing head stability. For several variables quantifying attenuation, fatiguing one muscle group, such as the CES, resulted in changes in the dynamics of another level of the upper body, such as the trunk segment. The trunk segment was particularly dominant in regulating upper body accelerations under fatigued conditions, further reinforcing the importance to control accelerations prior to reaching the neck and head. Overall, the results of this study suggest that optimal head stability is reliant on the trunk segment providing a stable base of support for the neck and head. By regulating accelerations via the trunk segment, the postural system is effectively regulating the orientation of the neck and head, and the inclusive sensory organs. It was evident that the postural system prioritises, and in general, maintains head stability during walking despite challenges imposed on upper body stability.
187

The Anti-Inflammatory Effect of Macrolide Antibiotics in Chronic Rhinosinusitis

Wallwork, Benjamin, n/a January 2006 (has links)
Chronic rhinosinusitis is a common disorder of chronic inflammation of the upper respiratory tract. It is associated with significant symptoms and impairment of the quality of life of sufferers. Despite recent advances in the medical and surgical management of chronic rhinosinusitis, there remains a population of patients who fail to obtain relief from their symptoms. Chronic inflammation of the mucosa of the nasal cavity and paranasal sinuses is one of the hallmarks of chronic rhinosinusitis. This inflammation is demonstrated by an increased number of chronic inflammatory cells, elevated levels of pro-inflammatory cytokines, increased expression of adhesion molecules and metaplastic changes in the epithelium. The current medical treatments for chronic sinusitis aim to reduce this inflammation and consequently improve symptoms. In recent years, evidence has emerged that macrolide antibiotics have an anti-inflammatory effect that is separate from their anti-bacterial effect. This effect was first described in the treatment of diffuse panbronchiolitis, a disorder of chronic inflammation of the lower respiratory tract. Following the success of macrolides in treating this condition it was trialed in chronic rhinosinusitis. Several open-label trials have subsequently demonstrated a beneficial effect. Laboratory studies have investigated the mechanism of the anti-inflammatory effect of macrolides. These have shown that macrolides effect cytokine production, inflammatory cell apoptosis, expression of adhesion molecules, neutrophil oxidative burst, bacterial virulence and mucociliary function. In this thesis we report a series of experiments designed to further investigate the mechanism of action and clinical effect of macrolides. In vitro studies using whole sections of chronic rhinosinusitis mucosa cultured for 24 hours in macrolide, prednisolone or control showed that macrolide and prednisolone produced significant reductions in the production of interleukin-5, interleukin-8 and granulocyte-macrophage colony stimulating factor. The same cultured specimens also showed a reduction in expression of transforming growth factor-?. No reduction was seen in the expression of the key pro-inflammatory nuclear transcription factor Nuclear factor-?B. In our in vivo experiments, biopsies were taken from chronic rhinosinusitis patients who had received a 3-month course of macrolide. These biopsies showed a reduction in the number of neutrophils present following treatment. There was no reduction in the number of other inflammatory cells or in the expression of TGF-? and NK-?B. We have performed the first ever double-blinded, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Patients receiving macrolide showed significant improvements in saccharine transit time, nasal endoscopic scoring and symptom scores following a 12 week course. Patients with low levels of serum immunoglobulin E showed significantly improved outcomes compared to those with high levels. Interleukin-8 levels in nasal lavage fluid were significantly reduced in the patients with low levels of IgE following macrolide treatment. No improvements in any of the objective or subjective outcome measures were seen in the placebo-treated patients. We have performed a series of experiments investigating the anti-inflammatory effect of macrolide antibiotics from 'the bench to the bedside'. These experiments have provided insight into the mechanism of action of macrolides in the laboratory setting and evidence of a beneficial effect in the treatment of chronic rhinosinusitis patients.
188

Change detection in the Upper Yarra Valley using Landsat MSS satellite imagery

Osburg, Thomas, n/a January 1993 (has links)
n/a
189

Kinematic analysis of the upper limb during anatomical and functional movements in healthy children

Dwan, Leanne Nicole, Safety Science, Faculty of Science, UNSW January 2009 (has links)
Impairments of upper limb function can negatively impact an individual???s ability to carry out everyday tasks. Children with cerebral palsy can have limitations of upper limb movement due to physiological and structural changes in their body. Current treatment regimes for children with upper limb involvement of cerebral palsy are assessed using a variety of qualitative assessment tools. These measures rely on subjective input from the assessor, and can be insensitive to significant functional improvements. Research methods in upper limb motion analysis are developing towards use as clinical tools. To date, there is a paucity of knowledge on the quantitative measures of range of motion (ROM) and function of upper limbs in healthy children. There is also lack of agreement on repeatable functional tasks of the upper limb for 3D measurement. The identification of a repeatable task in healthy children would facilitate the use of upper limb 3D motion analysis to guide clinical practice and improve patient outcomes. This thesis aims to describe upper limb joint range of movement in each degree of freedom and present normative three dimensional kinematic data of upper limb movement in healthy children during a repeatable upper limb functional task. This will provide a basis for comparison to children with movement disorders for future research and clinical practice. The UNSW kinematic upper limb model was found to successfully measure three dimensional upper limb anatomical and functional movements in healthy children. Normative kinematic data are reported for anatomical movements and two functional tasks. The results of the studies undertaken showed that differences in dominant and non-dominant limbs were present during anatomical and functional movements. Joint angles measured were found to be repeatable in healthy children. The results suggest that methods used were reliable for investigating upper limb kinematics. Functional movement time-series data were found to be repeatable for the group with the exception of wrist flexion/extension during the hand to mouth movement for both the dominant and non-dominant limbs. These findings improve current knowledge on upper limb kinematics in healthy children. This knowledge can assist the investigation of movement disorders in children to facilitate clinical decision making.
190

Kinematic analysis of the upper limb during anatomical and functional movements in healthy children

Dwan, Leanne Nicole, Safety Science, Faculty of Science, UNSW January 2009 (has links)
Impairments of upper limb function can negatively impact an individual???s ability to carry out everyday tasks. Children with cerebral palsy can have limitations of upper limb movement due to physiological and structural changes in their body. Current treatment regimes for children with upper limb involvement of cerebral palsy are assessed using a variety of qualitative assessment tools. These measures rely on subjective input from the assessor, and can be insensitive to significant functional improvements. Research methods in upper limb motion analysis are developing towards use as clinical tools. To date, there is a paucity of knowledge on the quantitative measures of range of motion (ROM) and function of upper limbs in healthy children. There is also lack of agreement on repeatable functional tasks of the upper limb for 3D measurement. The identification of a repeatable task in healthy children would facilitate the use of upper limb 3D motion analysis to guide clinical practice and improve patient outcomes. This thesis aims to describe upper limb joint range of movement in each degree of freedom and present normative three dimensional kinematic data of upper limb movement in healthy children during a repeatable upper limb functional task. This will provide a basis for comparison to children with movement disorders for future research and clinical practice. The UNSW kinematic upper limb model was found to successfully measure three dimensional upper limb anatomical and functional movements in healthy children. Normative kinematic data are reported for anatomical movements and two functional tasks. The results of the studies undertaken showed that differences in dominant and non-dominant limbs were present during anatomical and functional movements. Joint angles measured were found to be repeatable in healthy children. The results suggest that methods used were reliable for investigating upper limb kinematics. Functional movement time-series data were found to be repeatable for the group with the exception of wrist flexion/extension during the hand to mouth movement for both the dominant and non-dominant limbs. These findings improve current knowledge on upper limb kinematics in healthy children. This knowledge can assist the investigation of movement disorders in children to facilitate clinical decision making.

Page generated in 0.0927 seconds