11 |
Mechanical properties of magneto-sensitive elastomers: unification of the continuummechanics and microscopic theoretical approachesIvaneyko, Dmytro, Toshchevikov, Vladimir, Saphiannikova, Marina, Heinrich, Gert 06 December 2019 (has links)
A new theoretical formalism is developed for the study of the mechanical behaviour of magneto-sensitive elastomers (MSEs) under a uniform external magnetic field. This formalism allows us to combine macroscopic continuum-mechanics and microscopic approaches for complex analysis of MSEs with different shapes and with different particle distributions. It is shown that starting from a model based on an explicit discrete particle distribution one can separate the magnetic field inside the MSE into two contributions: one which depends on the shape of the sample with finite size and the other, which depends on the local spatial particle distribution. The magneto-induced deformation and the change of elastic modulus are found to be either positive or negative, their dependences on the magnetic field being determined by a non-trivial interplay between these two contributions. Mechanical properties are studied for two opposite types of coupling between the particle distribution and the magneto-induced deformation: absence of elastic coupling and presence of strong affine coupling. Predictions of a new formalism are in a qualitative agreement with existing experimental data.
|
12 |
Crucial Role of Silica-Alumina Binder Mixtures for Hydrocarbon Cracking with ZSM‑5 AdditivesHaufe, Liane A., Timoshev, Vladislav, Seifert, Markus, Busse, Oliver, Weigand, Jan J. 16 May 2024 (has links)
Alumina-containing binders are widely used for the binding of catalyst particles by spray drying and calcination. As a part of the active matrix, they contribute to the catalytic performance of the resulting catalyst grain during hydrocarbon cracking. In this study, correlations are investigated using different compositions of Al- and Si-based binders (AlCl3 and colloidal silica) together with kaolin as a filler and ZSM-5 zeolite as an active compound. It was demonstrated that the conversion of a 50:50 hexane mixture, the selectivity toward unsaturated hydrocarbons, and the shape-selective conversion of the hexane feed are highly dependent on the amount and distribution of alumina in binder formulations. While silica species are distributed near the outer shell of catalyst grains, the alumina species are distributed evenly as an adhesive between the catalyst compounds ZSM-5 and kaolin. An optimum amount of alumina in binder formulations results in an increasing conversion of hydrocarbon feedstock due to optimum in active-site accessibility but only a slight decrease in shape-selective properties compared to pure ZSM-5, resulting in an optimum yield of light olefins, especially propylene.
|
13 |
Tradition und Gegenwart bei der Analyse des thermischen Verhaltens spanender Werkzeugmaschinen26 August 2013 (has links) (PDF)
Die Dresdner Werkzeugmaschinen-Fachseminare sind ein Forum zu ausgewählten Spezialthemen der Entwicklung und Nutzung von Werkzeugmaschinen.
Das 16. WZM-Fachseminar berichtetet inhaltlich detailliert von aktuellen Arbeiten im Rahmen des DFG-Sonderforschungsbereiches "Thermo-Energetische Gestaltung von Werkzeugmaschinen" (SFB/TR 96) an den Standorten Dresden, Aachen und Chemnitz.
Die Fachbeiträge berichten über experimentelle und modellgestützte Analyse von Wärmequellen und -übertragung in spanenden Werkzeugmaschinen sowie zu Lösungsansätzen zur Korrektur und Kompensation der thermo-elastischen Verlagerungen.
|
14 |
Plastizität, deformationsinduzierte Phänomene und Élinvareigenschaften in antiferromagnetischen austenitischen FeMnNiCr-Basislegierungen / Plasticity, deformation induced phenomena and Élinvar properties in antiferromagnetic austenitic FeMnNiCr-base alloysGeißler, David 19 June 2012 (has links) (PDF)
Hoch manganhaltige Eisenbasislegierungen sind bei Raumtemperatur austenitisch und antiferromagnetisch (afm). Dabei besteht die Besonderheit, dass sich durch Legierung die afm Übergangstemperatur (Néeltemperatur) so einstellen lässt, dass sie nahe Raumtemperatur liegt. FeMn-Basislegierungen zeigen in Abhängigkeit von der Zusammensetzung Transformation Induced Plasticity (TRIP) und/oder Twinning Induced Plasticity (TWIP), d.h. die niedrige Stapelfehlerenergie dieser Legierungen führt zu verformungsinduzierter, metastabiler Phasenbildung (TRIP) bzw. zur Bildung von Verformungszwillingen (TWIP) und dadurch zu außerordentlich hoher Duktilität bei gleichzeitig hoher Verfestigung. Darüber hinaus haben FeMn-Basislegierungen einen ausgeprägten Magnetovolumeneffekt und magnetoelastischen Effekt durch magnetische Ordnung. Daher sind die untersuchten FeMnNiCr-Basislegierungen auch prototypisch für afm Élinvarlegierungen. Da Élinvar jedoch für invariable Elastizität steht, bedingt eine Anwendung als temperaturkompensierte Konstantmodullegierungen die Glättung der ausgeprägten magnetischen Anomalien, die industriell noch in keiner Anwendung realisiert wurde. Der Vorteil dies für eine Anwendung zu erreichen, läge in der Unempfindlichkeit feinmechanischer Bauelemente, gegenüber magnetischen Feldern, die bei den industriell verfügbaren ferromagnetischen Élinvarlegierungen nicht gewährleistet ist. Mit Bezug zu feinmechanischen Schwingsystemen spielen dabei neben der Einstellung der magnetoelastischen Eigenschaften die Prozessierbarkeit, Kaltumformbarkeit und Festigkeit sowie deren wechselseitige Beeinflussung eine große Rolle. Die vorliegende Arbeit befasst sich daher mit der Anwendbarkeit der untersuchten FeMnNiCr-Legierungen. Dabei wurden grundlegende Untersuchungen zur Plastizität durchgeführt, die die mechanische Zwillingsbildung in diesen Legierungen charakterisiert und ein Modell der mechanischen Zwillingsbildung bei kleinen plastischen Dehnungen vorschlägt, das eine Abschätzung der Stapelfehlerenergie erlaubt. Die Untersuchung des Antiferromagnetismus umgeformter Proben zeigt das Auftreten thermoremanenter Magnetisierung (TRM), deren Größe mit dem Umformgrad der untersuchten Proben skaliert. Sie wird den durch Umformdefekte erzeugten unkompensierten Momenten in der afm Spinstruktur zugeschrieben. Diese werden durch eine magnetische Feldkühlung magnetisiert und koppeln durch Austauschwechselwirkung an die umgebende antiferromagnetische Matrix unterhalb der Néeltemperatur. Das komplexe thermomagnetische Verhalten der unkompensierten Momente wird experimentell beschrieben und phänomenologisch gedeutet. Die Weiterentwicklung und Bewertung technischer, ausscheidbarer FeMnNiCrBe- und FeMnNiCr(Ti, Al)-Legierungen wird mit Bezug zu den grundlegenden Untersuchungen dargestellt. Es wird gezeigt, dass die neu entwickelten ausscheidbaren FeMnNiCr(Ti, Al)-Legierungen eine vielversprechende Ausgangsbasis darstellen, afm Élinvarlegierungen technisch umzusetzen. / High manganese iron-base alloys are austenitic and antiferromagnetic (afm) at room temperature. By further alloying it is possible to tune the afm transition temperature (Néel temperature) near room temperature. FeMn-base alloys show extraordinary strain hardening as well as ductility because of Transformation Induced Plasticity (TRIP) and/or Twinning Induced Plasticty (TWIP), i.e. in dependence on composition the generally low stacking fault energy in these alloys allows for the mechanically induced formation of metastable phases (TRIP) or deformation twinning (TWIP). Furthermore, magnetic order causes distinct magnetovolume and magnetoelastic effects in these afm FeMn-base alloys. The investigated FeMnNiCr-base alloys are therefore prototypic for afm Élinvar alloys. However, as Élinvar is meant for invariant elasticity, an application as temperature compensated alloy with constant elastic modulus requires the smoothing of the pronounced magnetic anomalies, that is not industrially available yet. The advantage of afm Élinvar alloys in precision mechanics applications, would be their impassiveness with respect to magnetic fields that is not achievable by their ferromagnetic counterparts. For precision components like mechanic oscillators not only the tuning of the magnetoelastic properties but also the processing, cold formability and mechanical properties as well as their interplay have strong influence. Therefore this work addresses the applicability of the studied FeMnNiCr alloys. Elementary investigations on plasticity characterise the occurrence of TWIP in these alloys and propose a modell for deformation twinning at low plastic strains that allows for an estimation of the stacking fault energy. The investigations on the antiferromagnetism of deformed samples show the appearance of thermoremanent magnetisation (TRM). Its magnitude scales with the degree of deformation. The TRM is therefore attributed to uncompensated moments in the afm spin structure due to deformation induced defects. These are magnetised by a magnetic field cooling and couple to the afm matrix by exchange interaction below the Néel temperature. The complex thermomagnetic behaviour of the uncompensated moments is experimentally described and phenomenologically explained. The further development and assessment of engineering-grade pecipitable FeMnNiCrBe and FeMnNiCr(Ti, Al) alloys is presented in relation to the aforementioned elementary investigations. It is shown that the newly developped precipitable FeMnNiCr(Ti, Al) alloys are good candidates for afm Élinvar alloys in application.
|
15 |
Verformungsinduzierte Strukturänderungen bei amorphem Ni0.5Zr0.5 in Molekulardynamik-Simulationen / Deformation-induced structural changes of amorphous Ni0.5Zr0.5 in molecular-dynamic simulationsBrinkmann, Kevin 31 October 2006 (has links)
No description available.
|
16 |
Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer und KupfermischkristalllegierungenKauffmann, Alexander 01 July 2014 (has links) (PDF)
Die vorliegende Arbeit zeigt einen Weg, Kupfer und einphasige Kupferlegierungen mit stark verzwillingten Gefügen durch ein technisch relevantes Umformverfahren herzustellen. Der Drahtzug bildet dabei aufgrund seines Spannungszustands und der entsprechenden Texturentwicklung in kubischflächenzentrierten Metallen ein ideales Umformverfahren, um einen Großteil des Gefüges durch mechanische Zwillingsbildung zu verfeinern. Für die Aktivierung der Zwillingsbildung in reinem Kupfer unter den untersuchten Werkstoffvarianten sind Temperaturen nahe der Temperatur des flüssigen Stickstoffs notwendig. Um den Drahtzug in flüssigem Stickstoff umzusetzen, wurden verschiedene Feststoffschmiermittel auf ihre Eignung hin getestet. Die Textur der mit Stickstoffkühlung hergestellten Halbzeuge ist durch eine dreifache Fasertextur bestehend aus <111>-, <001>- und <115>-Fasertexturkomponente charakterisiert. Anhand der strengen Orientierungsverhältnisse konnte der Volumenanteil von verzwillingtem Material bestehend aus Matrixkörnern und Verformungszwillingen auf 71 vol% durch röntgenografische Globaltexturmessungen abgeschätzt werden, wobei das Volumenverhältnis von Zwillingen zu Matrix bei knapp 0,7:1 liegt. Die Zwillinge zeigen eine breite Zwillingslamellenweitenverteilung von wenigen Nanometern bis einige 100 nm im höchstverformten Stadium. Durch die Absenkung der Umformtemperatur und die daraus resultierende Aktivierung der Zwillingsbildung kann die Zugfestigkeit von reinem Kupfer um 140 MPa im Vergleich zu einem ohne Kühlung hergestellten Draht auf 582 MPa erhöht werden. Dabei reduziert sich die elektrische Leitfähigkeit um 6,5% gegenüber einem grobkorngeglühten Kupfer. Eine Absenkung der Stapelfehlerenergie auf 30 mJ/m² in CuAl2 führt zur Aktivierung der mechanischen Zwillingsbildung beim Drahtzug ohne Kühlung. Durch diese Aktivierung der Zwillingsbildung kann bei fortschreitender Verringerung der Stapelfehlerenergie wie in CuAl7 die Zugfestigkeit des umgeformten Drahtes auf weit über 1 GPa erhöht werden. Das entsprechende Gefüge ist dabei ultrafeinkörnig.
|
17 |
From cells to tissuesMerkel, Matthias 02 December 2014 (has links) (PDF)
An essential prerequisite for the existence of multi-cellular life is the organization of cells into tissues. In this thesis, we theoretically study how large-scale tissue properties can emerge from the collective behavior of individual cells. To this end, we focus on the properties of epithelial tissue, which is one of the major tissue types in animals. We study how rheological properties of epithelia emerge from cellular processes, and we develop a physical description for the dynamics of an epithelial cell polarity. We apply our theoretical studies to observations in the developing wing of the fruit fly, Drosophila melanogaster.
In order to study epithelial mechanics, we first develop a geometrical framework that rigorously describes the deformation of two-dimensional cellular networks. Our framework decomposes large-scale deformation into cellular contributions. For instance, we show how large-scale tissue shear decomposes into contributions by cell shape changes and into contributions by different kinds of topological transitions. We apply this framework in order to quantify the time-dependent deformation of the fruit fly wing, and to decompose it into cellular contributions.
We also use this framework as a basis to study large-scale rheological properties of epithelia and their dependence on cellular fluctuations. To this end, we represent epithelial tissues by a vertex model, which describes cells as elastic polygons. We extend the vertex model by introducing fluctuations on the cellular scale, and we develop a method to perform perpetual simple shear simulations. Analyzing the steady state of such simple shear simulations, we find that the rheological behavior of vertex model tissue depends on the fluctuation amplitude. For small fluctuation amplitude, it behaves like a plastic material, and for high fluctuation amplitude, it behaves like a visco-elastic fluid.
In addition to analyzing mechanical properties, we study the reorientation of an epithelial cell polarity. To this end, we develop a simple hydrodynamic description for polarity reorientation. In particular, we account for polarity reorientation by tissue shear, by another polarity field, and by local polarity alignment. Furthermore, we develop methods to quantify polarity patterns based on microscopical images of the fly wing. We find that our hydrodynamic description does not only account for polarity reorientation in wild type fly wings. Moreover, it is for the first time possible to also account for the observed polarity patterns in a number of genetically altered flies. / Eine wesentliche Voraussetzung für die Existenz mehrzelligen Lebens ist, dass sich einzelne Zellen sinnvoll zu Geweben ergänzen können. In dieser Dissertation untersuchen wir, wie großskalige Eigenschaften von Geweben aus dem kollektiven Verhalten einzelner Zellen hervorgehen. Dazu konzentrieren wir uns auf Epitheliengewebe, welches eine der Grundgewebearten in Tieren darstellt. Wir stellen theoretische Untersuchungen zu rheologischen Eigenschaften und zu zellulärer Polarität von Epithelien an. Diese theoretischen Untersuchungen vergleichen wir mit experimentellen Beobachtungen am sich entwickelnden Flügel der schwarzbäuchigen Taufliege (Drosophila melanogaster).
Um die Mechanik von Epithelien zu untersuchen, entwickeln wir zunächst eine geometrische Beschreibung für die Verformung von zweidimensionalen zellulären Netzwerken. Unsere Beschreibung zerlegt die mittlere Verformung des gesamten Netzwerks in zelluläre Beitrage. Zum Beispiel wird eine Scherverformung des gesamten Netzwerks auf der zellulären Ebene exakt repräsentiert: einerseits durch die Verformung einzelner Zellen und andererseits durch topologische Veränderungen des zellulären Netzwerks. Mit Hilfe dieser Beschreibung quantifizieren wir die Verformung des Fliegenflügels während des Puppenstadiums. Des Weiteren führen wir die Verformung des Flügels auf ihre zellulären Beiträge zurück.
Wir nutzen diese Beschreibung auch als Ausgangspunkt, um effektive rheologische Eigenschaften von Epithelien in Abhängigkeit von zellulären Fluktuationen zu untersuchen. Dazu simulieren wir Epithelgewebe mittels eines Vertex Modells, welches einzelne Zellen als elastische Polygone abstrahiert. Wir erweitern dieses Vertex Modell um zelluläre Fluktuationen und um die Möglichkeit, Schersimulationen beliebiger Dauer durchzuführen. Die Analyse des stationären Zustands dieser Simulationen ergibt plastisches Verhalten bei kleiner Fluktuationsamplitude und visko-elastisches Verhalten bei großer Fluktuationsamplitude.
Neben mechanischen Eigenschaften untersuchen wir auch die Umorientierung einer Zellpolarität in Epithelien. Dazu entwickeln wir eine einfache hydrodynamische Beschreibung für die Umorientierung eines Polaritätsfeldes. Wir berücksichtigen dabei insbesondere Effekte durch Scherung, durch ein anderes Polaritätsfeld und durch einen lokalen Gleichrichtungseffekt. Um unsere theoretische Beschreibung mit experimentellen Daten zu vergleichen, entwickeln wir Methoden um Polaritätsmuster im Fliegenflügel zu quantifizieren. Schließlich stellen wir fest, dass unsere hydrodynamische Beschreibung in der Tat beobachtete Polaritätsmuster reproduziert. Das gilt nicht nur im Wildtypen, sondern auch in genetisch veränderten Tieren.
|
18 |
Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer und KupfermischkristalllegierungenKauffmann, Alexander 26 May 2014 (has links)
Die vorliegende Arbeit zeigt einen Weg, Kupfer und einphasige Kupferlegierungen mit stark verzwillingten Gefügen durch ein technisch relevantes Umformverfahren herzustellen. Der Drahtzug bildet dabei aufgrund seines Spannungszustands und der entsprechenden Texturentwicklung in kubischflächenzentrierten Metallen ein ideales Umformverfahren, um einen Großteil des Gefüges durch mechanische Zwillingsbildung zu verfeinern. Für die Aktivierung der Zwillingsbildung in reinem Kupfer unter den untersuchten Werkstoffvarianten sind Temperaturen nahe der Temperatur des flüssigen Stickstoffs notwendig. Um den Drahtzug in flüssigem Stickstoff umzusetzen, wurden verschiedene Feststoffschmiermittel auf ihre Eignung hin getestet. Die Textur der mit Stickstoffkühlung hergestellten Halbzeuge ist durch eine dreifache Fasertextur bestehend aus <111>-, <001>- und <115>-Fasertexturkomponente charakterisiert. Anhand der strengen Orientierungsverhältnisse konnte der Volumenanteil von verzwillingtem Material bestehend aus Matrixkörnern und Verformungszwillingen auf 71 vol% durch röntgenografische Globaltexturmessungen abgeschätzt werden, wobei das Volumenverhältnis von Zwillingen zu Matrix bei knapp 0,7:1 liegt. Die Zwillinge zeigen eine breite Zwillingslamellenweitenverteilung von wenigen Nanometern bis einige 100 nm im höchstverformten Stadium. Durch die Absenkung der Umformtemperatur und die daraus resultierende Aktivierung der Zwillingsbildung kann die Zugfestigkeit von reinem Kupfer um 140 MPa im Vergleich zu einem ohne Kühlung hergestellten Draht auf 582 MPa erhöht werden. Dabei reduziert sich die elektrische Leitfähigkeit um 6,5% gegenüber einem grobkorngeglühten Kupfer. Eine Absenkung der Stapelfehlerenergie auf 30 mJ/m² in CuAl2 führt zur Aktivierung der mechanischen Zwillingsbildung beim Drahtzug ohne Kühlung. Durch diese Aktivierung der Zwillingsbildung kann bei fortschreitender Verringerung der Stapelfehlerenergie wie in CuAl7 die Zugfestigkeit des umgeformten Drahtes auf weit über 1 GPa erhöht werden. Das entsprechende Gefüge ist dabei ultrafeinkörnig.
|
19 |
From cells to tissuesMerkel, Matthias 21 November 2014 (has links)
An essential prerequisite for the existence of multi-cellular life is the organization of cells into tissues. In this thesis, we theoretically study how large-scale tissue properties can emerge from the collective behavior of individual cells. To this end, we focus on the properties of epithelial tissue, which is one of the major tissue types in animals. We study how rheological properties of epithelia emerge from cellular processes, and we develop a physical description for the dynamics of an epithelial cell polarity. We apply our theoretical studies to observations in the developing wing of the fruit fly, Drosophila melanogaster.
In order to study epithelial mechanics, we first develop a geometrical framework that rigorously describes the deformation of two-dimensional cellular networks. Our framework decomposes large-scale deformation into cellular contributions. For instance, we show how large-scale tissue shear decomposes into contributions by cell shape changes and into contributions by different kinds of topological transitions. We apply this framework in order to quantify the time-dependent deformation of the fruit fly wing, and to decompose it into cellular contributions.
We also use this framework as a basis to study large-scale rheological properties of epithelia and their dependence on cellular fluctuations. To this end, we represent epithelial tissues by a vertex model, which describes cells as elastic polygons. We extend the vertex model by introducing fluctuations on the cellular scale, and we develop a method to perform perpetual simple shear simulations. Analyzing the steady state of such simple shear simulations, we find that the rheological behavior of vertex model tissue depends on the fluctuation amplitude. For small fluctuation amplitude, it behaves like a plastic material, and for high fluctuation amplitude, it behaves like a visco-elastic fluid.
In addition to analyzing mechanical properties, we study the reorientation of an epithelial cell polarity. To this end, we develop a simple hydrodynamic description for polarity reorientation. In particular, we account for polarity reorientation by tissue shear, by another polarity field, and by local polarity alignment. Furthermore, we develop methods to quantify polarity patterns based on microscopical images of the fly wing. We find that our hydrodynamic description does not only account for polarity reorientation in wild type fly wings. Moreover, it is for the first time possible to also account for the observed polarity patterns in a number of genetically altered flies.:1 Introduction
1.1 The development of multi-cellular organisms
1.2 Biology of epithelial tissues
1.3 The model system Drosophila melanogaster
1.4 Planar cell polarity
1.5 Physical description of biological tissues
1.6 Overview over this thesis
2 Tissue shear in cellular networks
2.1 Geometry of tissue deformation on the cellular scale
2.2 Decomposition of the large-scale flow field into cellular contributions
2.3 Cellular contributions to the flow field in the fruit fly wing
2.4 Discussion
3 Rheological behavior of vertex model tissue under external shear
3.1 A vertex model to describe epithelial mechanics
3.2 Fluctuation-induced fluidization of tissue
3.3 Discussion
4 Quantitative study of polarity reorientation in the fruit fly wing
4.1 Experimentally quantified polarity patterns
4.2 Effective hydrodynamic theory for polarity reorientation
4.3 Comparison of theory and experiment
4.4 Discussion
5 Conclusions and outlook
Appendices:
A Algebra of real 2 × 2 matrices
B Deformation of triangle networks
C Simple shear simulations using the vertex model
D Coarse-graining of a cellular Core PCP model
E Quantification of polarity patterns in the fruit fly wing
F Theory for polarity reorientation in the fruit fly wing
G Boundary conditions for the polarity field in the fruit fly wing
Table of symbols
Bibliography / Eine wesentliche Voraussetzung für die Existenz mehrzelligen Lebens ist, dass sich einzelne Zellen sinnvoll zu Geweben ergänzen können. In dieser Dissertation untersuchen wir, wie großskalige Eigenschaften von Geweben aus dem kollektiven Verhalten einzelner Zellen hervorgehen. Dazu konzentrieren wir uns auf Epitheliengewebe, welches eine der Grundgewebearten in Tieren darstellt. Wir stellen theoretische Untersuchungen zu rheologischen Eigenschaften und zu zellulärer Polarität von Epithelien an. Diese theoretischen Untersuchungen vergleichen wir mit experimentellen Beobachtungen am sich entwickelnden Flügel der schwarzbäuchigen Taufliege (Drosophila melanogaster).
Um die Mechanik von Epithelien zu untersuchen, entwickeln wir zunächst eine geometrische Beschreibung für die Verformung von zweidimensionalen zellulären Netzwerken. Unsere Beschreibung zerlegt die mittlere Verformung des gesamten Netzwerks in zelluläre Beitrage. Zum Beispiel wird eine Scherverformung des gesamten Netzwerks auf der zellulären Ebene exakt repräsentiert: einerseits durch die Verformung einzelner Zellen und andererseits durch topologische Veränderungen des zellulären Netzwerks. Mit Hilfe dieser Beschreibung quantifizieren wir die Verformung des Fliegenflügels während des Puppenstadiums. Des Weiteren führen wir die Verformung des Flügels auf ihre zellulären Beiträge zurück.
Wir nutzen diese Beschreibung auch als Ausgangspunkt, um effektive rheologische Eigenschaften von Epithelien in Abhängigkeit von zellulären Fluktuationen zu untersuchen. Dazu simulieren wir Epithelgewebe mittels eines Vertex Modells, welches einzelne Zellen als elastische Polygone abstrahiert. Wir erweitern dieses Vertex Modell um zelluläre Fluktuationen und um die Möglichkeit, Schersimulationen beliebiger Dauer durchzuführen. Die Analyse des stationären Zustands dieser Simulationen ergibt plastisches Verhalten bei kleiner Fluktuationsamplitude und visko-elastisches Verhalten bei großer Fluktuationsamplitude.
Neben mechanischen Eigenschaften untersuchen wir auch die Umorientierung einer Zellpolarität in Epithelien. Dazu entwickeln wir eine einfache hydrodynamische Beschreibung für die Umorientierung eines Polaritätsfeldes. Wir berücksichtigen dabei insbesondere Effekte durch Scherung, durch ein anderes Polaritätsfeld und durch einen lokalen Gleichrichtungseffekt. Um unsere theoretische Beschreibung mit experimentellen Daten zu vergleichen, entwickeln wir Methoden um Polaritätsmuster im Fliegenflügel zu quantifizieren. Schließlich stellen wir fest, dass unsere hydrodynamische Beschreibung in der Tat beobachtete Polaritätsmuster reproduziert. Das gilt nicht nur im Wildtypen, sondern auch in genetisch veränderten Tieren.:1 Introduction
1.1 The development of multi-cellular organisms
1.2 Biology of epithelial tissues
1.3 The model system Drosophila melanogaster
1.4 Planar cell polarity
1.5 Physical description of biological tissues
1.6 Overview over this thesis
2 Tissue shear in cellular networks
2.1 Geometry of tissue deformation on the cellular scale
2.2 Decomposition of the large-scale flow field into cellular contributions
2.3 Cellular contributions to the flow field in the fruit fly wing
2.4 Discussion
3 Rheological behavior of vertex model tissue under external shear
3.1 A vertex model to describe epithelial mechanics
3.2 Fluctuation-induced fluidization of tissue
3.3 Discussion
4 Quantitative study of polarity reorientation in the fruit fly wing
4.1 Experimentally quantified polarity patterns
4.2 Effective hydrodynamic theory for polarity reorientation
4.3 Comparison of theory and experiment
4.4 Discussion
5 Conclusions and outlook
Appendices:
A Algebra of real 2 × 2 matrices
B Deformation of triangle networks
C Simple shear simulations using the vertex model
D Coarse-graining of a cellular Core PCP model
E Quantification of polarity patterns in the fruit fly wing
F Theory for polarity reorientation in the fruit fly wing
G Boundary conditions for the polarity field in the fruit fly wing
Table of symbols
Bibliography
|
20 |
Zyklische Plastizität von mikro- und submikrokristallinem NickelKlemm, Robert 30 March 2004 (has links) (PDF)
Im Rahmen der vorliegenden Arbeit wurde der Einfluss der Korngröße und der Gefügestabilität auf die zyklische Plastizität von mikro- und submikrokristallinem Nickel, hergestellt durch ECAP und PED, untersucht. Zur Gefügecharakterisierung kamen verschiedene elektronenmikroskopische und röntgenographische Methoden zum Einsatz. Die Untersuchungen zur Gefügestabilität zeigten, dass (i) die Stabilität der Korn- und Substruktur bei der zyklischen Verformung empfindlich vom Gefüge im Ausgangszustand abhängt, (ii) generell die Tendenz zur Umwandlung der vorhandenen Substruktur in eine universelle ermüdungstypische Substruktur besteht, diese Transformation jedoch durch die lokale Gefügebeschaffenheit be- bzw. verhindert sein kann und (iii) zur Erklärung des Entfestigungsverhaltens der ECAP-Materialien sowohl die Transformation der Substruktur als auch die Vergröberung der Kornstruktur berücksichtigt werden müssen. Auf der Basis der Ergebnisse der vorliegenden Arbeit und unter Hinzunahme von Resultaten aus der Literatur lassen sich Schlussfolgerungen zum Einfluss der Korngröße auf die zyklische Plastizität in einem vier Größenordnungen umfassenden Korngrößenbereich ziehen. In grob- und feinkörnigem Nickel bilden sich bei der zyklischen Verformung ermüdungstypische Versetzungsstrukturen, deren Abmessungen kaum von der Korngröße abhängen. Der Versetzungslaufweg in diesen Materialien ist wesentlich kleiner als die Kornabmessungen. Dementsprechend besteht höchstens ein schwacher Einfluss der Korngröße auf das sich bei der Wechselverformung einstellende Spannungsniveau. Bei mikro- und submikrokristallinem Nickel, wo der Versetzungslaufweg in der Größenordung der Kornabmessungen liegt, wird ein deutlicher Umschlag bei der Versetzungsmusterbildung und dem zyklischen Verformungsverhalten beobachtet. In diesem Korngrößenbereich entstehen entweder qualitativ andere (D&lt;DS1=5µm) oder keine Versetzungsstrukturen (D&lt;DS2=1µm) und das Spannungsniveau steigt mit sinkender Korngröße entsprechend einer HALL-PETCH-Beziehung.
|
Page generated in 0.0692 seconds