• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 18
  • 13
  • Tagged with
  • 59
  • 59
  • 42
  • 42
  • 42
  • 34
  • 24
  • 24
  • 18
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen

Wielage, Bernd, Lampke, Thomas, Wagner, Guntram, Wagner, Martin Franz-Xaver, Undisz, Andreas 15 May 2013 (has links)
Die Schriftenreihe „Werkstoffe und werkstofftechnische Anwendungen“ behandelt Themengebiete der Werkstoffwissenschaft und -technik, der Oberflächentechnik sowie deren industriellen Anwendungen. Es werden aktuelle Forschungsergebnisse aus den vier Professuren des Instituts für Werkstoffwissenschaft und Werkstofftechnik der TU Chemnitz vorgestellt: Professur Elektronenmikroskopie und Mikrostrukturanalytik, Professur Verbundwerkstoffe und Werkstoffverbunde, Professur Werkstoff- und Oberflächentechnik, Professur Werkstoffwissenschaft. Weiterhin sind in der Schriftenreihe die Tagungsbände des jährlich am Institut stattfindenden „Werkstofftechnischen Kolloquium“ enthalten. Die einzelnen Bände beschäftigen sich mit den Forschungsgebieten Galvanische Metallabscheidung, Anodisieren, Thermisches und Kaltgas-Spritzen, Löten, Verbundwerkstoffe, Werkstoffverbunde, Wärmebehandlung, CVD-Beschichtungen/PVD-Beschichtungen, Simulation in der Beschichtungstechnik, Organisches Beschichten (Pulverbeschichten, Lackieren, Sol-Gel-Verfahren), Elektrochemisches Strukturieren, Thermomechanische Behandlung und Mechanische Werkstoffeigenschaften. / The book series „Werkstoffe und werkstofftechnische Anwendungen“ outlines up-to-date topics of material science and engineering, surface engineering as well as resulting industrial applications. Mainly, recent research results of the departments Composite Materials and Surface Engineering/Functional Materials of the Institute of Material Science and Engineering of Chemnitz University of Technology are presented. In addition, the book series includes the proceedings of the annual in-house conference “Werkstofftechnisches Kolloquium”. The separate volumes concentrate on the following fields of scientific research: Galvanised Coating, Anodising, Thermal and Cold Spraying, Soldering and Brazing, Composite Materials, Composite Structures, Thermal and Thermomechanical Treatment, CVD and PVD Coating, Simulation of Coating Processes, Organic coating (Powder Coating, Varnishing, Sol-Gel Processes), Electrochemical Structuring and Mechanical Material Properties.
32

Beitrag zur Entwicklung partikelverstärkter Weich- und Weichaktivlote zum Fügen temperaturempfindlicher Aluminiummatrix-Verbundwerkstoffe / Contribution to the development of particle-reinforced solders and active solders for joining of temperature-sensitive aluminium matrix composites

Weis, Sebastian 04 April 2012 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich mit der Entwicklung, Herstellung und Charakterisierung partikelverstärkter Weich- und Weichaktivlote mit dem Ziel der Eigenschaftsverbesserung der Lötverbindungen. Ausgehend vom Stand der Wissenschaft und Technik wird ein Konzept zur Einbringung von keramischen Verstärkungspartikeln in eine Sn-Basis-Lotmatrix erarbeitet und umgesetzt. Im Falle partikelverstärkter Weichaktivlote wird durch das zusätzliche Legieren der Lotmatrix mit dem reaktiven Element Titan die Ausbildung von zwei Reaktionszonen erreicht, welche die Haftung zwischen Partikel und Matrix steigern. Die mechanischen Eigenschaften dieser Verbindungen werden gegenüber der Partikelverstärkung ohne Aktivelement weiter verbessert. Zum Fügen der Aluminium- und Alumi-niummatrix-Verbundwerkstoffe (AMC) findet ein ultraschallunterstütztes Lötverfahren Anwendung, das eine Benetzung ohne den Einsatz von Flussmitteln ermöglicht. Die hergestellten Lötverbindungen zeichnen sich durch gesteigerte Verbindungsfestigkeiten, vor allem bei erhöhten Temperaturen, sowie eine verbesserte Kriechbeständigkeit aus. Aufgezeigt wird das Potenzial der Lote anhand von Zug- und Scherzugversuchen sowie Kriechuntersuchungen, die mit den Ergebnissen der Mikrostrukturanalyse und der fraktografischen Bewertung korreliert werden. Die Arbeit schließt mit einer Diskussion und sich daraus ergebenden Folgerung. Weiterhin liefert sie Ansätze für weitere Forschungstätigkeiten auf diesem Gebiet. / This thesis deals with the development, manufacturing and characterisation of particle-reinforced solders and active solders to improve the mechanical properties of soldered joints. Based on the state of the art, a concept for embedding of ceramic particles in a Sn-based filler matrix is planed and realised. In the case of particle-reinforced active solders two interfacial reaction layers which increase the bonding between the particles and the filler matrix are formed due to the alloying by the reactive element Ti. The mechanical properties of these joints are improved in comparison to particle-reinforced solders without surface-active elements. For joining of aluminium and aluminium matrix composites (AMC), an ultrasound-supported soldering process was used, that accomplishes a fluxless wetting. The produced joints are featured by an improved joining strength, mainly at elevated temperatures, and an increased creep resistance. The potential of the developed solders is performed by tensile and shear as well as creep tests that are correlated with the results of the micro-structural and fractographical analysis. The Discussion and the drawn conclusions summarise the work and give new approaches for following investigations.
33

Entwicklung neuer Gießtechnologien für Leichtbaukomponenten

Aitsuradze, Malkhaz 02 July 2010 (has links) (PDF)
Die Anforderungen, in vielen Bereichen des Maschinen- und Anlagenbaus immer mehr Leichtbaumaßnahmen zu realisieren, steigen ständig weiter an. Die Umsetzung von Leichtbaukonzepten wird durch den Einsatz neu entwickelter Werkstoffe und Werkstoffsubstitution realisiert. Es steht fest, dass die herkömmlichen Technologien eine weitere Steigerung der Leichtbaupotentiale nicht mehr gewährleisten können. In der vorliegenden Arbeit wurden neue innovative Fertigungstechnologien zur Herstellung von hohlen, MMC und damit massereduzierten Bauteilen entwickelt, die in der Kraftfahrzeugtechnik, Wärmetechnik und Medizin sowie im Maschinenbau Anwendung finden können. Die neuen Gießverfahren beinhalten Fertigungsmethoden auf der Basis des bekannten Niederdruckgießens durch gesteuerte Formfüllung und definierte Abkühlungsbedingungen.
34

Schriftenreihe des Institutes für Baustoffe

24 April 2018 (has links)
Bei den Forschungsaktivitäten wird von aktuellen Fragestellungen der Baustofftechnologie ausgegangen, wobei die Lösung akuter Probleme der Baupraxis und die Schaffung von soliden theoretischen Grundlagen in gleichem Maße angestrebt werden. Die Forschung wird hierbei vor allem durch interdisziplinäres Arbeiten geprägt. Zu den aktuellen Forschungsschwerpunkten zählen insbesondere: Entwicklung neuer zementbasierter Verbundwerkstoffe sowie von Verfahren zu deren Herstellung mit besonderem Akzent auf Faserbetone (Hochduktiler Beton mit Kurzfasern, Beton mit textiler Bewehrung, Ultrahochfester Beton mit innerer Nachbehandlung, Selbstverdichtender Leichtbeton, Beton mit sehr hohem Verschleißwiderstand) Untersuchung der Kurz- und Langzeiteigenschaften von neuen und bestehenden Baustoffen auf mineralischer Basis (Beton, Mörtel, Mauerwerk); Erforschung der für das Materialverhalten maßgebenden Mechanismen sowie der Mittel zu deren gezielten Beeinflussung (Festigkeits-, Verformungs- und Bruchverhalten unter monotoner, zyklischer und stoßartiger Beanspruchung sowie Schwinden und Kriechen von Beton; Transport von korrosiven Medien unter Berücksichtigung der Rissbildung, Schädigungsmechanismen und Dauerhaftigkeit) Modellierung des Baustoffverhaltens; Ableitung von stoffgesetzlichen Beziehungen; numerische Simulation des Materialverhaltens in unterschiedlichen Stadien seines "Lebens" (Herstellung, Verarbeitung, Erhärtung, mechanische Beanspruchung, Exposition von korrosiven Medien etc.)
35

Schriftenreihe Werkstoffe und werkstofftechnische Anwendungen

15 May 2013 (has links)
Die Schriftenreihe „Werkstoffe und werkstofftechnische Anwendungen“ behandelt Themengebiete der Werkstoffwissenschaft und -technik, der Oberflächentechnik sowie deren industriellen Anwendungen. Es werden vorrangig aktuelle Forschungsergebnisse der Professuren Verbundwerkstoffe und Oberflächentechnik/Funktionswerkstoffe des Instituts für Werkstoffwissenschaft und Werkstofftechnik der TU Chemnitz vorgestellt. Weiterhin sind in der Schriftenreihe die Tagungsbände des jährlich am Institut stattfindenden „Werkstofftechnischen Kolloquium“ enthalten. Die einzelnen Bände beschäftigen sich mit den Forschungsgebieten Galvanische Metallabscheidung, Anodisieren, Thermisches und Kaltgas-Spritzen, Löten, Verbundwerkstoffe, Werkstoffverbunde, Wärmebehandlung, CVD-Beschichtungen/PVD-Beschichtungen, Simulation in der Beschichtungstechnik, Organisches Beschichten (Pulverbeschichten, Lackieren, Sol-Gel-Verfahren), Elektrochemisches Strukturieren, Thermomechanische Behandlung und Mechanische Werkstoffeigenschaften. / The book series „Werkstoffe und werkstofftechnische Anwendungen“ outlines up-to-date topics of material science and engineering, surface engineering as well as resulting industrial applications. Mainly, recent research results of the departments Composite Materials and Surface Engineering/Functional Materials of the Institute of Material Science and Engineering of Chemnitz University of Technology are presented. In addition, the book series includes the proceedings of the annual in-house conference “Werkstofftechnisches Kolloquium”. The separate volumes concentrate on the following fields of scientific research: Galvanised Coating, Anodising, Thermal and Cold Spraying, Soldering and Brazing, Composite Materials, Composite Structures, Thermal and Thermomechanical Treatment, CVD and PVD Coating, Simulation of Coating Processes, Organic coating (Powder Coating, Varnishing, Sol-Gel Processes), Electrochemical Structuring and Mechanical Material Properties.
36

Untersuchung des Anwendungspotenzials der Hochfrequenzwirbelstrommesstechnik zur Charakterisierung dielektrischer Eigenschaften von Epoxidharzen und Faserverbundmaterialien

Gäbler, Simone 09 January 2018 (has links) (PDF)
Die dielektrischen Eigenschaften, also die Interaktion mit elektrischen Feldern, sind ein wichtiger Qualitätsparameter der Matrix in Faserverbundmaterialien und allgemein in Harzen. Sie werden bisher mit Hilfe von kapazitiven Verfahren oder Hochfrequenzverfahren wie z. B. der Mikrowellentechnik gemessen. Allerdings können beide Verfahren nicht an elektrisch leitfähigen Materialien wie Kohlenstofffaserverstärkten Kunststoffen (CFK) eingesetzt werden und auch bei der Anwendung der Methoden an Kunststoffen oder elektrisch isolierenden Faserverbundmaterialien gibt es Nachteile. So benötigt die kapazitive Messtechnik meist eine spezielle Probenpräparation für quantitative Messungen und erreicht eine vergleichsweise schlechte Ortsauflösung beim Permittivitätsmapping. Die vorliegende Arbeit widmet sich daher der Untersuchung einer alternativen, in diesem Kontext neuen Methode zur Charakterisierung dielektrischer Eigenschaften: Die Hochfrequenzwirbelstrommesstechnik, welche bisher zur Messung der elektrischen Leitfähigkeit und magnetischen Permeabilität genutzt wird, wird theoretisch und praktisch hinsichtlich ihres Anwendungspotentials zur Permittivitätsmessung an Epoxidharzen und Faserverbundwerkstoffen diskutiert. Dabei werden zuerst Grundlagen wie Anwendungsfelder für die Nutzung dielektrischer Eigenschaften von Harzen und Verbundwerkstoffen zur Qualitätssicherung bzw. gängige Messverfahren erläutert. Anschließend wird theoretisch gezeigt, warum dielektrische Eigenschaften auf das Hochfrequenzwirbelstrom (HFWS)-Signal wirken. Dabei werden sowohl die Maxwell-Gleichungen genutzt, als auch Finite Elemente (FE)-Simulationen. Der Schwerpunkt der Forschungsarbeit liegt dann auf der experimentellen Untersuchung der Permittivitätsmessung mittels HFWS. Es werden verschiedene Anwendungsfälle betrachtet: von zeitlich kontinuierlichen Permittitivitätsänderungen (am Beispiel der Aushärtung von Epoxidharzen), über lokale Permittivitätsabweichungen (in Folge von Defekten, Textureigenschaften oder thermischen Überlasten) bis hin zu quantitativen Permittivitätsmessungen (zur Materialcharakterisierung bzw. Alterungsuntersuchung). Dabei kann gezeigt werden, dass es möglich ist, die Permittivität von Faserverbundwerkstoffen und Epoxidharzen mittels HFWS zu charakterisieren, selbst wenn das zu prüfende Material elektrisch nicht leitfähig ist.
37

Ultrasonic Spot Welding of Thin Walled Fibre-Reinforced Thermoplastics

Tutunjian, Shahan 28 July 2021 (has links)
Das Ultraschall-Punktschweißen von faserverstärkten thermoplastischen Kunststoffen hat in der letzten Zeit bei Forschern in der Luftfahrt- und Automobilindustrie großes Interesse hervorgerufen. Es bietet eine effiziente Lösung zum Verbinden großer thermoplastischer Verbundbauteile durch Punktschweißen mit einem hohen Automatisierungsgrad. In der vorliegenden Arbeit wurde eine neue Technik zum Fokussieren der Ultraschallschwingungsenergie an der gewünschten Fügestelle zwischen zwei Fügepartnern aus thermoplastischen Verbundlaminaten untersucht. Bei diesem untersuchten Verfahren waren keine zusätzlichen Energierichtungsgeber zwischen den Fügepartnern erforderlich, um die Vibrationsenergie zu fokussieren. Es wurde festgestellt, dass es durch Schweißen der Laminate zwischen einer Sonotrode und einem Amboss möglich war, eine lokalisierte Wärme durch Reibung zu erzeugen in dem die Sonotrode eine größere Kontaktfläche mit dem Laminat als mit dem Amboss aufwies. In der Anfangsphase des Schweißens wurden die Grenzflächenschichten durch die reibungsverursachte Erwärmung abgeschwächt. Folglich zentrierte sich die zyklische Verformung in diesen abgeschwächten Grenzflächen. Die Annahme des Vorhandenseins der Reibung und ihres Einflusses auf die Wärmeerzeugung wurde mittels mechanischer FEM-Analyse untersucht. Die mikroskopische Analyse des Schweißpunktes lieferte schließlich den Beweis für die Schmelzauslösung an einem Ring um den Schweißpunkt und das anschließende Punktwachstum. Um die räumliche Verteilung der Temperatur und ihre zeitliche Entwicklung in der Schweißzone während des Ultraschallschweißprozesses besser zu verstehen, wurde das thermische Problem numerisch modelliert. Zur Verifizierung der mathematischen Modelle wurden die berechneten Zeitverläufe der Temperatur im Schweißpunktzentrum mit den experimentell ermittelten Werten unter vergleichbaren Bedingungen gegenübergestellt. Es wurde festgestellt, dass nach einer bestimmten Schweißzeit die Temperatur im Schweißzentrum plötzlich anstieg und das Polymer an der Schweißstelle überhitzt und die Zersetzung begann. Es wurde beobachtet, dass der Zeitverlauf der verbrauchten Leistungskurve durch das Schweißgerät einem ähnlichen Muster folgte, wie der Zeitverlauf der Temperatur in der Schweißpunktmitte. Basierend auf dieser Beobachtung wurde ein Steuerungssystem entwickelt. Die zeitliche Ableitung der Schweißleistung wurde in Echtzeit überwacht. Sobald ein kritischer Wert überschritten wurde, wurde die Ultraschallschwingungsamplitude aktiv durch einen Mikrocontroller eingestellt. Bei diesem Ansatz wurde die Temperatur im Schweißpunkt indirekt gesteuert, um während der gesamten Schweißdauer in einem optimalen Bereich zu bleiben. Die Ergebnisse des gesteuerten Schweißprozesses wurden mittels Temperaturmessungen und Computertomographie bewertet. Aus der Studie wurde der Schluss gezogen, dass das leistungsgesteuerte Ultraschall-Punktschweißverfahren eine effiziente und stabile Methode zum automatischen Verbinden von faserverstärkten thermoplastischen Teilen ist.:1 Introduction 1.1 Motivation 1.2 State of the Art 1.3 Statement of the Theses and Methods 2 Theoretical Background 2.1 Ultrasonic Welder 2.1.1 Ultrasonic Stack 2.1.2 Working Principle of the Ultrasonic Welder 2.2 Viscoelasticity 2.2.1 Viscoelasticity of Continuous Fibre-Reinforced Laminates 2.2.2 Viscoelastic Heating of CFRTP during the DUS Welding 2.3 Frictional heating at the Weld Interface during the DUS Welding 2.4 Fusion Mechanism during the USW 2.4.1 Contact of the Matrix at the Weld Interface 2.4.2 Healing of the Weld Interface through Autohesion 3 Experimental Analysis of the DUS Process 3.1 Experimental Setup 3.2 Experimental Procedure, Results and Discussions 3.2.1 Weld Progress and Formation Analysis 3.2.2 The Influence of the Amplitude and Static Force on the DUS 3.2.3 Computed Tomography Analysis of the DUS Welded Spots 3.2.4 Influence of the Weld Parameters on the Weld Force at Break 3.2.5 Influence of the Main Process Variables on the Weld Strength 4 Process Modelling and Simulation 4.1 Dynamic Mechanical 3D Finite Element Analysis 4.1.1 Woven Fabric Laminate Models 4.1.2 Laminate Properties and Meshing 4.1.3 FEM Analysis Procedure 4.1.4 Results of the Dynamic Analysis 4.2 Numerical Analysis of the Temperature Temporal and Spatial Development 4.2.1 The Numerical Method 4.2.2 Matrix Loss Modulus Calculation at the Welding Frequency 4.2.3 Model Validation 4.2.4 Analysis of the Spatial and Temporal development of the Temperature 4.2.5 Influence of Uncontrollable Factors on the DUS Process 5 Logical Control Method and Industrialisation 5.1 Process Controlling Hypothesis 5.2 Control System and Instruments 5.3 Experimental Procedure for Analysing the Control System 5.4 Analysis of the Controlled DUS Process 5.5 Control System Validation and Industrialisation 5.6 Automation of the Ultrasonic Spot Welding Process 6 Summary and Outlook 6.1 Conclusions 6.2 Outlook References Appendix / The ultrasonic spot welding of fibre-reinforced thermoplastic composites has recently received strong interest among researchers mainly in the fields of aerospace and automotive industries. It offers an efficient solution to join large thermoplastic composite parts through the spot welding approach with a high level of automation. In this study, a new technique for focusing the ultrasonic vibration energy at the desired spot between two mating thermoplastic composite laminates was investigated. In this method, no additional energy directing protrusions between the weldments were required to focus the vibration energy. It was found that by welding the laminates amid an ultrasonic sonotrode and an anvil in which the prior had a larger contact surface with the laminate as the latter, it was possible to generate a localised frictional heating. In the initial phase of the welding, the frictional heating softened the interfacial layers and thus caused the focusing of the strain energy in the weld spot centre. The assumption for the presence of the friction and its influence on the heat generation was investigated by means of finite element method analysis. Microscopic analysis of the weld spot delivered the proof for the melt initiation at a ring around the weld spot and subsequent inwards growth of the weld spot. In order to gain a better understanding of the temperature spatial distribution and its temporal development in the weld zone during the ultrasonic welding process, the thermal problem was analysed using the explicit finite difference method. The mathematical model was verified through a comparison between the calculated temperature curves and the experimentally obtained counterparts. It was found that after a certain weld duration the temperature in the weld centre underwent a sudden increase and caused the overheating and decomposition of the polymer in the weld spot. It was observed that the time trace of the consumed power curve by the welder followed a similar pattern as the time trace of the temperature in the weld spot centre. Based on this observation, a control system was developed accordingly. The time derivative of the weld power was monitored in real time and as soon as it exceeded a critical value, the ultrasonic vibration amplitude was actively adjusted through a microcontroller. In this approach, the temperature in the weld spot was indirectly controlled to remain within an adequate range throughout the welding duration. The results of the controlled welding process were evaluated by means of temperature measurements and computed tomography scans. It was concluded from the study that the power-controlled differential ultrasonic spot welding process could be an efficient method to fusion bond the fibre-reinforced thermoplastic parts in an automated manner.:1 Introduction 1.1 Motivation 1.2 State of the Art 1.3 Statement of the Theses and Methods 2 Theoretical Background 2.1 Ultrasonic Welder 2.1.1 Ultrasonic Stack 2.1.2 Working Principle of the Ultrasonic Welder 2.2 Viscoelasticity 2.2.1 Viscoelasticity of Continuous Fibre-Reinforced Laminates 2.2.2 Viscoelastic Heating of CFRTP during the DUS Welding 2.3 Frictional heating at the Weld Interface during the DUS Welding 2.4 Fusion Mechanism during the USW 2.4.1 Contact of the Matrix at the Weld Interface 2.4.2 Healing of the Weld Interface through Autohesion 3 Experimental Analysis of the DUS Process 3.1 Experimental Setup 3.2 Experimental Procedure, Results and Discussions 3.2.1 Weld Progress and Formation Analysis 3.2.2 The Influence of the Amplitude and Static Force on the DUS 3.2.3 Computed Tomography Analysis of the DUS Welded Spots 3.2.4 Influence of the Weld Parameters on the Weld Force at Break 3.2.5 Influence of the Main Process Variables on the Weld Strength 4 Process Modelling and Simulation 4.1 Dynamic Mechanical 3D Finite Element Analysis 4.1.1 Woven Fabric Laminate Models 4.1.2 Laminate Properties and Meshing 4.1.3 FEM Analysis Procedure 4.1.4 Results of the Dynamic Analysis 4.2 Numerical Analysis of the Temperature Temporal and Spatial Development 4.2.1 The Numerical Method 4.2.2 Matrix Loss Modulus Calculation at the Welding Frequency 4.2.3 Model Validation 4.2.4 Analysis of the Spatial and Temporal development of the Temperature 4.2.5 Influence of Uncontrollable Factors on the DUS Process 5 Logical Control Method and Industrialisation 5.1 Process Controlling Hypothesis 5.2 Control System and Instruments 5.3 Experimental Procedure for Analysing the Control System 5.4 Analysis of the Controlled DUS Process 5.5 Control System Validation and Industrialisation 5.6 Automation of the Ultrasonic Spot Welding Process 6 Summary and Outlook 6.1 Conclusions 6.2 Outlook References Appendix
38

Entwicklung von Verbundpulvern auf der Basis von Titankarbid für das thermische Spritzen hochverschleißfester Schichten

Azarava, Tatsiana 05 July 2001 (has links)
Compositwerkstoffe mit Hartstoffverstärkung für das thermische Spritzen finden eine breite Anwendung als Beschichtungswerkstoffe, da sie einen sehr guten Verschleißschutz bieten. Die bislang zur Verfügung stehenden konventionellen karbidhaltigen Pulver für die Herstellung verschleißfester Schichten enthalten zum Teil höhere Mengen an Elementen, die sowohl als kostenintensiv als auch bedenklich im Hinblick auf die Umweltverträglichkeit (z.B. Ni, Cr und Co) einzustufen sind. Die Untersuchungen wurden im Rahmen der Zusammenarbeit des Lehrstuhls für Verbundwerkstoffe der TU Chemnitz mit dem Belorussischen Institut für Pulvermetallurgie Minsk durchgeführt. Die vorliegende Arbeit befaßt sich mit der Entwicklung neuartiger SHS-Verbundwerkstoffe auf der Basis von Eisen-Titankarbid, die als preiswerte und umweltfreundliche Spritzpulver zum thermischen Spritzen von verschleißbeständigen Schichten eingesetzt werden können. Als metallische Bindephasen für die Herstellung der Verbundpulver wurden kostengünstiges Eisen und unterschiedliche Eisenlegierungen verwendet. Es werden die Gesetzmäßigkeiten des Werkstoffverhaltens während der SH-Synthese, bei der spritztechnischen Verarbeitung durch die APS-, VPS- und HVOF sowohl bei der Schichtbildung als auch während der verschiedenen Verschleißuntersuchungen vorgestellt, die durch umfassende metallkundliche Betrachtungen begleitet werden. Die Ergebnisse aus den Verschleißuntersuchungen der synthetisierten TiC-haltigen Spritzschichten sowie der Spritzschichten aus den herkömmlichen Pulvern werden verglichen. Die gewonnenen Erkenntnisse schaffen Voraussetzungen für vielfältige Anwendungen von SHS-Verbundwerkstoffen des Fe/TiC-Systems für das thermische Spritzen hochverschleißfester Schichten.
39

Profillinie 2: Ganzheitliche Produktion:

Neugebauer, Reimund, Schubert, Andreas, Wielage, Bernhard, Meyer, Lothar W., Krüger, Lutz, Hübler, Arved, Müller, Egon, Weidlich, Dieter, Dietzsch, Michael, Awiszus, Birgit, Halle, Thorsten 11 November 2005 (has links)
Der Maschinenbau benötigt zum Erhalt seiner Innovationsfähigkeit neue, ganzheitliche Ansätze, die die vollständige Digitalisierung der Produktentwicklung bis zur digitalen Produktion/Fabrik und auch die Geschäftsprozesse, das Produktionsmanagement und gesamtwirtschaftliche Aspekte einschließen. Ziel der Profillinie ist es, Ressourcen und Kompetenzen zu bündeln und unter Beachtung des industriellen Umfeldes und der Veränderungen im Forschungsumfeld in Deutschland und Europa eine “kritische Masse” an F&E-Potenzial zu schaffen, die es erlaubt, an der Spitze der Maschinenbauforschung zu agieren.
40

Glass and Jute fibers modified with CNT-based functional coatings for high performance composites

Tzounis, Lazaros 16 May 2014 (has links)
Carbon nanotubes are known as one of the strongest materials in nature and since their discovery; they have triggered the scientific interest for fabricating multi-functional polymer composites. However, a well-known problem associated to the incorporation of nanoparticulate materials in polymer matrices is their tendency to agglomerate in order to reduce their surface energy, and the extreme increase of the polymer viscosities (i.e melts, solutions, etc), which makes it very difficult to process them. Polymers can be efficiently reinforced by fibers for applications where high strength and stiffness are required. Micro-scale short fiber reinforced polymer composites have been an alternative way to obtain fiber reinforced composites since the long fiber incorporation is a painful job and not always feasible and easy to produce composites in big scale. Therefore, use of long glass fibers as the support for depositing CNTs as well as CNTs+other kind of nanoparticles was made, and the resulting interfaces were investigated in detail by single fiber model composites. This approach can bring the CNT functionality, fiber strength and toughness to the final composite, and simultaneously alleviate the manufacturing process from increase of the polymer high viscosities. Finally, very logically the question of whether to improve or destroy the interface integrity comes before implementing the hybrid hierarchical reinforcements in bigger scales, and an output out of this work will be given. Furthermore, several information and functionalities arising from the CNTs at the interphase region will be elucidated like cure monitoring of the epoxy resin matrix, UV-sensing ability, and thermoelectric energy harvesting, giving rise to multi-functional structural composites. CNT-modified natural fibers also have been utillised to fabricate short fiber reinforced composites, and have shown a promising reinforcement effect due to the CNT nanostructured interfaces. The ‘interface’ in fiber reinforced polymer composites (FRPCs) is known as a very crucial parameter that has to be considered in the design of a composite with desired properties. Interfaces are often considered as surfaces however, they are in fact zones or areas with compositional, structural, and property gradients, typically varying from that of the fiber and the matrix material. Characterization of the mechanical properties of interfaces is necessary for understanding the mechanical behavior of scaled-up composites. In fact, the mechanical characteristics of a fiber/resin composite depend mainly on i) the mechanical properties of the component materials, ii) the surface of the fiber, and iii) the nature of the fiber/resin bonding as well as the mode of stress transfer at the interface. Among the many factors that govern the characteristics of composites involving a glass, carbon, natural or ceramic fiber, and a macromolecular matrix, the adhesion between fiber and matrix plays a predominant role. In specific, the stress transfer at the interface requires an efficient coupling between fiber and matrix. Therefore, it is important to optimize the interfacial bonding since a direct linkage between fiber and matrix gives rise to a rigid, low impact resistance composite material.

Page generated in 0.0851 seconds