• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 23
  • 16
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 179
  • 32
  • 24
  • 19
  • 17
  • 16
  • 16
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Magnetic structure of Loihi Seamount, an active hotspot volcano in the Hawaiian Island chain

Lamarche, Amy J. 30 September 2004 (has links)
The use of geophysical techniques to image the interiors of active volcanoes can provide a better understanding of their structure and plumbing. The need for such information is especially critical for undersea volcanoes, whose environment makes them difficult to investigate. Because undersea volcanoes are made up of highly magnetic basaltic rock, it is possible to use variations in the magnetic field to explore the internal structure of such edifices. This study combines magnetic survey data from 12 research cruises to make a magnetic anomaly map of volcanically active Loihi, located in the Hawaiian Island chain. NRM intensities and susceptibility measurements were measured from recovered rock samples and suggest that magnetic properties of Loihi are widely varied (NRM intensities range from 1-157 A/m and susceptibilities from 1.26 x 10-3 to 3.62 x 10-2 S.I.). The average NRM intensity is 26 A/m. The size and strength of magnetic source bodies were determined by using various modeling techniques. A strongly magnetized shield can explain most of the anomaly with a large nonmagnetic zone inside, beneath the summit. Prominent magnetic highs are located along Loihi's north and south rift zone dikes and modeling solutions suggest strongly magnetized source bodies in these areas as well as a thin, magnetic layer atop the nonmagnetic zone. The strong magnetic anomalies found along the volcano's rift zones cannot be readily attributed to recent lava flows at the surface. Instead, the source bodies must continue several kilometers in depth to give reasonable magnetization values and are interpreted as dike intrusions. Nonmagnetic anomalies at the summit and south of the summit suggest the presence of a magma system. The model solution suggests Loihi is an inhomogeneously magnetized seamount with highly magnetic dike intrusions along the rift zones with a nonmagnetic body at its center overlain with a magnetic layer.
82

Etude géologique et pétrochimique du sud de la région de Susehri : géochronologie du massif syénitique de Kose Dag (N.E. de Sivas-Turquie)

Kalkanci, Sevket 14 November 1974 (has links) (PDF)
Cette thèse a pour objet l'étude géologique, pétrochimique et métallogénique de la région située entre Zara et Susehri, dans la province de SIVAS, en Turquie, ainsi que l'étude géochronologique du massif syénitique de Kose Dag.
83

Volcano deformation analysis in the Lazufre area (central Andes) using geodetic and geological observations

Ruch, Joël January 2010 (has links)
Large-scale volcanic deformation recently detected by radar interferometry (InSAR) provides new information and thus new scientific challenges for understanding volcano-tectonic activity and magmatic systems. The destabilization of such a system at depth noticeably affects the surrounding environment through magma injection, ground displacement and volcanic eruptions. To determine the spatiotemporal evolution of the Lazufre volcanic area located in the central Andes, we combined short-term ground displacement acquired by InSAR with long-term geological observations. Ground displacement was first detected using InSAR in 1997. By 2008, this displacement affected 1800 km2 of the surface, an area comparable in size to the deformation observed at caldera systems. The original displacement was followed in 2000 by a second, small-scale, neighbouring deformation located on the Lastarria volcano. We performed a detailed analysis of the volcanic structures at Lazufre and found relationships with the volcano deformations observed with InSAR. We infer that these observations are both likely to be the surface expression of a long-lived magmatic system evolving at depth. It is not yet clear whether Lazufre may trigger larger unrest or volcanic eruptions; however, the second deformation detected at Lastarria and the clear increase of the large-scale deformation rate make this an area of particular interest for closer continuous monitoring. / Vulkanische Deformationen in großem Maßstab, die mittels InSAR gemessen wurden, liefern neue Informationen und dadurch einen neuen Blickwinkel auf vulkan-tektonische Aktivitäten und das Verständnis von langlebigen, magmatischen Systemen. Die Destabilisierung eines solchen Systems in der Tiefe beeinflusst dauerhaft die Oberfläche durch Versatz des Bodens, magmatische Einflüsse und vulkanische Unruhen. Mit der Kombination aus kleinräumigem Bodenversatz gemessen mittels InSAR, numerischer Modellierung und langfristigen geologischen Beobachtungen, analysieren wir die Gegend um den Vulkan Lazufre in den Zentralanden, um die raumzeitliche Entwicklung der Region zu bestimmen. Bodenversatz wurde hierbei im Jahr 1997 mittels Radar-Interferrometrie (InSAR) gemessen, was eine Fläche von 1800 km² ausmacht, vergleichbar mit der Größe der Deformation des Kraters. Im Jahr 2000 wurde zusätzlich eine kleinräumige Deformation am Nachbarvulkan Lastarria entdeckt. Wir sehen räumliche als auch zeitliche Verbindungen zwischen der Deformation des Vulkans und vulkanischen Strukturen innerhalb der betroffenen Gegend. Wir folgern daraus, dass diese Beobachtungen der Ausdruck eines langlebigen, magmatischen Systems in der Tiefe an der Oberfläche sind. Es ist noch nicht klar, ob Lazufre größere vulkanische Unruhen, wie zum Beispiel Eruptionen auslösen könnte, aber die Deformation am Vulkan Lastarria und ein Anstieg der großräumigen Deformationsrate, machen diese Region interessant für eine zukünftige, kontinuierliche Überwachung.
84

Sequence stratigraphy of the late Pleistocene - Holocene deposits on the northwestern margin of the South Caspian Basin

Rahmanov, Ogtay Rasim 15 November 2004 (has links)
Interpretation of 900 km of a closely spaced grid of high-resolution seismic profiles over the northwestern margin of South Caspian Basin (SCB) allows recognition and study of six late Pleistocene - Holocene depositional sequences. Sequence stratigraphy analysis of sedimentary strata from 117,000 years B.P. to present led to the identification of a highstand systems tract, two transgressive systems tracts and six lowstand systems tracts. Each systems tract is characterized by specific seismic facies. Diverse depositional processes on the northwestern margin of the SCB are suggested by the thirteen seismic facies patterns recognized in the study area. Two distinct progradational complexes were interpreted within Sequence III and Sequences IV and V in the northeastern and northwestern parts of the study area, respectively. Stratigraphic interpretation of the sequences provided important information on parameters that control depositional architectures, such as lake level fluctuations, tectonic dynamics, and sediment supply. High sedimentation rates combined with a series of high-frequency and high-amplitude lake-level fluctuations, abrupt changes at the shelf edge, abnormally high formation pressure, and high tectonic activity during Quaternary time resulted in the development of a variety of complex geologic drilling hazards. I distinguished three types of hazards as a result of this study: mud volcanoes, sediment instability, and shallow gas. The 2D high-resolution seismic dataset from the northwestern margin of the SCB allowed more detailed seismic sequence stratigraphic analysis in the study area than has previously been attempted. In particular, it has a clear application in deciphering sediment supply and relative lake level changes as well as tectonic relationship of the northwestern shelf margin of the SCB. Results of this work led us towards better understanding of recent depositional history, improved our knowledge of the nature of the basin tectonics, climate history and styles of and controls on sedimentation processes within a sequence stratigraphic framework during the late Pleistocene-Holocene time.
85

Short and Long Term Volcano Instability Studies at Concepción Volcano, Nicaragua

Saballos, Jose Armando 01 January 2013 (has links)
Concepción is the most active composite volcano in Nicaragua, and is located on Ometepe Island, within Lake Nicaragua. Moderate to small volcanic explosions with a volcanic explosivity index (VEI) of 1-2 have been characteristic of this volcano during the last four decades. Although its current activity is not violent, its volcanic deposits reveal stages of violent activity involving Plinian and sub-Plinian eruptions that deposited vast amounts of volcanic tephra in the Atlantic Ocean. These observations, together with the 31,000 people living on the island, make Concepción volcano an important target for volcanological research. My research focuses on the investigation of the stability of the volcano edifice of Concepción, using geophysical data such as gravity, geodetic global positioning system (GPS), sulphur dioxide (SO2) flux, real-time seismic amplitude (RSAM), and satellite remotely-sensed data. The integration of these data sets provides information about the short-term behavior of Concepción, and some insights into the volcano's long-term behavior. This study has provided, for the first time, information about the shallow dynamics of Concepción on time scales of days to weeks. I furnish evidence that this volcano is not gravitationally spreading in a continuous fashion as previously thought, that its bulk average density is comparable to that of a pile of gravel, that the volcano edifice is composed of two major distinctive lithologies, that the deformation field around the volcano is recoverable in a matter of days, and that the deformation source is located in the shallow crust. This source is also degassing through the relatively open magmatic conduit. There are, however, several remaining questions. Although the volcano is not spreading continuously there is the possibility that gravitational spreading may be taking place in a stick-slip fashion. This has important implications for slope stability of the volcano, and the associated hazards. The factors influencing the long term slope stability of the volcano are still not fully resolved, but internal volcanic processes and anthropogenic disturbances appear to be the major factors.
86

Unusual Patterns of Seismicity during Eruptive and Non-eruptive Periods at the Persistently Restless Telica Volcano, Nicaragua

Rodgers, Melanie 01 January 2013 (has links)
Telica Volcano, Nicaragua, is a persistently restless volcano with high rates of seismicity that can vary from less than ten events to over a thousand events per day. Low-frequency (LF) events dominate the seismic catalogue and seismicity rates at Telica show little clear correlation with periods of eruption. As such, traditional methods of forecasting of volcanic activity based on increases in seismicity and recognition of LF activity are not applicable. A single seismic station has been operating at Telica since 1993, and in 2010 we installed a broadband seismic and continuous GPS network (TESAND network) at Telica. In this study we investigate the seismic characteristics surrounding a nine-month period of phreatic to phreatomagmatic explosions in 1999, and also from the initial three-and-a-half year deployment of the TESAND network, including a three-month phreatic vulcanian eruptive period in 2011. We demonstrate that pertinent information can be obtained from analysis of single-station data, and while large seismic networks are preferable when possible, we note that for many volcanoes this is not possible. We find unusual patterns of seismicity before both eruptive periods; rather than a precursory increase in seismicity as is observed prior to many volcanic eruptions, we observe a decrease in seismicity many months prior to eruption. We developed a new program for cross-correlation of large seismic data catalogues and analysed multiplet activity surrounding both eruptive periods. We observed that the formation of new multiplets corresponds to periods of high event rates (during inter-eruptive periods) and high percentages of daily events that belong to a multiplet. We propose a model for the seismicity patterns observed at Telica, where changes in seismicity are related to a cyclic transition between open-system degassing and closed-system degassing. Periods of open-system degassing occur during non-eruptive episodes and are characterised by high event rates, a broad range of frequency content of events and high degrees of waveform correlation. A transition to closed-system degassing could be due to sealing of fluid pathways in the magmatic and/or hydrothermal system, or due to magma withdrawal. Periods of closed-system degassing are characterised by low event rates, higher frequency contents and low degrees of waveform correlation. Eruptive periods may then represent a transition from closed-system degassing to open-system degassing, however the system must also be capable of transitioning to open-system degassing without eruption. These observations have important implications for volcano monitoring and eruption forecasting at persistently restless volcanoes. Rather than a precursory increase in seismicity as is often observed prior to eruption at other volcanoes, our observations indicate that phreatic eruptions at Telica occur after a decrease in seismicity, a corresponding change in the frequency content of events, and a decrease in waveform correlation. These changes may represent a period of closed-system degassing that could culminate in phreatic eruptions. The inclusion of real-time analysis of variations in frequency content and multiplet activity provides critical information for volcano monitoring institutions.
87

Unav-Nuquaint: Little Springs Lava Flow Ethnographic Investigation

Van Vlack, Kathleen, Stoffle, Richard W., Pickering, Evelyn, Brooks, Katherine, Delfs, Jennie 09 1900 (has links)
This is a study about a very unusual place and the innovative American Indian ceremonial response to an event that uniquely occurred at this place. The place, defined here as the Uinkaret Volcanic Field, was always culturally important to Indian people for ceremony. The place is so covered with evidence of past volcanic activity that one can think of it as a place to go to talk with and experience volcanoes. This seems according to Indian testimony to have been its primary purpose for thousands of years before the event.
88

Magnetic structure of Loihi Seamount, an active hotspot volcano in the Hawaiian Island chain

Lamarche, Amy J. 30 September 2004 (has links)
The use of geophysical techniques to image the interiors of active volcanoes can provide a better understanding of their structure and plumbing. The need for such information is especially critical for undersea volcanoes, whose environment makes them difficult to investigate. Because undersea volcanoes are made up of highly magnetic basaltic rock, it is possible to use variations in the magnetic field to explore the internal structure of such edifices. This study combines magnetic survey data from 12 research cruises to make a magnetic anomaly map of volcanically active Loihi, located in the Hawaiian Island chain. NRM intensities and susceptibility measurements were measured from recovered rock samples and suggest that magnetic properties of Loihi are widely varied (NRM intensities range from 1-157 A/m and susceptibilities from 1.26 x 10-3 to 3.62 x 10-2 S.I.). The average NRM intensity is 26 A/m. The size and strength of magnetic source bodies were determined by using various modeling techniques. A strongly magnetized shield can explain most of the anomaly with a large nonmagnetic zone inside, beneath the summit. Prominent magnetic highs are located along Loihi's north and south rift zone dikes and modeling solutions suggest strongly magnetized source bodies in these areas as well as a thin, magnetic layer atop the nonmagnetic zone. The strong magnetic anomalies found along the volcano's rift zones cannot be readily attributed to recent lava flows at the surface. Instead, the source bodies must continue several kilometers in depth to give reasonable magnetization values and are interpreted as dike intrusions. Nonmagnetic anomalies at the summit and south of the summit suggest the presence of a magma system. The model solution suggests Loihi is an inhomogeneously magnetized seamount with highly magnetic dike intrusions along the rift zones with a nonmagnetic body at its center overlain with a magnetic layer.
89

HIReTS法を用いた火山噴気の遠隔温度測定 : 薩摩硫黄島における検証

NAKAGAWA, Fumiko, KOMATSU, Daisuke D., TSUNOGAI, Urumu, 中川, 書子, 小松, 大祐, 角皆, 潤 January 2013 (has links)
No description available.
90

Under the volcano and October ferry to Gabriola : the weight of the past.

Harrison, Keith January 1972 (has links)
No description available.

Page generated in 0.0354 seconds