• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 44
  • 19
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 124
  • 37
  • 27
  • 24
  • 22
  • 21
  • 20
  • 20
  • 18
  • 18
  • 18
  • 16
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulações Particle-in-Cell da interação entre fótons e plasmas de lítio

Abreu, Ana Virgínia Passos 04 August 2015 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Física, Programa de Pós-Graduação em Física, 2015. / Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2015-11-09T16:38:20Z No. of bitstreams: 1 2015_AnaVirgíniaPassosAbreu.pdf: 1772941 bytes, checksum: 94e8d3c8657fef625d2b30c5173f3758 (MD5) / Approved for entry into archive by Marília Freitas(marilia@bce.unb.br) on 2015-11-11T11:16:59Z (GMT) No. of bitstreams: 1 2015_AnaVirgíniaPassosAbreu.pdf: 1772941 bytes, checksum: 94e8d3c8657fef625d2b30c5173f3758 (MD5) / Made available in DSpace on 2015-11-11T11:16:59Z (GMT). No. of bitstreams: 1 2015_AnaVirgíniaPassosAbreu.pdf: 1772941 bytes, checksum: 94e8d3c8657fef625d2b30c5173f3758 (MD5) / O presente trabalho consistiu na elaboração de um modelo de aceleradores de partículas super potentes que são capazes de atingir campos elétricos da ordem 1 GeV/m, ou seja, capazes de ultrapassar o limite de disrupção existentes nos aceleradores de partículas atuais, com isso será possível acelerar partículas utilizando curtas distâncias, além de distâncias quilométricas. Para a realização deste trabalho, utilizamos o código computacional PIC (Particle-in-cell) que consiste num modelo de partículas em células, onde cada “macro partícula” representa as milhares de partículas existentes no sistema. Para desenvolver o trabalho fizemos modificações no código e utilizamos um plasma de lítio no qual um feixe de elétrons é inserido, criando uma onda de choque e acelerando as partículas. Obtemos um modelo semelhante ao utilizado no Staford Linear Accelerator Center, no qual inserimos feixes de elétrons com uma energia de 30 GeV, analisamos a eficiência do acelerador a plasma, a importância no desenvolvimento na ciência e as instabilidades geradas abordando o amortecimento de Landau e as instabilidades de Farley-Buneman. ______________________________________________________________________________________________ ABSTRACT / This work consisted of developing a model of super powerful particle accelerators that are able to achieve electric fields of order 1 GeV / m, ie, able to overcome the existing disruption limit on current particle accelerators, with this will be possible particle acceleration using short distances, and the kilometric distances. To carry out this study, we used the computer code PIC (Particle-in-cell) consisting of a particle model into cells, where each "macro particle" is the thousands of particles in the system. To develop the work done modifications code and use a plasma lithium on which an electron beam is inserted, creating a shock wave and accelerating the particles. We obtain a similar model to that employed in Staford Linear Accelerator Center, in which insert electron beams with an energy of 30 GeV, we analyzed the accelerator efficiency of the plasma, the importance in the development of science and instabilities generated by addressing the damping Landau and instabilities Farley-Buneman.
12

Schémas numériques adaptatifs pour les équations de Vlasov-Poisson / Adaptive numerical schemes for Vlasov-Poisson equations

Madaule, Éric 04 October 2016 (has links)
Le système d'équations de Vlasov-Poisson est un système très connu de la physique des plasmas et un enjeu majeur des futures simulations. Le but est de développer des schémas numériques utilisant une discrétisation par la méthode Galerkin discontinue combinée avec une résolution en temps semi-Lagrangienne et un maillage adaptatif basé sur l'utilisation des multi-ondelettes. La formulation Galerkin discontinue autorise des schémas d'ordres élevés avec des données locales. Cette formulation a fait l'objet de nombreuses publications, tant dans le cadre eulérien par Ayuso de Dios et al., Rossmanith et Seal, etc. que dans le cadre semi-lagrangien par Quo, Nair et Qiu, Qiu et Shu et Bokanowski et Simarta, etc. On utilise les multi-ondelettes pour l'adaptativité (et plus précisément pour la décomposition multi-échelle de la fonction de distribution). Les multi-ondelettes ont été largement étudiées par Alpert et al. pendant les années 1990 et au début des années 2000. Des travaux combinant la résolution multi-échelle avec les méthodes Galerkin discontinues ont fait l'objet de publications par Müller et al. en 2014 pour les lois de conservation hyperboliques dans le contexte des éléments finis. Besse, Latu, Ghizzo, Sonnendrücker et Bertrand ont présenté les avantages d'un maillage adaptatif dans le contexte de Vlasov-Poisson relativiste en utilisant des ondelettes à support large. La combinaison de la méthode Galerkin discontinue avec l'utilisation des multi-ondelettes ne requière en revanche qu'un support compact. Bien que la majorité de la thèse soit présentée dans un espace des phases 1d × 1v, nous avons obtenus quelques résultats dans l'espace des phases 2d × 2v. / Many numerical experiments are performed on the Vlasov-Poisson problem since it is a well known system from plasma physics and a major issue for future simulation of large scale plasmas. Our goal is to develop adaptive numerical schemes using discontinuous Galerkin discretisation combined with semi-Lagrangian description whose mesh refinement based on multi-wavelets. The discontinuous Galerkin formulation enables high-order accuracy with local data for computation. It has recently been widely studied by Ayuso de Dioset al., Rossmanith et Seal, etc. in an Eularian framework, while Guo, Nair and Qiu or Qiu and Shu or Bokanowski and Simarta performed semi-Lagrangian time resolution. We use multi-wavelets framework for the adaptive part. Those have been heavily studied by Alpert et al. during the nineties and the two thousands. Some works merging multi-scale resolution and discontinuous Galerkin methods have been described by Müller and his colleagues in 2014 for non-linear hyperbolic conservation laws in the finite volume framework. In the framework of relativistic Vlasov equation, Besse, Latu, Ghizzo, Sonnendrücker and Bertrand presented the advantage of using adaptive meshes. While they used wavelet decomposition, which requires large data stencil, multi-wavelet decomposition coupled to discontinuous Galerkin discretisation only requires local stencil. This favours the parallelisation but, at the moment, semi-Lagrangian remains an obstacle to highly efficient distributed memory parallelisation. Although most of our work is done in a 1d × 1v phase space, we were able to obtain a few results in a 2d × 2v phase space.
13

Etude mathématiques et simulations numériques de modèles de gaines bi-cinétiques / Mathematical study and numerical simulations of bi-kinetic sheath models

Badsi, Mehdi 10 October 2016 (has links)
Les résultats présentés dans cette thèse portent sur la construction et la simulation numérique de modèles théoriques de plasmas en présence d'une paroi absorbante. Ces modèles se basent sur des systèmes de Vlasov-Poisson ou Vlasov-Ampère à deux espèces en présence de conditions limites. Les solutions stationnaires recherchées vérifient l'équilibre des flux de charges dans la direction perpendiculaire à la paroi. Cette propriété s'appelle l'ambipolarité. A travers l'étude d'une équation de Poisson non linéaire, on montre le caractère bien posé d'un système de Vlasov-Poisson stationnaire 1d-1v pour lequel on détermine des distributions de particules entrantes et un potential au mur qui induisent l'ambipolarité et une densité de charge positive. On donne également une estimation de la taille de la couche limite au mur. Ces résultats sont illustrés numériquement. On prouve ensuite la stabilité linéaire des solutions stationnaires électroniques pour un modèle de Vlasov-Ampère instationnaire. Enfin, on étudie un modèle de Vlasov-Poisson stationnaire 1d-3v en présence d'un champ magnétique constant et parallèle à la paroi. On détermine les distributions de particules entrantes et un potentiel au mur qui induisent l'ambipolarité. On étudie une équation de Poisson non linéaire associée au modèle à l'aide d'une fonctionnelle non linéaire d'énergie qui admet des minimiseurs. On établit des bornes de paramètres à l'intérieur desquelles notre modèle s'applique et on propose une interprétation des résultats. / This thesis focuses on the construction and the numerical simulation theoretical models of plasmas in interaction with an absorbing wall. These models are based on two species Vlasov-Poisson or Vlasov-Ampère systems in the presence of boundary conditions. The expected stationary solutions must verify the balance of the flux of charges in the orthogonal direction to the wall. This feature is called the ambipolarity.Through the study of a non linear Poisson equation, we prove the well-posedness of 1d-1v stationary Vlasov-Poisson system, for which we determine incoming particles distributions and a wall potential that induces the ambipolarity as well as a non negative charge density hold. We also give a quantitative estimates of the thickness of the boundary layer that develops at the wall. These results are illustrated numerically. We prove the linear stability of the electronic stationary solution for a non-stationary Vlasov-Ampère system. Finally, we study a 1d-3v stationary Vlasov-Poisson system in the presence of a constant and parallel to the wall magnetic field . We determine incoming particles distributions and a wall potential so that the ambipolarity holds. We study a non linear Poisson equation through a non linear functional energy that admits minimizers. We established some bounds on the numerical parameters inside which, our model is relevant and we propose an interpretation of the results.
14

On the Einstein-Vlasov system

Fjällborg, Mikael January 2006 (has links)
<p>In this thesis we consider the Einstein-Vlasov system, which models a system of particles within the framework of general relativity, and where collisions between the particles are assumed to be sufficiently rare to be neglected. Here the particles are stars, galaxies or even clusters of galaxies, which interact by the gravitational field generated collectively by the particles.</p><p>The thesis consists of three papers, and the first two are devoted to cylindrically symmetric spacetimes and the third treats the spherically symmetric case.</p><p>In the first paper the time-dependent Einstein-Vlasov system with cylindrical symmetry is considered. We prove global existence in the so called polarized case under the assumption that the particles never reach a neighborhood of the axis of symmetry. In the more general case of a non-polarized metric we need the additional assumption that the derivatives of certain metric components are bounded in a vicinity of the axis of symmetry to obtain global existence.</p><p>The second paper of the thesis considers static cylindrical spacetimes. In this case we prove global existence in space and also that the solutions have finite extension in two of the three spatial dimensions. It then follows that it is possible to extend the spacetime by gluing it with a Levi-Civita spacetime, i.e. the most general vacuum solution of the static cylindrically symmetric Einstein equations.</p><p>In the third and last paper, which is a joint work with C. Uggla and M. Heinzle, the static spherically symmetric Einstein-Vlasov system is studied. We introduce a new method by rewriting the system as an autonomous dynamical system on a state space with compact closure. In this way we are able to improve earlier results and enlarge the class of distribution functions which give rise to steady states with finite mass and finite extension.</p>
15

On the Einstein-Vlasov system

Fjällborg, Mikael January 2006 (has links)
In this thesis we consider the Einstein-Vlasov system, which models a system of particles within the framework of general relativity, and where collisions between the particles are assumed to be sufficiently rare to be neglected. Here the particles are stars, galaxies or even clusters of galaxies, which interact by the gravitational field generated collectively by the particles. The thesis consists of three papers, and the first two are devoted to cylindrically symmetric spacetimes and the third treats the spherically symmetric case. In the first paper the time-dependent Einstein-Vlasov system with cylindrical symmetry is considered. We prove global existence in the so called polarized case under the assumption that the particles never reach a neighborhood of the axis of symmetry. In the more general case of a non-polarized metric we need the additional assumption that the derivatives of certain metric components are bounded in a vicinity of the axis of symmetry to obtain global existence. The second paper of the thesis considers static cylindrical spacetimes. In this case we prove global existence in space and also that the solutions have finite extension in two of the three spatial dimensions. It then follows that it is possible to extend the spacetime by gluing it with a Levi-Civita spacetime, i.e. the most general vacuum solution of the static cylindrically symmetric Einstein equations. In the third and last paper, which is a joint work with C. Uggla and M. Heinzle, the static spherically symmetric Einstein-Vlasov system is studied. We introduce a new method by rewriting the system as an autonomous dynamical system on a state space with compact closure. In this way we are able to improve earlier results and enlarge the class of distribution functions which give rise to steady states with finite mass and finite extension.
16

Contributions à la simulation numérique des modèles de Vlasov en physique des plasmas

Crouseilles, Nicolas 14 January 2011 (has links) (PDF)
To be
17

Vlasov's Equation on a Great Circle and the Landau Damping Phenomenon

Shen, Shengyi 16 December 2014 (has links)
Vlasov's equation describes the time evolution of the distribution function for a collisionless physical system of identical particles, such as plasma or galaxies. Together with Poisson's equation, which yields the potential, it forms the Vlasov-Poisson system. In Euclidean space this system has been extensively studied in the past century. It has been recently shown that the Valsov-Poisson system exhibits an interesting, counter-intuitive phenomenon called Landau damping. Our universe, however, may not be at on a large scale, so it is important to introduce and study a natural extension of the Vlasov-Poisson systems to spaces of constant curvature. Our starting point is the unit sphere S2, but we further restrict our study to one of its great circles. We show that, even for this reduced model, the potential function has more singularities than in the classical case. Our main result is to derive a Penrose stability criterion for the linear Landau damping phenomenon. / Graduate / 0405 / shengyis@uvic.ca
18

Numerical Vlasov–Maxwell Modelling of Space Plasma

Eliasson, Bengt January 2002 (has links)
The Vlasov equation describes the evolution of the distribution function of particles in phase space (x,v), where the particles interact with long-range forces, but where shortrange "collisional" forces are neglected. A space plasma consists of low-mass electrically charged particles, and therefore the most important long-range forces acting in the plasma are the Lorentz forces created by electromagnetic fields. What makes the numerical solution of the Vlasov equation a challenging task is that the fully three-dimensional problem leads to a partial differential equation in the six-dimensional phase space, plus time, making it hard even to store a discretised solution in a computer’s memory. Solutions to the Vlasov equation have also a tendency of becoming oscillatory in velocity space, due to free streaming terms (ballistic particles), in which steep gradients are created and problems of calculating the v (velocity) derivative of the function accurately increase with time. In the present thesis, the numerical treatment is limited to one- and two-dimensional systems, leading to solutions in two- and four-dimensional phase space, respectively, plus time. The numerical method developed is based on the technique of Fourier transforming the Vlasov equation in velocity space and then solving the resulting equation, in which the small-scale information in velocity space is removed through outgoing wave boundary conditions in the Fourier transformed velocity space. The Maxwell equations are rewritten in a form which conserves the divergences of the electric and magnetic fields, by means of the Lorentz potentials. The resulting equations are solved numerically by high order methods, reducing the need for numerical over-sampling of the problem. The algorithm has been implemented in Fortran 90, and the code for solving the one-dimensional Vlasov equation has been parallelised by the method of domain decomposition, and has been implemented using the Message Passing Interface (MPI) method. The code has been used to investigate linear and non-linear interaction between electromagnetic fields, plasma waves, and particles.
19

The Einstein-Vlasov-Maxwell system with spherical symmetry

Noundjeu, Pierre. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2005--Berlin.
20

Estabilidade não linear de um feixe de partículas carregadas sujeito a um campo magnético focalizador

Simeoni Junior, Wilson January 2005 (has links)
Uma análise da estabilidade não-linear de feixes com seção transversal circular considerando perturbações sem simetria axial é executada. Mostra-se que as oscilações simétricas oficialmente circulares de um feixe podem induzir oscilações não-lineares do tipo anti-simétrica(elípticas), com um conseqüente aumento do tamanho do feixe ao logo de uma direção preferencial. O mecanismo da instabilidade e sua relevância às perdas de partícula no feixe são discutidos.

Page generated in 0.0377 seconds