Spelling suggestions: "subject:"verbundwerkstoff""
11 |
Profillinie 1: Neue Materialien und neue WerkstoffeHoyer, Walter, Richter, Frank, Goedel, Werner A., Köhler, Eberhard, Wielage, Bernhard, Spange, Stefan, Hietschold, Michael, Radehaus, Christian, von Borczyskowski, Christian, Schreiber, Michael, Magerle, Robert, Häussler, Peter, Solbrig, Heinrich, Lang, Heinrich, Cichos, Frank 11 November 2005 (has links) (PDF)
Die Entwicklung neuer Materialien und neuer Werkstoffe wird heute international als Schlüsseltechnologie mit Querschnittscharakter und Schrittmacherfunktion für viele industrielle Bereiche eingestuft. Die Wirtschaftskraft der hoch entwickelten Industriegesellschaften hängt zunehmend von Erfolgen in der Materialwissenschaft und der Werkstofftechnologie ab.
Die Forschungsaktivitäten in der Profillinie 1 sind gekennzeichnet durch Interdisziplinarität und Vernetzung von Forschungsvorhaben. Von besonderer Bedeutung ist darüber hinaus die zusätzliche Verzahnung mit der Profillinie 6 der TU Chemnitz “Modellierung, Simulation, Hochleistungsrechnen“, um die Material- und Werkstoffforschung durch den intelligenten Einsatz leistungsstarker Rechentechnik weniger kostenintensiv gestalten zu können.
|
12 |
Advanced manufacturing technology for 3D profiled woven preforms / Neue Fertigungstechnologie für 3D profilierte Preforms auf WebbasisTorun, Ahmet Refah 22 August 2011 (has links) (PDF)
3D textile performs offer a high potential to increase mechanical properties of composites and they can reduce the production steps and costs as well. The variety of woven structures is enormous. The algorithms based on the conventional weaving notation can only represent the possible woven structures in a limited way. Within the scope of this dissertation, a new weaving notation was developed in order to analyze the multilayer woven structures analytically. Technological solutions were developed in order to guarantee a reproducible preform production with commingled hybrid yarns. Terry weaving technique can be utilized to create vertical connections on carrier fabrics, which makes it suitable for the development of complex profiles. A double rapier weaving machine was modified with electronically controlled terry weaving and pneumatic warp yarn pull-back systems. Various spacer fabrics and 3D profiles were developed. A linear take-up system is developed to assure reproducible preform production with a minimum material damage. Integrated cutting and laying mechanisms on the take-up system provides a high level of automation.
|
13 |
Development of carbon fibre/polyamide 6,6 commingled hybrid yarn for textile-reinforced thermoplastic compositesHasan, M. M. B., Staiger, E., Ashir, M., Cherif, C. 09 October 2019 (has links)
With increased use of carbon fibre (CF)-based textile-reinforced thermoplastic composites, the demand of hybrid yarns consisting of carbon filament yarns (CFYs) and thermoplastic filament yarns with improved properties is also high. Hybrid yarn manufacturing using commingling process by means of compressed air shows some distinct advantages over other hybrid yarn manufacturing processes. However, the potential of commingling process for the production of CF-based thermoplastic hybrid yarns is not yet fully explored. In this article, extensive investigations have been carried out for the development of commingled hybrid yarns manufactured from CFY and polyamide 6,6 (PA 6,6) filament yarns with improved adhesion properties between CFY and matrix in composites. Hybrid yarns are manufactured by varying air pressure and keeping overfeeds and delivery speed constant. Moreover, an additional heat treatment on CFY is done online for a better opening of CFY prior to the mixing with PA 6,6 filament yarn. The tensile properties of hybrid yarns as well as different mechanical properties of unidirectional composite, such as tensile, flexural, impact and interlaminar shear strength are investigated. The results show good potential for the development of hybrid yarns produced from CFY and thermoplastic filament yarns with improved adhesion properties for their application in textile-reinforced thermoplastic composites.
|
14 |
Entwicklung von Verbundpulvern auf der Basis von Titankarbid für das thermische Spritzen hochverschleißfester SchichtenAzarava, Tatsiana 05 July 2001 (has links) (PDF)
Compositwerkstoffe mit Hartstoffverstärkung für das thermische Spritzen finden eine breite Anwendung als Beschichtungswerkstoffe, da sie einen sehr guten Verschleißschutz bieten. Die bislang zur Verfügung stehenden konventionellen karbidhaltigen Pulver für die Herstellung verschleißfester Schichten enthalten zum Teil höhere Mengen an Elementen, die sowohl als kostenintensiv als auch bedenklich im Hinblick auf die Umweltverträglichkeit (z.B. Ni, Cr und Co) einzustufen sind. Die Untersuchungen wurden im Rahmen der Zusammenarbeit des Lehrstuhls für Verbundwerkstoffe der TU Chemnitz mit dem Belorussischen Institut für Pulvermetallurgie Minsk durchgeführt. Die vorliegende Arbeit befaßt sich mit der Entwicklung neuartiger SHS-Verbundwerkstoffe auf der Basis von Eisen-Titankarbid, die als preiswerte und umweltfreundliche Spritzpulver zum thermischen Spritzen von verschleißbeständigen Schichten eingesetzt werden können. Als metallische Bindephasen für die Herstellung der Verbundpulver wurden kostengünstiges Eisen und unterschiedliche Eisenlegierungen verwendet. Es werden die Gesetzmäßigkeiten des Werkstoffverhaltens während der SH-Synthese, bei der spritztechnischen Verarbeitung durch die APS-, VPS- und HVOF sowohl bei der Schichtbildung als auch während der verschiedenen Verschleißuntersuchungen vorgestellt, die durch umfassende metallkundliche Betrachtungen begleitet werden. Die Ergebnisse aus den Verschleißuntersuchungen der synthetisierten TiC-haltigen Spritzschichten sowie der Spritzschichten aus den herkömmlichen Pulvern werden verglichen. Die gewonnenen Erkenntnisse schaffen Voraussetzungen für vielfältige Anwendungen von SHS-Verbundwerkstoffen des Fe/TiC-Systems für das thermische Spritzen hochverschleißfester Schichten.
|
15 |
Profillinie 2: Ganzheitliche ProduktionNeugebauer, Reimund, Schubert, Andreas, Wielage, Bernhard, Meyer, Lothar W., Krüger, Lutz, Hübler, Arved, Müller, Egon, Weidlich, Dieter, Dietzsch, Michael, Awiszus, Birgit, Halle, Thorsten 11 November 2005 (has links) (PDF)
Der Maschinenbau benötigt zum Erhalt seiner Innovationsfähigkeit neue, ganzheitliche Ansätze, die die vollständige Digitalisierung der Produktentwicklung bis zur digitalen Produktion/Fabrik und auch die Geschäftsprozesse, das Produktionsmanagement und gesamtwirtschaftliche Aspekte einschließen.
Ziel der Profillinie ist es, Ressourcen und Kompetenzen zu bündeln und unter Beachtung des industriellen Umfeldes und der Veränderungen im Forschungsumfeld in Deutschland und Europa eine “kritische Masse” an F&E-Potenzial zu schaffen, die es erlaubt, an der Spitze der Maschinenbauforschung zu agieren.
|
16 |
Process development for the manufacturing of flat knitted innovative 3D spacer fabrics for high performance composite applicationsAbounaim, Md. 08 February 2011 (has links) (PDF)
Innovative 3D spacer fabrics made from individual planes and connecting layers present great potential as complexly shaped textile preforms in lightweight composite applications. As one of the most flexible textile manufacturing methods, flat knitting enables the production of intricately shaped textile structures. The major advantages coupled with flat knitting techniques include the ability to produce multi-layer reinforcements, a diminishing waste, reducing production time and near-net shaping. This research includes the further development of flat knitting technology and the manufacturing processes of innovative, customized 3D spacer fabrics for high performance composite applications. Novel 3D spacer fabrics have been developed in different geometries using glass-polypropylene commingled hybrid yarns for complex shaped thermoplastic composite components. Reinforcement yarns have been integrated into spacer fabric structures with up to 4 reinforcement layers to improve mechanical performance. Furthermore, the successful addition of “sensor networks” created by integrating functional yarns into the 3D spacer fabrics could be used for structural health monitoring. Innovative integration concepts, which accommodate different positioning of the reinforcement yarns into the knit structures, can be used to adjust the mechanical properties of the finished knit composites. Moreover, the tensile properties have been accurately predicted based on the mathematical models formulated. The developed flat knitted 3D spacer fabrics are very promising for applications in lightweight composites, mechanical engineering, protective textiles, civil engineering and architectural designs. / Innovative 3D-Spacer Fabrics bestehend aus individuellen Deckflächen und Verbindungsstegen bieten ein großes Potential als komplex geformte textile Halbzeuge für Leichtbauverbundwerkstoffanwendungen. Mit Hilfe des Flachstrickens, welches einer der flexibelsten textilen Herstellungsprozesse ist, lassen sich komplex geformte textile Strukturen herstellen. Belastungsgerechte Verstärkungen, Abfallreduzierung, endkonturnahe Fertigung sind nur einige der großen Vorteile der modernen Flachstricktechnik. Die Forschungsarbeit beinhaltet die Entwicklung der Flachstricktechnologie und des Herstellungsprozesses für innovative 3D-Spacer Fabrics für Hochleistungsverbundwerkstoffe. Neuartige 3D-Spacer Fabrics wurden in unterschiedlichen Geometrien entwickelt, in dem Glas-/ Polypropylen Commingling-Hybridgarn für komplex geformte thermoplastische Verbundwerkstoffkomponenten eingesetzt wird. Verstärkungsfäden wurden für hochmechanische Belastungen in die Spacer-Fabric-Strukturen in bis zu 4 Verstärkungschichten integriert. Die erfolgreiche Umsetzung und Entwicklung von Sensornetzwerken durch die Integration von funktionalen Fäden in die 3D-Spacer Fabrics kann für die strukturelle Zustandsüberwachung genutzt werden. Die innovativen Integrationskonzepte erlauben die differenzierte Orientierung von Verstärkungsfäden in den Gestrickstrukturen, wodurch eine starke Beeinflussung der mechanischen Eigenschaften der Gestrickverbundwerkstoffe herbeigeführt wird. Darüber hinaus wurden die Zugeigenschaften basierend auf den entwickelten mathematischen Modellen vorhergesagt. Die entwickelten flachgestrickten 3D-Spacer Fabrics sind sehr vielversprechend beispielweise für die Anwendung in Leichtbauverbundwerkstoffen, im Maschinenbau, in Schutztextilien, im Bauingenieurwesen und Architekturdesign.
|
17 |
Herstellung und Eigenschaften hydridbasierter Verbundwerkstoffe mit hoher Energie- und Leistungsdichte für die WasserstoffspeicherungPohlmann, Carsten 10 November 2014 (has links) (PDF)
In dieser Arbeit werden kompaktierte Verbundwerkstoffe aus verschiedenen Speichermaterialien mit expandiertem Naturgraphit (ENG) in Hinblick auf die Anwendung als dynamische Wasserstofffeststoffspeichermaterialien untersucht. Pulverförmige hydridbildende Ausgangsmaterialien wurden mit bis zu 25 Masse-% ENG vermischt und bei Pressdrücken bis 600 MPa kompaktiert. Um einen weiten Anwendungsbereich abzudecken wurden ein Niedrigtemperaturmaterial (Ti-Mn-basierte Legierung; 0°C bis 100°C), zwei Mitteltemperaturmaterialien (Amid- und Alanatsystem; 100°C bis 200°C) und ein Hochtemperaturmaterial (Magnesium-Nickel-Legierung; 250°C bis 400°C) basierend auf einer umfangreichen Literaturrecherche gewählt. Die Verbundwerkstoffe weisen eine erhöhte radiale Wärmeleitfähigkeit auf und zeichnen sich im Vergleich zu herkömmlich verwendeten Pulverschüttungen durch höhere volumetrische Wasserstoffspeicherdichten aus.
Im Fokus der Untersuchungen stehen vor allem die im Hinblick auf Anwendungstauglichkeit wesentlichen Eigenschaften der Verbundwerkstoffe. So wurde z.B. der Wasserstoffdruck während der Dehydrierung variiert, um sicher zu stellen, Verbraucher mit üblichen Überdrücken versorgen zu können. Darüber hinaus wurde die Stabilität, Gaspermeabilität, Wärmeleitfähigkeit und Porosität der Presslinge im Verlauf zyklischer Hydrierung evaluiert und diskutiert. Insgesamt zeichnet sich ein hohes Potenzial ab, derartige Presslinge als Wasserstoffspeichermaterial für verschiedene Anwendungen entsprechend der jeweiligen Arbeitstemperaturen und weiteren Randbedingungen (z.B. Systemmasse, Tankvolumen etc.) zu verwenden. Diesbezüglich konnte mittels eines Tankdemonstrators basierend auf dem Ti-Mn-System ein Wasserstofffahrzeug erfolgreich betrieben und somit auch die Praxistauglichkeit der Hydrid-Graphit-Verbundmaterialien gezeigt werden. / Compacted composites of solid-state hydrogen storage materials and expanded natural graphite (ENG) are investigated in view of their potential for hydrogen storage applications. Powdery hydride-forming materials were blended with up to 25 weight-% ENG and compacted with up to 600 MPa compaction pressure. In order to cover a wide range of possible applications one low-temperature material (Ti-Mn-based alloy; 0°C to 100°C), two mid-temperature materials (amide and alante system; 100°C to 200°C) and one high-temperature material (magnesium-nickel alloy; 250°C to 400°C) were chosen based on a thorough literature review. The composites result in an increased radial thermal conductivity and are superior in their volumetric hydrogen storage density compared to commonly used loose powder beds.
The research is focused on the applicability of suchlike prepared composites. In this regard, the dehydrogenation back-pressures were varied to ensure a sufficient supply pressure of common consumer loads. Furthermore, the stability, gas permeability, thermal conductivity and porosity throughout cyclic hydrogenation were evaluated and discussed. Overall, a high potential to use suchlike composite materials for hydrogen storage applications regarding the specific working conditions (temperature, system mass, available volume etc.) is found. In this regard, a demonstrator tank equipped with Ti-Mn-based system was successfully supplying a hydrogen driven vehicle, which proves the feasibility of these hydride-graphite composite materials.
|
18 |
Glass and Jute fibers modified with CNT-based functional coatings for high performance compositesTzounis, Lazaros 02 July 2014 (has links) (PDF)
Carbon nanotubes are known as one of the strongest materials in nature and since their discovery; they have triggered the scientific interest for fabricating multi-functional polymer composites. However, a well-known problem associated to the incorporation of nanoparticulate materials in polymer matrices is their tendency to agglomerate in order to reduce their surface energy, and the extreme increase of the polymer viscosities (i.e melts, solutions, etc), which makes it very difficult to process them. Polymers can be efficiently reinforced by fibers for applications where high strength and stiffness are required. Micro-scale short fiber reinforced polymer composites have been an alternative way to obtain fiber reinforced composites since the long fiber incorporation is a painful job and not always feasible and easy to produce composites in big scale.
Therefore, use of long glass fibers as the support for depositing CNTs as well as CNTs+other kind of nanoparticles was made, and the resulting interfaces were investigated in detail by single fiber model composites. This approach can bring the CNT functionality, fiber strength and toughness to the final composite, and simultaneously alleviate the manufacturing process from increase of the polymer high viscosities. Finally, very logically the question of whether to improve or destroy the interface integrity comes before implementing the hybrid hierarchical reinforcements in bigger scales, and an output out of this work will be given. Furthermore, several information and functionalities arising from the CNTs at the interphase region will be elucidated like cure monitoring of the epoxy resin matrix, UV-sensing ability, and thermoelectric energy harvesting, giving rise to multi-functional structural composites. CNT-modified natural fibers also have been utillised to fabricate short fiber reinforced composites, and have shown a promising reinforcement effect due to the CNT nanostructured interfaces.
The ‘interface’ in fiber reinforced polymer composites (FRPCs) is known as a very crucial parameter that has to be considered in the design of a composite with desired properties. Interfaces are often considered as surfaces however, they are in fact zones or areas with compositional, structural, and property gradients, typically varying from that of the fiber and the matrix material. Characterization of the mechanical properties of interfaces is necessary for understanding the mechanical behavior of scaled-up composites. In fact, the mechanical characteristics of a fiber/resin composite depend mainly on i) the mechanical properties of the component materials, ii) the surface of the fiber, and iii) the nature of the fiber/resin bonding as well as the mode of stress transfer at the interface. Among the many factors that govern the characteristics of composites involving a glass, carbon, natural or ceramic fiber, and a macromolecular matrix, the adhesion between fiber and matrix plays a predominant role. In specific, the stress transfer at the interface requires an efficient coupling between fiber and matrix. Therefore, it is important to optimize the interfacial bonding since a direct linkage between fiber and matrix gives rise to a rigid, low impact resistance composite material.
|
19 |
Profillinie 1: Neue Materialien und neue Werkstoffe:Hoyer, Walter, Richter, Frank, Goedel, Werner A., Köhler, Eberhard, Wielage, Bernhard, Spange, Stefan, Hietschold, Michael, Radehaus, Christian, von Borczyskowski, Christian, Schreiber, Michael, Magerle, Robert, Häussler, Peter, Solbrig, Heinrich, Lang, Heinrich, Cichos, Frank 11 November 2005 (has links)
Die Entwicklung neuer Materialien und neuer Werkstoffe wird heute international als Schlüsseltechnologie mit Querschnittscharakter und Schrittmacherfunktion für viele industrielle Bereiche eingestuft. Die Wirtschaftskraft der hoch entwickelten Industriegesellschaften hängt zunehmend von Erfolgen in der Materialwissenschaft und der Werkstofftechnologie ab.
Die Forschungsaktivitäten in der Profillinie 1 sind gekennzeichnet durch Interdisziplinarität und Vernetzung von Forschungsvorhaben. Von besonderer Bedeutung ist darüber hinaus die zusätzliche Verzahnung mit der Profillinie 6 der TU Chemnitz “Modellierung, Simulation, Hochleistungsrechnen“, um die Material- und Werkstoffforschung durch den intelligenten Einsatz leistungsstarker Rechentechnik weniger kostenintensiv gestalten zu können.
|
20 |
Herstellung und Eigenschaften hydridbasierter Verbundwerkstoffe mit hoher Energie- und Leistungsdichte für die WasserstoffspeicherungPohlmann, Carsten 29 September 2014 (has links)
In dieser Arbeit werden kompaktierte Verbundwerkstoffe aus verschiedenen Speichermaterialien mit expandiertem Naturgraphit (ENG) in Hinblick auf die Anwendung als dynamische Wasserstofffeststoffspeichermaterialien untersucht. Pulverförmige hydridbildende Ausgangsmaterialien wurden mit bis zu 25 Masse-% ENG vermischt und bei Pressdrücken bis 600 MPa kompaktiert. Um einen weiten Anwendungsbereich abzudecken wurden ein Niedrigtemperaturmaterial (Ti-Mn-basierte Legierung; 0°C bis 100°C), zwei Mitteltemperaturmaterialien (Amid- und Alanatsystem; 100°C bis 200°C) und ein Hochtemperaturmaterial (Magnesium-Nickel-Legierung; 250°C bis 400°C) basierend auf einer umfangreichen Literaturrecherche gewählt. Die Verbundwerkstoffe weisen eine erhöhte radiale Wärmeleitfähigkeit auf und zeichnen sich im Vergleich zu herkömmlich verwendeten Pulverschüttungen durch höhere volumetrische Wasserstoffspeicherdichten aus.
Im Fokus der Untersuchungen stehen vor allem die im Hinblick auf Anwendungstauglichkeit wesentlichen Eigenschaften der Verbundwerkstoffe. So wurde z.B. der Wasserstoffdruck während der Dehydrierung variiert, um sicher zu stellen, Verbraucher mit üblichen Überdrücken versorgen zu können. Darüber hinaus wurde die Stabilität, Gaspermeabilität, Wärmeleitfähigkeit und Porosität der Presslinge im Verlauf zyklischer Hydrierung evaluiert und diskutiert. Insgesamt zeichnet sich ein hohes Potenzial ab, derartige Presslinge als Wasserstoffspeichermaterial für verschiedene Anwendungen entsprechend der jeweiligen Arbeitstemperaturen und weiteren Randbedingungen (z.B. Systemmasse, Tankvolumen etc.) zu verwenden. Diesbezüglich konnte mittels eines Tankdemonstrators basierend auf dem Ti-Mn-System ein Wasserstofffahrzeug erfolgreich betrieben und somit auch die Praxistauglichkeit der Hydrid-Graphit-Verbundmaterialien gezeigt werden. / Compacted composites of solid-state hydrogen storage materials and expanded natural graphite (ENG) are investigated in view of their potential for hydrogen storage applications. Powdery hydride-forming materials were blended with up to 25 weight-% ENG and compacted with up to 600 MPa compaction pressure. In order to cover a wide range of possible applications one low-temperature material (Ti-Mn-based alloy; 0°C to 100°C), two mid-temperature materials (amide and alante system; 100°C to 200°C) and one high-temperature material (magnesium-nickel alloy; 250°C to 400°C) were chosen based on a thorough literature review. The composites result in an increased radial thermal conductivity and are superior in their volumetric hydrogen storage density compared to commonly used loose powder beds.
The research is focused on the applicability of suchlike prepared composites. In this regard, the dehydrogenation back-pressures were varied to ensure a sufficient supply pressure of common consumer loads. Furthermore, the stability, gas permeability, thermal conductivity and porosity throughout cyclic hydrogenation were evaluated and discussed. Overall, a high potential to use suchlike composite materials for hydrogen storage applications regarding the specific working conditions (temperature, system mass, available volume etc.) is found. In this regard, a demonstrator tank equipped with Ti-Mn-based system was successfully supplying a hydrogen driven vehicle, which proves the feasibility of these hydride-graphite composite materials.
|
Page generated in 0.0762 seconds