Spelling suggestions: "subject:"vägdata"" "subject:"vägdes""
1 |
Undersökning av DUSTER II som mätinstrument vid kvantifiering av vägdammBergman, Jesper, Eriksson, Astrid, Friberg, Oline, Gregstedt, Martin, Göjeryd, Kasper January 2024 (has links)
Vägdamm är en komplex blandning av slitagepartiklar från vägbana, däck och fordonsdelar. Dessa partiklar hamnar på vägbanan där de mekaniskt vittras när fordon färdas på vägen. Partiklar med en diameter mindre än 10 µm kallas PM10 och medför negativa effekter på naturens ekosystem och människors hälsa. EU och Sverige har stiftat lagar angående gränsvärden för vilka partikelhalterna inte får överskrida. För att se till att partikelhalterna hålls inom gränsvärden måste vägdamm kunna kvantifieras. Statens väg- och transportforskningsinstitut (VTI) och högskolan i Dalarna har utvecklat mätinstrumentet DUSTER II. Syftet med detta arbete är att undersöka funktionen hos DUSTER II med avseende på att kvantifiera vägdamm. Detta utförs genom att undersöka mätkammarens vindprofil, dess förmåga att mäta damningsbenägenheten från olika underlagsstrukturer och hur mättiden påverkar standardfelet. Vid mätning av vindprofilen undersöktes olika punkter under propellern i DUSTER II för att se hur vindhastigheten förändrades. Vid undersökning av damningsbenägenheten från olika underlagsstrukturer rengjordes ytan, stenmjöl applicerades och DUSTER II placerades ovanpå den valda ytan och utförde mätningar med ett förprogrammerat mätprogram. Mätningarna utfördes med olika varvtal, varvtalsökningar och underlagsstrukturer för att besvara frågeställningarna. Därefter för att undersöka hur mättiden påverkade standardfelet utfördes upprepade mätningar med samma experimentuppställning fast med varierande mättid. Resultaten visade att vindprofilen i mätkammaren är inhomogen och vindhastigheten förhåller sig linjärt till varvtalet. För att upprepade mätningar på en oförändrad yta ska generera liknande resultat bör mättiden överstiga 2 minuter för att minimera standardfelet. Det finns en statistiskt signifikant skillnad i de uppmätta PM10-halterna mellan de olika underlagsstrukturerna. På grund av resultatet från stegringsundersökningen kan ingen slutsats angående DUSTER IIs förmåga att detektera skillnader mellan underlagsstrukturer dras.
|
2 |
Optimering av dammbindning på Hornsgatan med NORTRIP modellen / Optimization of Dust-Binding on Hornsgatan with the Nortrip ModelTomasdottir, Tora January 2019 (has links)
Populärvetenskaplig sammanfattning Optimering av dammbindning på Hornsgatan med NORTRIP modellen Massan av luftburna partiklar med en diameter mindre än 10 µm (PM10) är en av de tuffaste miljökvalitetsnormerna att uppnå i Sverige. PM10 kommer från flera olika källor, både naturliga som havssalt och sand, samt antropogena som vägslitage, däckslitage, bromsslitage och avgaser. En stor uppkomstkälla till PM10 i luften slitage på grund av dubbdäcksanvändning. Uppvirvlingen är som störst i mars och april efter att snön smält, temperaturen stigit och vägbanan torkat upp. För att minska PM10 halten i luften kan en dammbindande saltlösning med lägre fryspunkt än vatten läggas ut på vägbanan. I Stockholm används saltlösningen CMA (kalciummagnesiumnitrat). Det är en typ av salt med liten påverkan på den urbana miljön. Vintersäsongen 2016–2017 lades CMA ut tre gånger i veckan på några utvalda gator i Stockholm mellan november och maj. En av dessa gator är Hornsgatan, som har undersökts i denna rapport. CMA är dyrt och resurskrävande att lägga ut. För att optimera utläggningen av CMA i Stockholm har spridningsmodellen NORTRIP (non-exhaust road traffic induced particle emissions) använts. Modellen använder meteorologiska data, trafikdata och data rörande saltning, sandning och städning för att räkna ut halten PM10 som spridits till luften. Den här modellen har använts för att testa några olika dammbindande scenarion på Hornsgatan i vilka CMA har lagts ut. Det har också testats, i NORTRIP, om PM10 halten i luften skulle minska genom utläggning av vatten på vägen. Vatten lades endast ut i modellen efter 15 mars med antagandet att temperaturen inte skulle sjunka under 0 °C efter datumet ifråga. De olika scenariona var utformade för att se om det var möjligt att minimera användandet av CMA men ändå hålla nere PM10 halten i luften. Alla scenarion jämfördes med scenariot där varken CMA eller vatten lades ut för att jämföra om PM10 i luften minskade. Ett resultat visade att det var bättre att lägga ut CMA varje dag under dammiga perioder än att sikta in sig på bara de dammigaste dagarna. PM10 i luften 2016 minskade med 4,7% när de 45 dammigaste dagarna behandlades med CMA. Det kan jämföras med en minskning på 6,5% när CMA applicerades under dammiga perioder under samma år. En annan slutsats var att det ger större effekt att lägga ut CMA i mars och april än mellan november och mars. PM10 i luften 2016 minskade med 2,1% om man började lägga ut CMA 1 november som planerat, och med 1,7% om utläggningen började i slutet av februari, när den dammiga säsongen börjar. Det resulterar i att endast en liten minskning av PM10 halten uppnåddes genom att börja behandla vägbanan med CMA den 1 november istället för i slutet av februari. Att börja lägga ut CMA i slutet av februari istället för 1 november skulle minska kostnaderna betydligt för staden. Resultaten visade även att ett tunt lager vatten (0,3 mm) utlagt på vägbanan mellan ordinarie dagar för dammbindning hade en betydande effekt på PM10 halten i luften. Vid vattenutläggning mellan dagarna för CMA utläggning efter 15 mars 2016 minskar PM10 i luften under 2016 med 1,4% utöver vad den skulle minskat med om inget vatten lagts ut. Den här rapporten visar att det är möjligt att optimera utläggningen av CMA på Hornsgatan. / Abstract Optimization of dust-binding on Hornsgatan with the NORTRIP model The mass of airborne particles with a diameter smaller than 10 µm (PM10) is one of the most difficult environmental quality standards addressed in Sweden. PM10 particles originates from a variety of sources; natural, like sea salt and sand, and human made like road wear, tire wear, brake wear and exhaust. A significant source of PM10 in the air is the usage of studded tires. The suspension typically occurs in March and April when the snow layer melts, temperature rises and the streets dry. A dry street is crucial for the road dust to suspend into the air. A way to prevent road dust to suspend in to the air is spraying the road with a salt solution that does not freeze at temperatures below 0 °C. In Stockholm a dust-binding substance called CMA (Calcium Magnesium Acetate) is used. It is a of salt with minimal negative side effects on the urban environment. CMA was applied on some specific streets in Stockholm three times a week between November and May winter season 2016–2017. One of the streets that gets treated with CMA is Hornsgatan which is the topic of this paper. Dust-binding substances are expensive and time consuming to apply to the streets. To optimize the appliance of CMA in Stockholm a non-exhaust road traffic induced particle emissions (NORTRIP) model has been used. The model uses meteorological data, traffic data combined with data on salting, sanding and cleaning to calculate PM10 suspension to the air. This model has been used to test different dust-binding scenarios on Hornsgatan in which CMA was applied. It has also been tested, in NORTRIP, if spraying the road with water could have a reductive effect on PM10 in the air. Water was only added to the model after the 15th of March because it was assumed the temperature would not sink below 0 °C after this date. The different scenarios were formed to see if it was possible to minimize the usage of CMA and still keep the PM10 level low. All scenarios were compared with the scenario of not applying any CMA or water to see how much PM10 in the air was reduced. One result showed that it is better to apply CMA every day during dusty periods rather than just manage to target the dustiest days alone. PM10 in the air 2016 was reduced by 4.7% when the 45 dustiest days were treated with CMA. This could be compared to a 6.5% reduction when CMA was applied during dusty periods. Another conclusion made was that applying CMA in March and April has a greater effect then applying CMA in November, December, January and February. PM10 in the air 2016 was reduced by 2.1% if the CMA treatment started on the 1st of November as planned, and by 1.7% if the treatment started in the end of February when the dusty season starts. That means there is only a small decrease of PM10 if the appliance of CMA starts in the end of February rather than the 1st of November. Reducing the days of CMA treatment would reduce the cost significantly for the city. It was also shown that a thin layer of water (0.3 mm) applied to the street between ordinary dust-binding days has a significant effect on PM10 in the air. Adding water to the street in between days of dust-binding after the 15th of March 2016 reduced suspended PM10 2016 in the air by 1.5% beyond what it would have been reduced without the water. This paper shows that it is possible to optimize the appliance of CMA.
|
3 |
Non-Exhaust PM10 and Road DustLundberg, Joacim January 2018 (has links)
Non-exhaust PM10 is an issue in the urban environment linked to health issues. Emissions of non-exhaust PM10 is relatable to pavement properties. Also of importance is resuspension of road dust stored from surfaces. This depends on the traffic and metrological conditions. Given this, the purpose of the thesis was to give an overview limited to Sweden and the Nordic countries regarding non-exhaust PM10 emissions and road dust. The overview includes how particles are related to human health. Also included is the principle of how particles are emitted from road surface and tyre interaction, both directly and through resuspension of road dust. This thesis also includes an overview of how the use of studded tyres impact on asphalt surfacings and how the properties of the materials used impact on the abrasion wear. This is then linked to the emissions of non-exhaust particles. Further described is how measurements can be done of ambient particles and road dust, followed on two major models for road abrasion wear and non-exhaust PM prediction. Also included is how road operation, e.g. traction sanding and dust binding, influence the particle emissions together with other options to reduce the emissions through, e.g. limiting the use of studded tyres. One special issue discussed in this thesis is the lack of holistic view regarding the environmental problems in the urban environment with focus on particle emissions and road noise emissions, both from the road surface and tyre interaction. Currently the most problematic issue is prioritized and the resulting solution to that specific problem might increase other problems. This thesis shows that much knowledge is available regarding non-exhaust PM10 emissions and road dust, but also that several knowledge gaps exists. Several suggestions on further studies is given together with a brief overview on the continued work forward from this thesis. / Icke-avgasemissioner av PM10 är ett problem i urbana miljöer länkat till flera hälsoaspekter. Dessa emissioner kan relateras till beläggningars egenskaper. Även resuspension av vägdamm från ytor är av betydelse och beror på både trafiken och meterologin. Baserat på detta är syftet med denna avhandling att ge en översikt kring icke-avgas PM10 emissioner och vägdamm, begränsat till Sverige och de övriga nordiska länderna. Denna översikt inkluderar hur partiklar relaterar till människans hälsa. Annat som inkluderas är hur partiklarna emitteras från vägyta-däckinteraktionen, både direkt och genom resuspension av vägdamm. Avhandlingen inkluderar även en översikt kring hur användandet av dubbdäck inverkar på vägbeläggningar och hur dess egenskaper inverkar på nötningsslitage. Detta länkas därefter till partikelemissioner. Vidare beskrivs även hur mätningar kan genomföras av partiklar samt vägdamm vilket följs upp av beskrivningar kring två större modeller kring prediktion av nötningsslitage och prediktion av icke-avgasemissioner. Även hur driftåtgärder inverkar på emissionerna tillsammans med alternativ för att minska emissionerna tas upp. Ett särskilt problem som tas upp i avhandlingen är bristen på helhetssyn beträffande miljöproblem i den urbana miljön med fokus på partikel- och bulleremissioner från vägyta-däckinteraktionen. För närvarande brukar det värsta problemet prioriteras och lösningen till det detta problem kan i sin tur medföra att andra miljöproblem istället förvärras. Denna avhandling visar på att mycket kunskap existerar kring icke-avgasemissioner av PM10 och kring vägdamm, men även att flertalet kunskapsluckor existerar. Flertalet förslag på vidare studier ges tillsammans med en överblick kring det fortsatta arbetet. / <p>QC 20180202</p>
|
Page generated in 0.0282 seconds