• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 202
  • 108
  • 19
  • 2
  • Tagged with
  • 323
  • 122
  • 73
  • 62
  • 57
  • 54
  • 43
  • 39
  • 38
  • 37
  • 36
  • 29
  • 27
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Représentations décomposables et sous-variétés lagrangiennes des espaces de modules associés aux groupes de surfaces

Schaffhauser, Florent 30 September 2005 (has links) (PDF)
Le principal résultat de la thèse est un théorème de convexité réel pour les applications moment à valeurs dans un groupe de Lie. Ce théorème est appliqué à la construction de sous-variétés lagrangiennes dans les quotients quasi-hamiltoniens, en particulier dans les espaces de représentations de groupes de surfaces. La notion de représentation décomposable fournit une interprétation géométrique de la sous-variété lagrangienne obtenue.
22

Meilleures constantes dans les inégalités de Sobolev en présence de Ssmétries

Faget, Zoé 11 April 2002 (has links) (PDF)
On établit la meilleure constante dans les inégalités de Sobolev sur une variété riemannienne compacte quelconque lorsque les fonctions considérées sont invariantes par un groupe d'isométries quelconque. On éablit également la meilleure constante dans le cas d'exception des inégalités de Sobolev pour des fonctions invariantes par un groupe d'isométries. La connaissance précise de ces constantes permet d'obtenir des résultats d'existence de solutions d'équation aux dérivées partielles. On se pose ensuite la question de l'existence d'une seconde meilleure constante, et on établit un théorème donnant cette existence sous certaines conditions, conditions permettant toutefois de répondre à certains problèmes ouverts, ainsi qu'à tous les cas constructibles. La démonstration de ce théorème oblige à développer des techniques pointues d'analyse, notamment une étude de phénomène de concentration d'une suite de solutions d'une EDP. La démonstration fait également intervenir des résultats portant sur la géométrie des orbites.
23

Les prépotentiels de variétés de Frobenius de dimension trois et quatre

Cutimanco, Miguel January 2013 (has links)
Les variétés de Frobenius ont été introduites par B. Dubrovin dans les années 1990. Ces variétés sont en bijection avec les solutions du système d'équations différentielles de Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) qui est apparu dans l'étude des déformations des théories de champs conformes en deux dimensions. Les structures d'une variété de Frobenius ont été trouvées dans plusieurs contextes, en particulier, sur les espaces de Hurwitz (les espaces de fonctions méromorphes sur des surfaces de Riemann). Ces dernières structures, appelées les variétés de Hurwitz-Frobenius, présentent des exemples très intéressants de variétés de Frobenius. L'aspect le plus intéressant c'est que nous pouvons étudier tous les objets liés à la variété de la façon explicite en utilisant la théorie des fonctions sur les surfaces de Riemann. Le but de ce mémoire est de calculer explicitement les solutions du système WDVV, appelées prépotentiels, qui correspondent à trois variétés de Hurwitz-Frobenius particulières.
24

Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets.

Battisti, Laurent 10 December 2012 (has links)
L'objet de cette thèse est l'étude de certaines classes de variétés complexes compactes non kählériennes. On regarde d'abord la classe des surfaces de Kato. Étant donnés une surface de Kato minimale S, D le diviseur maximal de S formé des courbes rationnelles de S et ϖ : Š ͢ S le revêtement universel de S, on démontre que Š \ϖ-1 (D) est une variété de Stein. Les variétés LVMB sont la seconde classe de variétés non kählériennes étudiées. Ces variétés complexes sont obtenues en quotientant un ouvert U de Pn par un sous-groupe de Lie fermé G de (C*)n de dimension m. On reformule ce procédé en remplaçant U par la donnée d'un sous-éventail de celui de Pn et G par un sous-espace vectoriel de Rn convenable. On construit ensuite de nouvelles variétés complexes compactes non kählériennes en combinant une méthode due à Sankaran et celle donnant les variétés LVMB. Sankaran considère un ouvert U d'une variété torique dont le quotient par un groupe W discret est une variété compacte. Ici, on munit une certaine variété torique Y de l'action d'un sous-groupe de Lie G de (C*)n de sorte que le quotient X de Y par G soit une variété, puis on quotiente un ouvert de X par un groupe discret W analogue à celui de Sankaran.Enfin, on étudie les variétés OT, une autre classe de variétés non kählériennes, dont on démontre que leur dimension algébrique est nulle. Ces variétés sont obtenues comme quotient d'un ouvert de Cm par le produit semi-direct du réseau des entiers d'une extension de corps finie K de Q et d'un sous-groupe des unités de K bien choisi. / In this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen.
25

Problèmes isopérimétriques et isospectralité pour le problème de Steklov

Brisson, Jade 20 December 2019 (has links)
En géométrie spectrale, on s’intéresse aux liens entre le spectre d’une variété riemannienne et sa géométrie. On recherche notamment des bornes supérieures et inférieures pour les va-leurs propres qui font intervenir des quantités géométriques, comme l’aire et le périmètre. On se questionne aussi sur l’isospectralité : Quelles sont les variétés riemanniennes non iso-métriques qui possèdent le même spectre ? Au cours des dernières années, le problème de Steklov, problème introduit au tout début du 20e siècle en mécanique des fluides, a suscité l’intérêt de plusieurs mathématiciens. Le but de ce mémoire est de donner une banque de variétés riemanniennes Steklov-isospectrales. On y présente aussi une preuve d’une borne supérieure pour la première valeur propre de Steklov pour un domaine borné du plan, sans hypothèse sur sa connexité. / In spectral geometry, we are interested in the links between the spectrum of a Riemannian manifold and its geometry. We are looking for geometric upper and lower bounds for the eigenvalues. These bounds are geometric, for they involve geometric quantities such as area and perimeter. Isospectrality is also a subject of interest in spectral geometry: What are thenon isometric Riemannian manifolds that share the same spectrum? In the last few years, the Steklov problem, introduced in the beginning of the 20th century in fluid mechanics, raised the interest of many mathematicians. In this memoir, we present a bank of Steklov-isospectral Riemannian manifolds. We also give a proof of an upper bound for the first Steklov eigenvalue for a bounded domain of the plane without any connectedness assumption.
26

Excisions tubulaires et valeurs propres de Steklov de boules géodésiques

Brisson, Jade 23 October 2023 (has links)
Titre de l'écran-titre (visionné le 2 octobre 2023) / Dans cette thèse, le problème de Steklov est étudié. Tout d'abord, ce problème est étudié sur des variétés riemanniennes fermées soumises à des excisions tubulaires. Étant données $\varepsilon > 0$, une variété riemannienne fermée $M$ de dimension $m \geq 2$ et une sous-variété fermée $N \subset M$ de dimension $0 \leq n \leq m - 2$, une excision tubulaire consiste à enlever le voisinage tubulaire $N^{\varepsilon} := \{ p \in M : d_{g}(p, N) \leq \varepsilon \}$ de taille $\varepsilon$ autour de $N$ afin d'obtenir le domaine $\Omega_{\varepsilon} := M \setminus N^{\varepsilon}$. Le résultat principal de cette thèse concerne le comportement des valeurs propres de Steklov d'une variété riemannienne fermée $M$ soumise à un nombre fini $b \geq 1$ d'excisions tubulaires. Plus précisément, il est montré que les valeurs propres divergent lorsque la taille des voisinages tubulaires tend vers $0$. Cette construction donne un nouvel exemple de variétés ayant une grande première valeur propre et permet d'étudier des problèmes de type isopérimétrique, comme étudier la pertinence de certaines quantités géométriques présentes dans des bornes supérieures connues. On utilise la quasi-isométrie et la comparaison des valeurs propres de Steklov à des valeurs propres de problèmes mixtes -- le problème de Steklov-Neumann et le problème de Steklov-Dirichlet. La séparation de variables est ensuite utilisée pour calculer les valeurs propres de ces problèmes mixtes. Grâce à cette méthode, on obtient l'ordre et le taux de divergence des valeurs propres ordonnées d'indice supérieur à $b$. Finalement, les fonctions propres et les valeurs propres de Steklov pour des boules géodésiques des sphères et des espcaes hyperboliques sont calculées. Elles sont trouvées à l'aide de la méthode de séparation de variables. / In this thesis, the Steklov problem is studied. This problem is first studied on closed Riemannian manifolds subject to tubular excisions. Given $\varepsilon > 0$, a closed Riemannian manifold $M$ of dimension $m \geq 2$ and a closed submanifold $N \subset M$ of dimension $0 \leq n \leq m - 2$, a tubular excision consists of removing the tubular neighbourhood $N^{\varepsilon} := \{ p \in M : d_{g}(p, N) \leq \varepsilon \}$ of size $\varepsilon$ around $N$ to obtain the domain $\Omega_{\varepsilon} := M \setminus N^{\varepsilon}$. The principal result of this thesis concerns the behaviour of the Stekov eigenvalues of a closed Riemannian manifold $M$ subject to a finite number $b \geq 1$ of tubular excisions. More precisely, it is proven that the eigenvalues diverge to infinity when the size of the tubular neighbourhood tends to $0$. This construction gives a new example of manifolds with a large first eigenvalue and allows to study isoperimetric type problems, as well as study the importance of certain geometric quantities present in known upper bounds. We use quasi-isometry and the bracketing of Steklov eigenvalues which compares the Steklov eigenvalues with eigenvalues of mixed problems -- the Steklov-Neumann and the Steklov-Dirichlet problems. Then, the eigenvalues of those mixed problems are computed via the method of separation of variables. This method gives us the order and the rate of divergence of the ordered eigenvalues of index superior to "b". In a second part, the eigenfunctions and eigenvalues of geodesic balls in spheres and hyperbolic spaces are computed via the method of separation of variables.
27

Orbites d'un sous-groupe de Borel dans le produit de deux grassmanniennes

Smirnov, Evgeny 29 October 2007 (has links) (PDF)
Soit $X$ le produit direct de deux grassmanniennes des sous-espaces de dimensions $k$, $l$ d'un espace vectoriel $V$. Nous étudions les orbites d'un sous-groupe de Borel $B$ de GL($V$) opérant diagonalement dans $X$, et les adhérences de Zariski de ces orbites, en analogie avec les cellules et les variétés de Schubert dans les grassmanniennes. On vérifie sans pein que ces orbites sont en nombre fini. Elles ont été décrites de façon combinatoire par P. Magyar, J. Weyman et A. Zelevinsky. Nous obtenons un critère pour l'inclusion d'une orbite dans l'adhérence d'une autre orbite, et nous construisons une résolution de ces adhérences d'orbites, analogue aux désingularisations de Bott-Samelson des variétés de Schubert.
28

Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeaux

Chênevert, Gabriel January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
29

Compactifications de variétés de Siegel aux places de mauvaise réduction / Compactifications of Siegel varieties at bad reduction places

Stroh, Benoît 01 December 2008 (has links)
Dans cette thèse, nous construisons des compactifications des variétés modulaires de Siegel en leurs places de mauvaise réduction de type parahorique. Nous construisons tout d'abord des compactifications toroïdales, qui sont relativement explicites et dont l'on contrôle les singularités. Ces compactifications ne sont pas canoniques, mais dépendent d'un choix combinatoire. L'étape essentielle de la construction est une approximation des variétés abéliennes de Mumford qui préserve un sous-groupe de torsion. Cette approximation nous permet de recoller les différentes cartes locales des compactifications. Nous utilisons ces résultats pour contruire les compactifications minimales, qui sont canoniques, mais moins explicites et plus singulières. Nous donnons comme application une nouvelle preuve de l'existence du sous-groupe canonique pour les variétés abéliennes. / In this thesis, we construct compactifications of Siegel modular varieties at bad reduction places of parahoric type. We first construct the toroidal compactifications, which are quite explicit and whose singularities are controlled. These compactifications are not canonical, but depend on some combinatorial choice. The main point in our construction is an approximation of Mumford degenerating abelian varieties that preserves a torsion subgroup. This allows us to glue together the different local charts of the compactifications. We use these results to construct the minimal compactifications, which are canonical but less explicit and more singular. As an application, we give a new proof of the existence of the canonical subgroup for abelian varieties.
30

Affine Hermite-Lorentz manifolds / Variétés affines Hermite-Lorentz

Barucchieri, Bianca 26 September 2019 (has links)
Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte sur l’espace affine. Ce sont les groupes fondamentaux des variétés affines compactes et complètes. Nous classifions les groupes cristallographiques dont la partie linéaire préserve une forme hermitienne de signature (n,1). Grunewald et Margulis ont prouvé que ces groupes cristallographiques sont virtuellement résolubles (la conjecture d’Auslander affirme que c’est toujours le cas). Notre classification est effectuée pour n ≤ 3. Elle correspond à la classification, à revêtement fini près, des variétés Hermite-Lorentz plates, compactes et complètes en dimension complexe inférieure ou égale à4. Ce travail est inspiré par ceux menés par Bieberbach, puis Fried, et enfin Grunewald et Margulis sur les groupes cristallographiques dont la partie linéaire préserve une forme quadratique définie positive ou lorentzienne. En effectuant cette classification, nous avons été amené à étudier certains familles d’algèbres de Lie nilpotentes de dimension 8. Nous avons ensuite étendu cette classification à celle de toutes les algèbres de Lie 3-nilpotentes de dimension 8 ayant l’algèbre de Lie libre 3-nilpotente à 3générateurs pour quotient. Ce résultat peut être vu comme un pas dans la direction d’une classification des algèbres de Lie nilpotentes de dimension 8. Ensuite nous nous sommes demandé lesquelles de ces algèbres admettent une métrique pseudo-riemannienne plate et nous avons donné une réponse partielle. / In this work we deal with crystallographic groups, i.e. the subgroups of the group of affine transformations that act properly discontinuously and cocompactly on affine space. In otherwords they are the fundamental groups of compact and complete affine manifolds. In this thesis we classify such groups with the additional hypothesis that the linear part preserves a Hermitian form of signature (n,1). Grunewald and Margulis proved that such crystallographic groups are virtually solvable (the Auslander conjecture states that this is always true). Our classification is for n ≤ 3. It corresponds to a classification, up to finite covering, and for complex dimension at most 4, of flat compact complete Hermite-Lorentz manifolds. This is inspired by the works done by Bieberbach,then Fried, and finally Grunewald and Margulis who classified crystallographic groups whose line arpart preserves a positive definite or Lorentzian quadratic form. Making this classification we had to classify a family of 8-dimensional nilpotent Lie algebras. We then extended this classification toall the 8-dimensional 3-step nilpotent Lie algebras having the free 2-step nilpotent Lie algebra on 3generators as quotient. This result can be seen as a step in the direction of a general classification of nilpotent Lie algebras of dimension 8. We then wondered which of these Lie algebras admit flat pseudo-Riemannian metrics and gave a partial answer to this question.

Page generated in 0.1164 seconds