• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Autonomous Navigation in Partially-Known Environment using Nano Drones with AI-based Obstacle Avoidance : A Vision-based Reactive Planning Approach for Autonomous Navigation of Nano Drones / Autonom Navigering i Delvis Kända Miljöer med Hjälp av Nanodrönare med AI-baserat Undvikande av Hinder : En Synbaserad Reaktiv Planeringsmetod för Autonom Navigering av Nanodrönare

Sartori, Mattia January 2023 (has links)
The adoption of small-size Unmanned Aerial Vehicles (UAVs) in the commercial and professional sectors is rapidly growing. The miniaturisation of sensors and processors, the advancements in connected edge intelligence and the exponential interest in Artificial Intelligence (AI) are boosting the affirmation of autonomous nano-size drones in the Internet of Things (IoT) ecosystem. However, achieving safe autonomous navigation and high-level tasks like exploration and surveillance with these tiny platforms is extremely challenging due to their limited resources. Lightweight and reliable solutions to this challenge are subject to ongoing research. This work focuses on enabling the autonomous flight of a pocket-size, 30-gram platform called Crazyflie in a partially known environment. We implement a modular pipeline for the safe navigation of the nano drone between waypoints. In particular, we propose an AI-aided, vision-based reactive planning method for obstacle avoidance. We deal with the constraints of the nano drone by splitting the navigation task into two parts: a deep learning-based object detector runs on external hardware while the planning algorithm is executed onboard. For designing the reactive approach, we take inspiration from existing sensorbased navigation solutions and obtain a novel method for obstacle avoidance that does not rely on distance information. In the study, we also analyse the communication aspect and the latencies involved in edge offloading. Moreover, we share insights into the finetuning of an SSD MobileNet V2 object detector on a custom dataset of low-resolution, grayscale images acquired with the drone. The results show the ability to command the drone at ∼ 8 FPS and a model performance reaching a COCO mAP of 60.8. Field experiments demonstrate the feasibility of the solution with the drone flying at a top speed of 1 m/s while steering away from an obstacle placed in an unknown position and reaching the target destination. Additionally, we study the impact of a parameter determining the strength of the avoidance action and its influence on total path length, traversal time and task completion. The outcome demonstrates the compatibility of the communication delay and the model performance with the requirements of the real-time navigation task and a successful obstacle avoidance rate reaching 100% in the best-case scenario. By exploiting the modularity of the proposed working pipeline, future work could target the improvement of the single parts and aim at a fully onboard implementation of the navigation task, pushing the boundaries of autonomous exploration with nano drones. / Användningen av små obemannade flygfarkoster (UAV) inom den kommersiella och professionella sektorn ökar snabbt. Miniatyriseringen av sensorer och processorer, framstegen inom connected edge intelligence och det exponentiella intresset för artificiell intelligens (AI) ökar användningen av autonoma drönare i nanostorlek i ekosystemet för sakernas internet (IoT). Att uppnå säker autonom navigering och uppgifter på hög nivå, som utforskning och övervakning, med dessa små plattformar är dock extremt utmanande på grund av deras begränsade resurser. Lättviktiga och tillförlitliga lösningar på denna utmaning är föremål för pågående forskning. Detta arbete fokuserar på att möjliggöra autonom flygning av en 30-grams plattform i fickformat som kallas Crazyflie i en delvis känd miljö. Vi implementerar en modulär pipeline för säker navigering av nanodrönaren mellan riktpunkter. I synnerhet föreslår vi en AI-assisterad, visionsbaserad reaktiv planeringsmetod för att undvika hinder. Vi hanterar nanodrönarens begränsningar genom att dela upp navigeringsuppgiften i två delar: en djupinlärningsbaserad objektdetektor körs på extern hårdvara medan planeringsalgoritmen exekveras ombord. För att utforma den reaktiva metoden hämtar vi inspiration från befintliga sensorbaserade navigeringslösningar och tar fram en ny metod för hinderundvikande som inte är beroende av avståndsinformation. I studien analyserar vi även kommunikationsaspekten och de svarstider som är involverade i edge offloading. Dessutom delar vi med oss av insikter om finjusteringen av en SSD MobileNet V2-objektdetektor på en skräddarsydd dataset av lågupplösta gråskalebilder som tagits med drönaren. Resultaten visar förmågan att styra drönaren med ∼ 8 FPS och en modellprestanda som når en COCO mAP på 60.8. Fältexperiment visar att lösningen är genomförbar med drönaren som flyger med en topphastighet på 1 m/s samtidigt som den styr bort från ett hinder som placerats i en okänd position och når måldestinationen. Vi studerar även effekten av en parameter som bestämmer styrkan i undvikandeåtgärden och dess påverkan på den totala väglängden, tidsåtgången och slutförandet av uppgiften. Resultatet visar att kommunikationsfördröjningen och modellens prestanda är kompatibla med kraven för realtidsnavigering och ett lyckat undvikande av hinder som i bästa fall uppgår till 100%. Genom att utnyttja modulariteten i den föreslagna arbetspipelinen kan framtida arbete inriktas på förbättring av de enskilda delarna och syfta till en helt inbyggd implementering av navigeringsuppgiften, vilket flyttar gränserna för autonom utforskning med nano-drönare.
2

Vision based control and landing of Micro aerial vehicles / Visionsbaserad styrning och landning av drönare

Karlsson, Christoffer January 2019 (has links)
This bachelors thesis presents a vision based control system for the quadrotor aerial vehicle,Crazy ie 2.0, developed by Bitcraze AB. The main goal of this thesis is to design andimplement an o-board control system based on visual input, in order to control the positionand orientation of the vehicle with respect to a single ducial marker. By integrating a cameraand wireless video transmitter onto the MAV platform, we are able to achieve autonomousnavigation and landing in relatively close proximity to the dedicated target location.The control system was developed in the programming language Python and all processing ofthe vision-data take place on an o-board computer. This thesis describes the methods usedfor developing and implementing the control system and a number of experiments have beencarried out in order to determine the performance of the overall vision control system. Withthe proposed method of using ducial markers for calculating the control demands for thequadrotor, we are able to achieve autonomous targeted landing within a radius of 10centimetres away from the target location. / I detta examensarbete presenteras ett visionsbaserat kontrollsystem for dronaren Crazy ie 2.0som har utvecklats av Bitcraze AB. Malet med detta arbete ar att utforma och implementeraett externt kontrollsystem baserat pa data som inhamtas av en kamera for att reglera fordonetsposition och riktning med avseende pa en markor placerad i synfaltet av kameran. Genom attintegrera kameran tillsammans med en tradlos videosandare pa plattformen, visar vi i dennaavhandling att det ar mojligt att astadkomma autonom navigering och landning i narheten avmarkoren.Kontrollsystemet utvecklades i programmeringsspraket Python och all processering avvisions-datan sker pa en extern dator. Metoderna som anvands for att utvecklakontrollsystemet och som beskrivs i denna rapport har testats under ett ertal experiment somvisar pa hur val systemet kan detektera markoren och hur val de olika ingaendekomponenterna samspelar for att kunna utfora den autonoma styrningen. Genom den metodsom presenteras i den har rapporten for att berakna styrsignalerna till dronaren med hjalp avvisuell data, visar vi att det ar mojligt att astadkomma autonom styrning och landning motmalet inom en radie av 10 centimeter.

Page generated in 0.0606 seconds