• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 112
  • 38
  • 19
  • 17
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 472
  • 98
  • 49
  • 44
  • 33
  • 30
  • 29
  • 27
  • 27
  • 27
  • 26
  • 24
  • 22
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Recommendations for Treatment Planning Dose Indices for Single Target VMAT Brain Stereotactic Radiosurgery/Radiotherapy; A Retrospective Analysis

Newell, Devin Austin Lee January 2021 (has links)
No description available.
272

Realistické zobrazení mraků a kouře / Realistic Rendering of Smoke and Clouds

Kopidol, Jan January 2008 (has links)
This work discourses about methods of rendering volumetric data such as clouds or smoke in computer graphics and implementation of this feature to existing application. The first part is summary of techniques and tricks used in computer graphics to display such objects in scene, their pros and cons and the most used techniques of displaying volumetric data. Next part is more closely focused to choosed technique of rendering volumetric data with consideration of light behavior inside the volume (also called participating media) and basic relationships used used in computation. In following part of work there is short list of applications - renderers used to realistic rendering of scene, which are suitable for implementation of selected volumetric data rendering algorithm. Selected application - Blender is describled more deeply including its inner structure, especially rendering engine. Last part of work is dedicated to design, implementation and integration of rendering algorithm itself.
273

Water-Use Characteristics of Warm-Season Putting Green Cultivars and Management Practices Associated with New Putting Green Genetics

Wait, Stephen Bryant 06 May 2017 (has links)
Bermudagrass (Cynodon spp.) is the most common turfgrass used on golf course putting greens in the southeastern United States (Lyman et al., 2007). In 2013, the National Turfgrass Evaluation Program (NTEP) started a 5-year trial of warm-season putting green cultivars. One of the bermudagrass cultivars in the study is MSB-285 (experimental cultivar). MSB-285 is a sister plant of MSB-264 (Philley and Munshaw, 2011) and is a distinct cultivar of C. dactylon × C. transvaalensis. MSB-285 has a more extensive root system and upright growth habit than traditional bermudagrass putting green cultivars (Philley and Munshaw, 2011). Due to MSB-285’s unique genetic makeup and growth habit, the objectives of this research were to determine if best management practices used to maintain ultradwarf bermudagrasses would be suitable for MSB-285 and to determine the water-use characteristics of MSB-285 compared to industry standard cultivars.
274

Modeling the Effect of Calcium Concentration and Volumetric Flow Rate Changes on the Growth of Rimstone Dam Formations Due to Calcium Carbonate Precipitation

Groshong, Kimberly Ann January 2008 (has links)
No description available.
275

[pt] MODELAGEM DE CANAIS TURBIDÍTICOS ORIENTADOS A SÍSMICA 3D / [en] TURBIDITE CHANNEL MODELING ORIENTED BY 3D SEISMIC

AIMEE DOS SANTOS REIS 15 December 2020 (has links)
[pt] Modelagem de canais turbidíticos é um tema muito presente nas pesquisas da extração do petróleo. O desafio encontra-se em elaborar formas de extração e identificação desses canais em uma superfície pré-determinada. De outro lado, tem-se a sísmica que pode gerar, no resultado final da captação, listas de probabilidades do acúmulo de hidrocarbonetos desta superfície. Unindo estes assuntos, o objetivo deste trabalho é criar um modelo de extração de canais turbidíticos a partir de superfícies interpretadas pela sísmica, utilizando técnicas computacionais e, em particular, um algoritmo de erosão volumétrica. Além do modelo final proposto nesta pesquisa, uma contribuição foi agregar uma particularidade probabilística do dado 3D, em estudo, no algoritmo de erosão utilizado. / [en] Turbidite channels modeling is a very present theme in oil extraction research. The challenge lies in elaborating ways of extracting and identifying these channels on a predetermined surface. On the other hand, seismic data can generate, in the final result of the capture, lists of probabilities of the accumulation of hydrocarbons on this surface. Bringing these subjects together, the objective of this work is to create a model for the extraction of turbiditic channels from surfaces interpreted by Seismic, using computational techniques and, in particular, a volumetric erosion algorithm. In addition to the proposed model in this research, one contribution was to add a probabilistic particularity of the 3D data in the erosion algorithm used.
276

FOLAR: A FOggy-LAser Rendering Method for Interaction in Virtual Reality / FOLAR: En FOggy-LAser Rendering Metod för Interaktion i Virtual Reality

Zhang, Tianli January 2020 (has links)
Current commercial Virtual Reality (VR) headsets give viewers immersion in virtual space with stereoscopic graphics and positional tracking. Developers can create VR applications in a working pipeline similar to creating 3D games using game engines. However, the characteristics of VR headsets give disadvantages to the rendering technique particle system with billboard sprites. In our study, we propose a rendering technique called FOggy-LAser Rendering method (FOLAR), which renders realistic laser in fog on billboard sprites. With this method, we can compensate for the disadvantages of using particle systems and still render the graphics in interactive performance for VR. We studied the characteristics of this method by performance benchmarks and comparing the rendered result to a baseline ray-casting method. User study and image similarity metrics are involved in the comparison study. As a result, we observed a satisfying performance and a similar rendering result compared to ray-casting. However, the user study still shows a significant difference in the rendered result between methods. These results imply that FOLAR is an acceptable method for its performance and ness in the rendered result, but still have inevitable trade-offs‌‌‌ in the graphics. / Nuvarande kommersiella Virtual Reality (VR) headset ger användare immersion i virtuellt utrymme med stereoskopisk grafik och positionsspårning. Utvecklare kan skapa VR-applikationer i en fungerande pipeline på ett liknande sätt som att skapa 3D-spel med hjälp av spelmotorer. Egenskaperna hos VR-headset ger emellertid nackdelar med renderingstekniken av billboard sprite partikelsystem. I vår studie föreslår vi en renderingsteknik som kallas FOggy-LAser Rendering method (FOLAR), som renderar realistiska lasrar i dimma på billboard sprites. Med denna metod kan vi kompensera för nackdelarna med att använda partikelsystem och fortfarande göra grafiken i interaktiv prestanda för VR. Vi studerade egenskaperna hos denna metod genom prestanda benchmarks och jämförde renderade resultatet med en baseline ray-cast metod. Användarstudie och image similarity mätvärden är involverade i jämförelsestudien. Som resultat observerade vi en tillfredsställande prestanda och liknande renderings resultat jämfört med ray-casting. Dock visar användarstudien fortfarande en signifikant skillnad i det gjorda resultaten mellan metoderna. Dessa resultat pekar på att FOLAR är en acceptabel metod för dess prestanda och korrekthet i det renderade resultatet, men har fortfarande oundvikliga avvägningar i grafiken.
277

MG53 improves regeneration of satellite cells and healing following volumetric muscle loss injury by decreasing fibrosis and modulating the inflammatory environment

Benissan-Messan, Dathe Z. 30 August 2022 (has links)
No description available.
278

Study of solidification and volume change in lamellar cast iron with respect to defect formation mechanisms

Svidró, Péter January 2013 (has links)
Lamellar cast iron is a very important technical alloy and the most used material in the casting production, and especially in the automotive industry which is the major consumer. Beside the many great properties, it is inclined to form casting defects of which some can be prevented, and some may be repaired subsequently. Shrinkage porosity is a randomly returning problem, which is difficult to understand and to avoid. This defect is a volumetric deficiency which appear as cavities inside the casting in connection to the casting surface. Another frequent defect is the metal expansion penetration. This defect is a material surplus squeezed to the casting surface containing sand inclusion from the mold material. Shrinkage porosity is usually mentioned together with metal expansion penetration as the formation mechanism of both defects have common roots. It is also generally agreed, that these type of defects are related to the volumetric changes occurring during solidification. Additionally, the formation of these defects are in connection with the coherency of the primary austenite dendrites. The purpose of this work was to develop knowledge on factors affecting a volume-change related casting defect formation in order to minimize the presence of these defects in engine component production. This was done by extending the existing solidification investigation methods with novel solutions. Introduction of expansion force measurement in the determination of dendrite coherency combined with multi axial volume change measurement refine the interpretation of the solidification. Comparison of registered axial and radial linear deformation in cylindrical samples indicated an anisotropic volume change. Different methods for dendrite coherency determination have been compared. It was shown that the coherency develops over an interval. Dependent on the added inoculant the coherency is reached at different levels of fractions of a solidified primary phase. It is also shown, that inoculation has an effect on the nucleation and growth of the primary phase. Quantitative image analysis has been performed on the primary phase in special designed samples designed to provoke shrinkage porosity and metal expansion penetration. It was found, that the inter-dendritic space varies within a casting. This was explained by the coarsening of the primary dendrites which originates from differences in the local time of solidification. / <p>QC 20131210</p>
279

Intracranial volumetric changes govern cerebrospinal fluid flow in the Aqueduct of Sylvius in healthy adults

Laganà, M.M., Shepherd, Simon J., Cecconi, P., Beggs, Clive B. 08 April 2017 (has links)
yes / Purpose To characterize the intracranial volumetric changes that influence the cerebrospinal fluid (CSF) pulse in the Aqueduct of Sylvius (AoS). Materials and methods Neck MRI data were acquired from 12 healthy adults (8 female and 4 males; mean age = 30.9 years), using a 1.5 T scanner. The intracranial arterial, venous and CSF volumes changes, together with the aqueductal CSF (aCSF) volume, were estimated from flow rate data acquired at C2/C3 level and in the AoS. The correlations and temporal relationships among these volumes were computed. Results The aCSF volumetric changes were strongly correlated (r = 0.967, p < 0.001) with the changes in intracranial venous volume, whose peak occurred 7.0% of cardiac cycle (p = 0.023) before peak aCSF volume, but less correlated with the intracranial arterial and CSF volume changes (r = −0.664 and 0.676 respectively, p < 0.001). The intracranial CSF volume change was correlated with the intracranial venous volume change (r = 0.820, p < 0.001), whose peak occurred slightly before (4.2% of CC, p = 0.059). Conclusion The aCSF pulse is strongly correlated with intracranial venous volume, with expansion of the cortical veins occurring prior to aCSF flow towards the third ventricle. Both caudal-cranial aCSF flow and venous blood retention occur when arterial blood volume is at a minimum.
280

Volumetric Rendering of the Inner Coma of a Theoretically Modelled Comet for Comet Interceptor Mission

Vinod, Amal January 2023 (has links)
The Comet Interceptor is a joint mission by European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) which seeks to perform a flyby over a Long Period Comet using a multi-element spacecraft. The Comet Interceptor comprises three spacecrafts- A, B1 and B2. All three spacecrafts will observe and map the comet at three different points on the coma of the comet, thereby making this mission the first ever multipoint mission dedicated to study a Long Period Comet. Out of the eleven instruments aboard the Comet Interceptor, the work done for this thesis aims to help the team designing the instrument-Optical Periscope Imager forComets (OPIC). The team designing OPIC uses the imaging simulation software Space Imaging Simulator for Proximity Operations (SISPO) to render images of theoretically modelled dust and gas densities of the coma of a comet to obtain prerequisite knowledge of the images which is to be taken by OPIC during its flyby. Using the theoretical model of the coma, a 3D model was created as part of the thesis which shall be later implemented in SISPO. The structure of the coma was made with the help of a sparse volumetric data manipulation tool OpenVDB, which was coded and run in Python. The generated data was imported in Blender to visualise the volumetric data with the help of Blender’s rendering engine-Cycles. To visualise the 3D model with utmost physical realism as the software Blender allows, a study on the scattering properties of the dust and gas model was done. Also, a motion blur was implemented in Blender to simulate the high relative velocity between the instrument and comet. Multiple approaches of varying complexities and time consumption were considered for importing and visualising the volumetric data. The final render images were brightness-matched with reference to images from previous cometary missions. Finally, a qualitative analysis was done by visually comparing the render images to the images from previous missions. With the help of this qualitative analysis, several features and characteristics were identified which were analogous to the real life images, thus establishing the correctness of the renders produced.

Page generated in 0.0619 seconds